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A B S T R A C T

A finite-strain phase-field model is developed for the analysis of multivariant martensitic transformation during
nano-indentation. Variational formulation of the complete evolution problem is developed within the incre-
mental energy minimization framework. Computer implementation is performed based on the finite-element
method which allows a natural treatment of the finite-strain formulation and of the contact interactions. A
detailed computational study of nano-indentation reveals several interesting effects including the pop-in effect
associated with nucleation of martensite and the energy-lowering breakdown of the symmetry of microstructure.
The effect of the indenter radius is also examined revealing significant size effects governed by the interfacial
energy.

1. Introduction

Instrumented micro/nano-indentation is a powerful and highly
popular experimental technique for characterization of material beha-
vior at small scales at which other techniques are not applicable or are
more difficult (Oliver and Pharr, 2004; Schuh, 2006; Fischer-Cripps,
2011). Instrumented indentation has been applied to virtually any
material system. This includes shape-memory alloys (SMAs) which are
the subject of the present work (e.g. Gall et al., 2001; Zhang and
Komvopoulos, 2006; Frick et al., 2006; Muir Wood and Clyne, 2006;
Crone et al., 2007; Amini et al., 2011). The interest in the SMAs is due
to their spectacular features, notably pseudoelasticity and shape-
memory effect, that result from the crystallographically reversible
martensitic phase transformation (Bhattacharya, 2003).

In the pseudoelastic regime, which is of great importance due to
numerous engineering and biomedical applications, the inelastic de-
formation resulting from the stress-induced martensitic transformation
vanishes (completely or nearly completely) upon unloading as a result
of the reverse transformation. This concerns also the deformation
during indentation. Accordingly, unlike in other materials, in a pseu-
doelastic SMA, the indentation does not leave any residual imprint.
Thus the measured load–indentation depth curve is the only response
that is available for characterization of the material. Note that the to-
pography of the residual imprint is an important material characteristic
that can be used, for instance, to support the indentation-based iden-
tification of mechanical properties, such as the hardening curve in

plasticity (e.g. Bolzon et al., 2004; Kucharski and Mróz, 2007) and
crystal plasticity (e.g. Petryk et al., 2017). Note also that the martensitic
microstructure developed in a pseudoelastic SMA during indentation
disappears upon the reverse transformation during unloading, see e.g.
Pfetzing-Micklich et al. (2013), and is not available for experimental
examination. Modeling is thus apparently the only way to examine the
microstructure, clearly with all the related limitations.

Computational modeling and simulation of indentation in SMAs
have been the subject of a number of studies reported in the literature.
Macroscopic models of polycrystalline SMAs are relevant at higher
scales at which the indenter radius (or the deformed volume in sharp
indentation) is large compared to the grain size. The respective simu-
lations can be found, e.g., in Muir Wood and Clyne (2006);
Yan et al. (2007); Zhang et al. (2007). Simulations of indentation of
SMAs at lower scales are much more scarce. Micromechanical models,
such as the crystal-plasticity-like models, are applicable to single crys-
tals or to individual grains in polycrystalline aggregates, see
Dhala et al. (2019). Models of this class assume that individual phases
or variants occupy the same (macroscopic) volume and are represented
by the respective volume fractions. They are thus relevant for inter-
mediate length scales, still considered macroscopic from the point of
view of spatial arrangement of individual variants and phase bound-
aries. On the other hand, atomistic simulations employing molecular
dynamics (MD) can be applied to simulate nano-indentation taking into
account the discrete atomic structure, however, such simulations are
limited to very small spatial and temporal scales (Pfetzing-Micklich

https://doi.org/10.1016/j.mechmat.2019.103267
Received 2 July 2019; Accepted 27 November 2019

⁎ Corresponding author.
E-mail addresses: mrezaee@ippt.pan.pl (M. Rezaee-Hajidehi), sstupkie@ippt.pan.pl (S. Stupkiewicz).

Mechanics of Materials 141 (2020) 103267

Available online 04 December 2019
0167-6636/ © 2019 Institute of Fundamental Technological Research, Polish Academy of Sciences. Published by Elsevier Ltd. This is an open access article under 
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

T

http://www.sciencedirect.com/science/journal/01676636
https://www.elsevier.com/locate/mechmat
https://doi.org/10.1016/j.mechmat.2019.103267
https://doi.org/10.1016/j.mechmat.2019.103267
mailto:mrezaee@ippt.pan.pl
mailto:sstupkie@ippt.pan.pl
https://doi.org/10.1016/j.mechmat.2019.103267
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2019.103267&domain=pdf


et al., 2013; Chen et al., 2018).
Apparently, continuum modeling of spatially-resolved martensitic

microstructures induced by nano-indentation is essentially missing. It
seems that the main (or the only) approach applicable at the inter-
mediate scale between atomistic simulations and micromechanical
models mentioned earlier is the phase-field method. To the best of our
knowledge, the only corresponding results are those of Clayton and
Knap (2011), who have studied a 2D problem of twinning in calcite and
sapphire single crystals subjected to wedge indentation. A phase-field
simulation of a simplified indentation problem has also been reported
by Basak and Levitas (2019): a square-to-rectangle transformation in 2D
has been considered under indentation by a flat indenter with the
boundary conditions that do not correspond to the genuine indentation
problem. In conclusion, it follows that very little has been done so far
towards spatially resolved modeling of martensitic transformation
during nano-indentation. This work is aimed at filling this gap, and the
phase-field method is adopted as the suitable approach.

The phase-field method is a general tool for the simulation of mi-
crostructure evolution, in which the interfaces are treated as diffuse so
that direct tracking of interfaces is avoided (Chen, 2002; Steinbach,
2009). Martensitic phase transformations, including those in SMAs,
constitute one of the classical application areas for the phase-field
modeling (e.g. Wang and Khachaturyan, 1997; Levitas and Preston,
2002; Ahluwalia et al., 2004). The vast majority of phase-field ap-
proaches are restricted to the small-strain framework, which admits
application of computationally efficient spectral solvers (Wang and
Khachaturyan, 1997; Chen and Shen, 1998), provided that the problem
is formulated for a regular periodic unit cell.

The finite-element method is a more general approach for the nu-
merical solution of phase-field equations. In particular, the finite-ele-
ment method does not impose any limitations on the geometry and
boundary conditions. This is essential in the context of the indentation
problems that do not admit periodic boundary conditions and require
consideration of unilateral contact constraints, and hence cannot be
solved using the spectral methods. Another beneficial feature of the
finite-element method as compared to the spectral methods is that fi-
nite-strain formulations can be naturally treated by the former. This is
an important feature even if only a few finite-strain phase-field models
of displacive transformations have been developed so far (Levitas et al.,
2009; Clayton and Knap, 2011; Hildebrand and Miehe, 2012; Tůma
et al., 2016; Bartels and Mosler, 2017).

Note that, in the phase-field computations, a uniform fine mesh is
needed to correctly resolve the diffuse interfaces. Considering that the
global unknowns comprise not only displacements but also several
order parameters, the size of the computational model becomes a severe
restriction, particularly for 3D problems. For this reason, the numerical
examples reported in the present paper are limited to 2D indentation
problems, as an intermediate step towards the full 3D analysis which is
the ultimate goal of our work. Note that the spectral methods, despite
the limitations concerning the geometry and boundary conditions, are
more efficient than the finite-element method in coping with the pro-
blems with a large number of unknowns.

In this paper, a finite-strain multivariant phase-field model is de-
veloped and its finite-element implementation is performed with the
aim to simulate martensitic phase transformation during nano-in-
dentation. The model employs the double-obstacle potential (Steinbach,
2009; 2013), and the associated inequality constraints on the order
parameters are enforced using the penalty method. We do not attempt
to use techniques based on Lagrange multipliers, as e.g. in Tůma and
Stupkiewicz (2016), in order to allow application of iterative solvers, in
view of large-scale 3D problems to be considered in the ongoing follow-
up work. For the same reason, contact constraints are also treated using
the penalty method. The complete evolution problem is formulated as
an incremental energy minimization problem which, upon the penalty
regularization of the inequality constraints, retains the general Ginz-
burg–Landau structure (Hildebrand and Miehe, 2012). A detailed

computational study is then carried out aimed at the analysis of the
indentation-induced martensitic microstructures. The study reveals
several interesting effects including the pop-in effect associated with
nucleation of martensite and formation of energy-lowering non-sym-
metric microstructures in otherwise symmetric problems. Finally, the
effect of the indenter radius on the microstructure and on the loa-
d–indentation depth response is examined revealing significant size
effects. Results of such scope have not been reported so far.

2. The multiphase-field model

The finite-strain multiphase-field model is presented in this section.
The present model is essentially an extension of the model of
Tůma et al. (2016) to the case of multiple martensite variants, which
has been achieved by employing the multiphase double-obstacle po-
tential (Steinbach, 2009). In the computational treatment, the in-
equality constraints on the order parameters, which are essential in the
double-obstacle potential, are enforced using the penalty method,
which proves to perform very well. Additional enhancements of the
model include the anisotropic elastic-strain energy that is quadratic in
the elastic Hencky (logarithmic) strain, which makes the model more
robust than in the case of the popular St. Venant–Kirchhoff model.

The model assumes +N 1 phases, i.e. the parent phase (austenite)
and N variants of the product phase (martensite). Each phase is char-
acterized by the respective order parameter ηi, = …i N0, , . The order
parameters represent the phase volume fractions and are subject to the
following inequality and summation constraints,

∑≤ = ⋯ =
=

η i N η0 for 0, , , and 1.i
i

N

i
0 (1)

Note that the summation constraint (1)2 implies also the fulfillment of
the upper-bound constraints ηi≤ 1.

A finite-deformation framework is adopted, and the configuration of
the undeformed austenite is taken as the reference configuration.
Denoting by φ the mapping between the reference placement of the
material point X and its current placement x at time t, thus = φ tx X( , ),
the deformation gradient F is defined as

= ∇ = + ∇ = −φF I u u x X, , (2)

where u is the displacement, I is the second-order identity tensor, and ∇
denotes the spatial gradient with respect to the reference configuration.
The deformation gradient F is multiplicatively decomposed into the
elastic part Fe and the transformation part F ,t i.e. =F F Fe t. The
transformation part Ft is obtained by applying the logarithmic mixing
rule (cf., Tůma et al., 2016) to the symmetric transformation (Bain)
stretch tensors of individual phases U ,i

t viz.

∑= = ⎛

⎝
⎜

⎞

⎠
⎟

=

η η ηF U U( ) ( ) exp log ,
i

N

i i
t t

0

t

(3)

where = ⋯η η η η( , , , )N0 1 is the vector of all order parameters ηi. In view
of the assumption concerning the reference configuration, we have

=U I,0
t and thus =U 0log 0

t .
In Eq. (3), the transformation stretch tensors are symmetric,

=U U( ) ,i i
t t T so that Ft is also symmetric, = =F F U( )t t T t. Thus, for a

pure phase i, i.e. =η 1,i we have =F Ui
t t and =F F Ui

e t. In some cases,
see e.g. the case with =N 4 martensite variants in Section 4.2, it is
convenient to adopt a non-symmetric deformation tensor to describe
the deformation associated with the transformation from the parent
phase to the pure phase i, thus for =η 1i we have =F F F ,i

e t where
≠F F( )i i

t t T. In such cases, the logarithmic mixing rule (3) is replaced by
the linear mixing rule = + ∑ =η ηF I Fi

N
i i

t
0 1

t.
The Helmholtz free energy function F is additively split into the bulk

contribution FB and the interfacial contribution F ,Γ thus

∇ = + ∇η η η η ηF F FF F( , , ) ( , ) ( , ).B Γ (4)
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The bulk energy FB is adopted in the following form,

∑= + =
=

ηF η FF F H LH H C( , ) 1
2

(det ) · , 1
2

log ,
i

N

i iB
0

0 t e e e e

(5)

where the first term represents the weighted sum of the chemical en-
ergies Fi

0 and the second term represents the elastic strain energy. Here,
He is the elastic Hencky (logarithmic) strain, =C F F( )e e T e is the elastic
right Cauchy–Green tensor, with = −F F F( ) ,e t 1 and L is the elastic
stiffness tensor. Applying the Voigt scheme, the elastic stiffness tensor is
given by

∑=
=

η ηL L( ) ,
i

N

i i
0 (6)

where Li represents the elastic stiffness tensor of the pure phase i, which
can be different for each phase, in particular when elastic anisotropy is
accounted for. Note that since the martensite variants are symmetry
related, the anisotropic elastic stiffness tensor of one variant can be
obtained by applying an adequate rotation to the elastic stiffness tensor
of another variant.

The elastic strain energy in Eq. (5) has been assumed quadratic in
the elastic Hencky strain He. When elastic strains are sufficiently small,
the simple and popular St. Venant–Kirchhoff model, in which the en-
ergy is quadratic in the elastic Green strain = −E C I( ),e 1

2
e proves to

perform satisfactorily (e.g. Kružík et al., 2005; Maciejewski et al., 2005;
Tůma and Stupkiewicz, 2016). However, according to our preliminary
studies, the condition of small elastic strains is not satisfied in the range
of applications studied in this work, in particular, in view of high
compressive stresses beneath the indenter (leading to non-physical
behavior and severe convergence problems). On the contrary, the en-
ergy quadratic in He has proven to perform well, even if such behavior
is not guaranteed for arbitrarily large elastic strains. The reader is re-
ferred to Neff et al. (2015) for an overview of the properties of the
quadratic Hencky model in the isotropic case.

The interfacial contribution FΓ represents the energy of diffuse in-
terfaces and is expressed in terms of the order parameters and their
gradients. Adopting the standard double-obstacle potential, FΓ can be
expressed in the following form (cf. Steinbach, 2009; 2013),

∑ ∑∇ =
⎛

⎝
⎜ − ∇ ∇

⎞

⎠
⎟

= = +

η ηF
γ

λ
η η

λ
π

η η( , )
4

· ,
i

N

j i

N
ij

ij
i j

ij
i jΓ

0 1

2

2
(7)

where γij is the interfacial energy density (per unit area) of the interface
separating the phases i and j, and λij is the respective interface thick-
ness. In the notation adopted, for each pair (i, j) of phases, the re-
spective interface is represented by parameters γij and λij defined such
that i< j. The interfacial energy FΓ involves the gradient of the order
parameters η, and is accompanied by a homogeneous Neumann
boundary condition ∇ =η 0n on the entire boundary ∂B.

The dissipation potential D of the viscous type is assumed in the
following quadratic form,

∑=
=

ηD
m

η( ˙) 1
2

˙ ,
i

N

i
i

0

2

(8)

where mi are the mobility parameters. In order to examine how the
mobility parameters mi, defined individually for each phase, are related
to the mobility of the actual interfaces, consider the interface between
two phases k and l, where =η 0i for the other phases, i≠ k, l. In view of
the summation constraint (1)2, we have = −η η1k l and = −η η˙ ˙k l. As a
result, the dissipation potential (8) takes the form

= =D m η m η1/(2 ) ˙ 1/(2 ) ˙kl k kl l
2 2 with the equivalent mobility parameter

= +m m m m m/( )kl k l k l that controls the movement of the interface be-
tween phases k and l.

The complete evolution problem is now formulated by following the
variational framework developed by Hildebrand and Miehe (2012), see
also Tůma et al. (2016, 2018) for the treatment of the inequality

constraints. The global potential energy functional is first introduced in
the form,

∫= + = ∇ ∇φ η φ η φ φ η φ η ηF V[ , ] [ , ] Ω[ ], [ , ] ( , , )d ,
B

� � � (9)

where � is the total free energy and Ω is the potential energy of the
external load. For instance, in the particular case when the nominal
surface traction t* is prescribed over ∂Bt, we have ∫= − ∂ φ StΩ *· dBt

.
However, in this work, we have =Ω 0, and the load is applied through
a contact interaction with the indenter. The details are discussed in
Section 3.1.

In the time-discrete (finite-step) setting, the following global (un-
constrained) incremental potential Πτ is introduced,

= − +φ η φ η φ η ηΠ [ , ] [ , ] [ , ] [ ],τ n n τ� � � (10)

where the fields with subscript n denote the known solution at the
previous time instant tn. For the sake of brevity, the subscript +n 1
indicating the fields at current time instant +tn 1 is omitted. In Eq. (10),

τ� is the global incremental dissipation potential that, upon applying
the backward Euler method to the rate-potential (8), takes the following
form,

∫ ∑⎜ ⎟= = ⎛
⎝

− ⎞
⎠

= ⎛
⎝

−
⎞
⎠=

η η η
η η

D V D τD
τ

τ
m

η η
τ

[ ] ( )d , ( )
2

,τ B τ τ
n

i

N

i

i i n

0

,
2

�

(11)

where = −+τ t tn n1 denotes the time increment.
The constraints to be enforced on the order parameters ηi, cf. Eq. (1),

are not included in the incremental potential Πτ. In order to introduce
these constraints into the formulation, a suitable indicator function can
be defined. Assume that � is an arbitrary convex set in n� . The in-
dicator function → = ∪ +∞I : ¯ { }n� � �� of the set � is defined as,

= ⎧
⎨⎩

∈
+ ∞

I x x( ) 0 ,
otherwise.

�
�

(12)

Accordingly, the indicator function I� corresponds to the admissible set
� of the order parameters, cf. Eq. (1), in the form of the standard
simplex,

∑= ∈ ≤ =+

=

η η η{ : 0 , 1},N
i

i

N

i
1

0

� �

(13)

and �� is its global counterpart,

∫=η ηI V[ ] ( )d .
B

�� � (14)

Finally, the time-discrete constrained evolution problem is for-
mulated as the minimization of the global constrained incremental
potential Π*τ with respect to the fields of φ and η,

= = +φ η φ η φ η φ η η{ , } arg minΠ*[ , ], Π*[ , ] Π [ , ] [ ].
φ η τ τ τ

,
�� (15)

The above compact formulation implies mechanical equilibrium (by
minimization with respect to φ) and defines the time-discrete evolution
of the order parameters η (by minimization with respect to η). The
actual governing equations are discussed in Section 3.3, after the pen-
alty regularization of the inequality constraints is introduced in
Section 3.2. Note that the finite-step incremental formulation (15) can
be derived from the corresponding rate formulation (Hildebrand and
Miehe, 2012; Tůma et al., 2016; 2018), which is omitted here for
brevity.

3. Computational treatment

3.1. Contact problem

In the present simulations of nano-indentation, the external load is
applied through frictionless contact interaction with the indenter. The
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indenter is assumed rigid, thus it is represented by a rigid surface de-
noted by Γ̄. Formulation of the corresponding contact problem is
standard, and only the most important details are provided here, see
e.g. Wriggers (2006) for an overview.

A part of the boundary of B, denoted by Γ ,c is considered as the
potential contact surface. For each point = φx X( ), ∈X Γ ,c the asso-
ciated point x̄ on Γ̄ is found by the closest-point (orthogonal) projec-
tion. The normal gap gN is then defined according to

= −g x x n( ¯ )· ¯ ,N (16)

where n̄ is the unit normal to Γ̄ at x̄. Frictionless contact interaction is
then introduced into the formulation by enforcing the non-penetration
constraint ≥g 0N on Γc.

The complete evolution problem including the contact interaction is
then formulated as the following constrained incremental minimization
problem

= = + +φ η φ η φ η φ η η φ{ , } arg minΠ* [ , ], Π* [ , ] Π [ , ] [ ] [ ],
φ η τ τ τ

,
,c ,c

c� ��

(17)

where

∫= +φ φI g S[ ] ( ( ))d ,c Γ N
c

� � (18)

and +� denotes the set of all non-negative real numbers so that the
indicator function +I g( )N� effectively enforces the non-penetration
constraint ≥g 0N .

3.2. Penalty regularization

In the present computational scheme, the inequality constraints on
the order parameters (ηi≥ 0) and on the contact normal gap ( ≥g 0N )
are enforced using the classical penalty regularization technique.

Recall that in the present model, austenite and N variants of mar-
tensite are considered. In the actual computational implementation, the
volume fraction of austenite is not deemed an independent variable
and, in view of the summation constraint (1)2, is defined as a function
of the other order parameters = ⋯η i N( 1, , )i . The system with +N 1
phases is therefore modeled using N independent order parameters,
assembled in the condensed vector η̂ ,

∑= = − = = ⋯
=

η η η η ηη η η η η(^) 1 , (^), ^ ( , , ).
i

N

i N0 0
1

1
(19)

The obvious advantage of this treatment is that the total number of
degrees of freedom is reduced, which is computationally beneficial.

Upon introducing the penalty regularization, the minimization
problem (17) is transformed to an unconstrained minimization problem

=φ η φ η{ , ^} arg minΠ̂ [ , ^],
φ η

τ
, ^

pen

(20)

where the penalty-regularized incremental potential Π̂τ
pen

takes the
form

∫ ∫∑= + 〈 〉 + 〈 〉
=

− −φ η φ η η η V g SΠ̂ [ , ^] Π [ , (^)] 1
2

ϵ d 1
2

ϵ d ,τ τ B
i

N

η i
pen

0

2
Γ N N

2
c

(21)

where ϵη>0 and >ϵ 0N are the penalty parameters associated with the
order parameter constraints and with the contact constraint, respec-
tively, and the following notation has been adopted,

〈 〉 = ⎧
⎨⎩

≥
−x x

x
0 if 0,

otherwise. (22)

As it is well-known, the penalty parameters must be sufficiently
large in order to avoid excessive violation of the constraints. At the
same time, too large penalty parameters may lead to numerical pro-
blems, such as ill-conditioning of the tangent matrix and poor

convergence of the Newton method. The related effects are studied in
Section 4.4.

3.3. Governing equations in the weak form

Stationarity of the incremental potential Π̂ ,τ
pen

which is the neces-

sary condition for the minimum of Π̂ ,τ
pen

yields the governing equations

of the incremental evolution problem. The stationarity of Π̂τ
pen

with
respect to the field of φ gives the standard weak form of the mechanical
equilibrium, i.e. the virtual work principle,

∫ ∫= = ∇ + ∀φ η φ φδ δ V t δg S δP0 Π̂ [ , ^] · d d ,φ τ B

pen

Γ N N
c (23)

where φδ is the test function that vanishes on the Dirichlet boundary
∂Bφ on which φ is prescribed, and

= ∂
∂

= 〈 〉 =− φF t g δg δP
F

n, ϵ , ¯ · .N N N N (24)

Here, P is the first Piola–Kirchhoff stress and tN is the normal contact
traction. The formula (24)3 for the variation δgN of the normal gap is a
standard result in contact mechanics (e.g. Wriggers, 2006).

On the other hand, the condition of stationarity of Π̂τ
pen

with respect
to the field of η̂ yields the evolution equation for η̂ in weak form, viz.

∫ ∑

⎟ ⎜

⎟ ⎟

= = ⎛

⎝
⎜

⎛

⎝
⎜

∂
∂

− ∂
∂

+ ∂
∂

− ∂
∂

+ ∂
∂

− ∂
∂

+ 〈 〉 − 〈 〉 ⎞
⎠

+ ⎛
⎝

∂
∂∇

− ∂
∂∇

⎞
⎠

∇ ⎞
⎠

∀

=

− −

φ η

η

δ F
η

F
η

F
η

F
η

D
η

D
η

η η δη F
η

F
η

δη V δ

0 Π̂ [ , ^]

ϵ ϵ

· d ^,

η τ B
i

N
B

i

B

i

τ

i

τ

η i η i
i

i

^
pen

1 0

Γ Γ

0 0

0
Γ

Γ

0

(25)

where ηδ^ is the test function. The partial derivatives of the interfacial
energy FΓ and the dissipation potential Dτ are easily obtained in the
explicit form,

∑ ∑∂
∂

= ∂
∂∇

= − ∇

∂
∂

=
−

= ≠ = ≠

F
η

γ
λ

η F
η

γ λ
π

η

D
η m

η η
τ

4
,

4
,

1 ,

i j j i

N
ij

ij
j

i j j i

N
ij ij

j

τ

i i

i i n

Γ

0,

Γ

0,
2

,

(26)

where for i> j the notation is adopted such that =γ γij ji and =λ λij ji.
The term ∂FB/∂ηi can also be readily obtained. However, for the sake of
brevity, its explicit expression is not presented here. The reader may
refer to Appendix A in Tůma et al. (2016), where the corresponding
derivatives are provided in explicit form for the model with two hier-
archical order parameters.

Remark 1.
The local form of the evolution Eq. (25) can be obtained in a

standard manner by applying the Gauss theorem and by exploiting the
homogeneous Neumann boundary conditions imposed on η. As a result,
the local evolution equation is obtained in the form of the following
Ginzburg–Landau equation,

= − = − = ∂
∂

− ∇ ∂
∂∇

η
η

η η η
η η η

δ
δ τ

δ
δ

F FM^̇ ^
^

^ , ^̇ 1 (^ ^ ),
^

^

^

^ ·
^

^ ,n
� �

(27)

where ηδ δ^ / ^� is the functional derivative of the free energy functional
^ ,� and the rate η̂̇ is approximated by the backward-Euler formula (27)2,
consistent with the incremental dissipation potential (11). In the no-
tation employed above, the total free energy functional �̂ is expressed
in terms of η̂ and includes the penalty regularization of inequality
constraints ηi≥ 0,
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and M̂ is a symmetric positive-definite mobility matrix such that the
dissipation potential can be written as a quadratic function of η̂̇ ,

= =
−

η η η η ηD D M^ ( ^̇) ( ˙ ( ^̇)) 1
2

^̇· ^ ^̇.
1

(29)

3.4. Finite-element implementation

The finite-element implementation of the model is briefly discussed
here. The global unknowns of the problem are the fields of the dis-
placement = −φu X and the order parameters η̂ . Four-node quad-
rilateral elements are used with piecewise-bilinear interpolation func-
tions for all unknowns. Standard Gaussian quadrature is used for the
numerical integration of the governing Eqs. (23) and (25).

In order to ensure a consistent approximation of the deformation
gradient = ∇φF and its transformation part = ηF F (^)t t and thus to
avoid spurious stresses within the diffuse interfaces, the transformation
part Ft is considered constant within each element and is calculated at
the element center, see Tůma et al. (2016). The matrix exponential, cf.
the logarithmic mixing rule (3), and the matrix logarithm, cf. the
Hencky strain in Eq. (5), along with their first and second derivatives
are computed using the respective closed form representations, cf.
Korelc and Stupkiewicz (2014), Hudobivnik and Korelc (2016).

The global coupled nonlinear equations that result from the finite-
element discretization are solved simultaneously with respect to all
unknowns using the Newton method. The required tangent matrix is
derived by linearizing the coupled equations using the automatic dif-
ferentiation (AD) technique. The resulting exact linearization guaran-
tees that the quadratic convergence rate of the Newton method is
achieved. To this end, the AceGen system is employed, which provides
an efficient implementation of the AD technique (Korelc, 2009; Korelc
and Wriggers, 2016). For the computations, AceFEM has been used,
which is a flexible finite-element environment that is fully integrated
with AceGen. A direct linear solver (Intel MKL PARDISO) has been used
in the computations. For the 2D problems considered in this study, with
the largest problem of about 7.2 million unknowns, the direct linear
solver proved to be more efficient than the iterative solvers available in
the MKL library.

4. Phase-field simulations of nano-indentation

4.1. Preliminaries

In this section, the multiphase-field model presented above is used
to study the microstructure evolution during nano-indentation. The
present study is restricted to 2D plane-strain problems, and two cor-
responding transformations are considered, namely the square-to-rec-
tangle transformation with =N 2 martensite variants and the square-
to-parallelogram transformation with =N 4 martensite variants. The
respective microstructures are examined in Sections 4.2 and 4.3. Next,
in Section 4.4, a parametric study is performed with the aim to in-
vestigate the effect of different model parameters on the simulation
results. Finally, in Section 4.5, predictions of the indentation size effect
(ISE) are presented. Specifically, the influence of the indenter radius on
hardness and on microstructure evolution is investigated.

According to the classical crystallographic theory of martensite, a
compatible interface between stress-free austenite and a single mar-
tensite variant does not exist for the majority of materials undergoing
martensitic transformation, and compatibility is usually achieved
through twinning (Bhattacharya, 2003). However, in 2D, the kinematic
compatibility condition is automatically satisfied for isochoric or nearly

isochoric transformations, and thus a single martensite variant may
form a stress-free interface with austenite (the corresponding condition
for compatibility is that one eigenvalue of the transformation stretch is
less than unity and the other one is greater than unity).

In view of the essential differences between the martensitic micro-
structures in 2D and in 3D, as discussed above, the analysis of 2D
transformations is necessarily associated with some simplifications.
Nevertheless, such an analysis constitutes an important intermediate
step in developing a full 3D model (which is the subject of our ongoing
work). It is also believed that the analysis of 2D problems may provide
valuable results of general interest, for instance, concerning the size
effects, as studied in Section 4.5.

One way of interpreting the results obtained for 2D transformations
is to treat a single martensite variant in 2D as a so-called habit-plane
variant of a 3D transformation. The austenite–martensite interface
would then correspond to the austenite–twinned martensite interface
and the martensite–martensite interface would correspond to the in-
terface between two twinned martensites. In the light of this inter-
pretation, the corresponding interfacial energies are here adopted
higher than those of the atomic scale interfaces, as they are assumed to
include the energy of elastic micro-strains (cf. Maciejewski et al., 2005;
Petryk et al., 2010).

4.2. Microstructure evolution: square-to-rectangle transformation

The first numerical example concerns a preliminary study of the
microstructure evolution under nano-indentation for the square-to-
rectangle transformation, i.e. for the system with austenite and =N 2
martensite variants, which is the simplest transformation in 2D. The
two martensite variants are characterized by the transformation stretch
tensors

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

α
β

β
α

U U0
0 , 0

0
,1

t
2
t

(30)

where the values of the stretch parameters =α 0.95 and =β 1.05 have
been adopted such that U1

t and U2
t correspond to a nearly isochoric

transformation. Recall that for the austenite we have =U I0
t . According

to the crystallographic theory of martensite, the austenite–martensite
interfaces and the martensite–martensite interface in this transforma-
tion are oriented at approximately ± 45∘, with respect to the co-
ordinate system aligned with the square lattice of austenite.

The material parameters are taken as follows. The interfacial energy
density is adopted equal to = =γ γ 0.4i0 am J/m2 for the austenite–-
martensite interfaces and = =γ γ 0.2ij mm J/m2 for the martensite–-
martensite interfaces, see the discussion in Section 4.1. It is assumed
that all phases possess the same elastic stiffness tensor of cubic sym-
metry with the elastic constants of the austenite of the CuAlNi shape
memory alloy, i.e. =c 14211 GPa, =c 12612 GPa and =c 9644 GPa
(Suezawa and Sumino, 1976). The chemical energy of austenite is set
equal to zero, =F 0,0

0 and the chemical energy of the martensite var-
iants is set equal to = =F F 10i

0
m
0 MPa.

The model contains two sets of parameters that specify the mobility
and the thickness of the diffuse interfaces. The mobility parameters mi

are the only model parameters that include the time unit, and hence
they specify the time scale. The value of = =m m 1i (MPa s)−1 has been
adopted, which provides reasonable results for a realistic indentation
speed of =v 5 nm/s, see below. The interface thickness parameters are
assumed equal for all interfaces, = =λ λ 12ij nm. Note that the finite-
element size must be sufficiently smaller than the interface thickness λ
so that the mesh can correctly resolve the diffuse interfaces. Here, the
element size is taken approximately equal to λ/7.

Finally, the penalty parameters =ϵ 1000η GPa and =ϵ 1000N GPa/
nm are chosen large enough to enforce the respective inequality con-
straints with an adequate accuracy and, at the same time, not to affect
the computational efficiency, see the related discussion in Section 4.4.
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Fig. 1a depicts the geometry of the problem. The computational
domain of the size × = ×L L 1500 750x y nm2 is considered. The vertical
displacement of the bottom boundary and the horizontal displacement
of the lateral boundaries are constrained. A rigid circular indenter with
radius =R 50 nm is considered, and indentation is applied at the center
of the top surface at a constant speed =v 5 nm/s up to the maximum
indentation depth of =h 50max nm. Recall that contact is frictionless.

In this preliminary study, unsymmetric microstructures are ex-
cluded by simulating one half of the rectangular domain with the
adequate symmetry conditions imposed on the unknowns along the
symmetry axis. The computational domain is discretized with 168 500
quadrilateral elements, leading to the total number of degrees of
freedom of approximately 674 000. Fig. 1c shows the detail of the de-
formed finite-element mesh in the vicinity of the indenter.

The snapshots of the microstructure evolution at selected indenta-
tion depths are shown in Fig. 2b. The red marks superimposed on the
load–indentation depth (P–h) curve in Fig. 2a indicate the instants at
which the snapshots are taken. The martensite variants 1 and 2, de-
noted by V1 and V2, respectively, are represented by the red and blue
domains that correspond to η1≥ 0.5 and η2≥ 0.5, respectively. The
austenite, which occupies the remaining part of the computational
domain, is not shown explicitly. Grey lines representing the interfaces
have been laid over the microstructures for a clear distinction of the
phase boundaries, but they do not represent the actual diffuseness of
the interfaces (the actual diffuseness of the interfaces is visible in
Fig. 1b). Note that in this example only one half of the domain has been
simulated, but for a better visualization of the microstructures in Fig. 2,
the other half has been replicated by exploiting the symmetry.

The transformation initiates with the nucleation of martensite var-
iant V2 at the indentation depth of about =h 7 nm. The preference
towards the formation of variant V2 is due to the fact that a compres-
sive stress is applied beneath the indenter, which complies with the
transformation stretch tensor U2

t . As the indentation proceeds, the do-
main of variant V2 grows and eventually, at the indentation depth of
about =h 22 nm, variant V1 appears. Further increase of the indenta-
tion depth leads to the growth of both variants, while the shape of the
respective domains changes. Note that the orientation of the actual
interfaces is close to ± 45∘, as predicted by the crystallographic
theory.

During unloading, for which the corresponding snapshots are not
reported here, the two martensite variants shrink simultaneously, while
preserving the final microstructure, i.e. the one that corresponds to

=h 50 nm. Only at the final stage, starting from =h 10 nm, the mi-
crostructure changes and the evolution follows that of the loading stage
in the reverse order. At the indentation depth of about =h 7 nm, var-
iant V1 vanishes completely followed by the disappearance of variant
V2 at the indentation depth of about =h 3 nm. A movie showing the
complete microstructure evolution is provided as a supplementary
material1 accompanying this paper.

4.3. Microstructure evolution: square-to-parallelogram transformation

As the next example, the microstructure evolution under nano-in-
dentation is studied for the square-to-parallelogram transformation, i.e.
for the system with austenite and =N 4 martensite variants. As dis-
cussed in Section 2, in order to describe the deformation associated
with this transformation, it is convenient to adopt non-symmetric de-
formation tensors Fi

t. Then, the transformation deformation gradient Ft

within diffuse interfaces is obtained by applying the linear mixing rule,
= + ∑ =η ηF I Fi

N
i i

t
0 1

t. In the present case, the following deformation
tensors are used to describe the four martensite variants,
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where the stretch parameters =α 0.95 and =β 1.05 are taken as those
in the previous example and the shear parameter =γ 0.05 is assumed.
The remaining model parameters are the same as those in the previous
example, c.f. Section 4.2.

The geometry of the problem is the same as in the previous example,
see Fig. 1a, except that the computational domain of the size

× = ×L L 1000 1000x y nm2 is considered. In this case, unlike in the
previous example, the symmetry is not exploited and the simulation is
carried out for the full domain. Accordingly, non-symmetric micro-
structures may develop, which indeed is observed in some cases, as
illustrated in Sections 4.4 and 4.5. The radius of the rigid circular in-
denter =R 50 nm and the indentation speed =v 5 nm/s are set equal to
those in the previous example. The indentation continues up to the
maximum indentation depth of =h 30max nm. The computational do-
main is discretized by keeping the element size equal to λ/7, as in the
previous example, giving the total number of about 300 000 elements
and 1 800 000 degrees of freedom.

Four representative snapshots of the microstructure evolution are
shown in Fig. 3 along with the P–h curve. Each martensite variant i,
denoted by Vi, is represented by the respective colored domain that
corresponds to ηi≥ 0.5. Again, the domain of the austenite is not shown
explicitly.

All martensite variants nucleate nearly at the same indentation
depth of approximately =h 4 nm and subsequently grow together as
the indentation proceeds. The same is also true during unloading,
where all the variants shrink and annihilate simultaneously. A movie
showing the complete microstructure evolution is provided as a sup-
plementary material2 accompanying this paper.

In Fig. 4, a comparison has been made between the orientations of
the interfaces in the simulated microstructure and those predicted by
the crystallographic theory (see the orientations shown in the circles
included in Fig. 4). It can be seen that the orientations predicted by the
phase-field model are in a good agreement with the theoretical ones.
Even a better agreement can be observed when the microstructure oc-
cupies a larger domain, see the microstructure for =R 100 nm in Fig. 9.

Parts of the fully developed microstructure at =h 30 nm, see
Fig. 3b, apparently resemble the wedge-like microstructures considered
by Bhattacharya (1991). Note, however, that these are not stress-free
wedge-like microstructures. It can be checked that they do not satisfy
the corresponding compatibility conditions (Bhattacharya, 1991), even
if the orientations of the individual interfaces are close to the theore-
tical orientations of stress-free interfaces, as illustrated in Fig. 4.

The P–h curve displays a sudden load drop at the instant of nu-
cleation of martensite. The degree of abruptness as well as the change of
the slope of the P–h curve in the post-nucleation stage are much higher
than those in the previous example, see Fig. 2a. It has been observed in
a preliminary study that, as the value of the shear parameter γ in-
creases, a sharper nucleation occurs, and the slope of the P–h curve in
the post-nucleation stage deviates more from the elastic one. The
square-to-parallelogram transformation involves four variants of mar-
tensite, as compared to two variants in the square-to-rectangle trans-
formation, so that more complex microstructures may develop with
higher flexibility for accommodation of possible incompatibilities.3

Clearly, the corresponding effects are more pronounced as γ is in-
creased. The studies carried out in the subsequent sections are limited

1 http://bluebox.ippt.pan.pl/~sstupkie/files/SuppSq2Rec.gif

2 http://bluebox.ippt.pan.pl/~sstupkie/files/SuppSq2Par.gif
3 For similar reasons, the NiTi shape-memory alloy, which undergoes the

cubic-to-monoclinic transformation with 12 martensite variants, is superior to
other alloys, in particular, to those undergoing the cubic-to-tetragonal trans-
formation with only three variants.
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to the square-to-parallelogram transformation.

4.4. Parametric studies

In this section, we examine whether and how the microstructure
and the P–h curve are sensitive to the choice of selected material and
process parameters. In particular, the effect of the chemical energy and
the effect of the indentation speed are investigated for the system with

=N 4 martensite variants. In addition, to assess the accuracy of the
finite-element solution and the efficiency of the numerical scheme, the
effect of the penalty regularization parameter ϵη on these characteristics
is examined. The effect of the contact penalty parameter ϵN is not in-
cluded in this study, since the corresponding effect is very well known
in computational contact mechanics.

First, the effect of the chemical energy is studied. To this end, the
computation has been additionally carried out for two values of the
chemical energy, namely =F 0m

0 and =F 20m
0 MPa, and in Fig. 5 the

results are compared to the reference case with =F 10m
0 MPa. For this

specific study, the maximum indentation is set to =h 25max nm, so that
the transformed domain for the case with =F 0m

0 does not reach the
boundary of the computational domain. It is immediate to see that the
higher the chemical energy, the higher the load at the nucleation event
and the higher the slope of the P–h curve in the transformation stage.

The other major effect of the chemical energy is related to the
change in the microstructure evolution, see Fig. 5b. In the cases with

=F 10m
0 MPa and =F 20m

0 MPa, four martensite domains are induced,
each occupied by a different martensite variant. In the case of the
highest chemical energy, =F 20m

0 MPa, the microstructure and its
evolution truly resemble those of the reference case ( =F 10m

0 MPa),
thus, the corresponding microstructures are not shown in Fig. 5b.

In the case of the lowest chemical energy, =F 0,m
0 the micro-

structure is more complex with 6 martensite domains formed during
loading, and up to 12 domains formed during unloading. It can be seen
in Fig. 5 that for =F 0,m

0 at the indentation depth of about =h 17 nm
during unloading, new martensite domains are formed within the ex-
isting domains. In the P–h curve, this event is associated with a short

Fig. 1. Square-to-rectangle transformation: (a) sketch of the 2D indentation problem; (b) the microstructure at the maximum indentation =h 50 nm; (c) the
corresponding deformed mesh in the vicinity of the indenter. The microstructure in figure (b) is represented by the field = −η η η* ,1 2 so that =η* 1 indicates the
martensite variant V1, = −η* 1 indicates the martensite variant V2 and =η* 0 indicates the austenite phase, but also the diffuse interface between variants V1 and
V2.

Fig. 2. Square-to-rectangle transformation: (a) P–h curve; (b) snapshots of the microstructure evolution at selected indentation depths during loading, see the red
marks in figure (a). The dashed line in figure (a) represents the elastic response. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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load plateau, as indicated by the arrow in Fig. 5a. Furthermore, at the
indentation depth of =h 10 nm, the separation of the indenter from the
surface occurs. Hereafter, the reverse transformation proceeds at zero
load with no considerable change in the microstructure, and ultimately
the martensite domains annihilate.

Next, the effect of the indentation speed is examined. The simula-
tion has been performed for two indentation speeds, namely

=v 0.5 nm/s and =v 50 nm/s (in the sequel, referred to as ‘slow’ and
‘fast’, respectively), and the results are compared with the reference
case of =v 5 nm/s. Note that exactly the same results can be obtained
by varying the mobility parameter m, while keeping the indentation
speed v constant. For instance, the slow case with =v 0.5 nm/s and

=m 1 (MPa s)−1 is equivalent to the case with =v 5 nm/s (as in the
reference case) and =m 10 (MPa s)−1.

Fig. 6 shows the snapshots of the microstructure evolution for the
three indentation speeds. The general pattern is not much influenced,
although the details are different. During loading, for a fixed indenta-
tion depth, the size of the transformed domain decreases with in-
creasing indentation speed. The effect is opposite during unloading. In
the slow case, the driving force for interface propagation is close to zero
and the microstructure is thus close to the equilibrium microstructure.
As the loading rate is increased, the driving force increases in ac-
cordance with the viscous evolution law, and the microstructure grows
and shrinks (during loading and unloading, respectively) with a delay
with respect to the equilibrium microstructure, which explains the
observation concerning the size of the transformed domain.

Moreover, in the fast case, the separation of the indenter during
unloading occurs at the indentation depth of approximately =h 10 nm.
Henceforth, due to the release of the external load, a relaxing micro-
structure develops in the system, such that additional martensite do-
mains appear, similar to the case of =F 0m

0 in Fig. 5b.
Another interesting observation is that the microstructure is not

symmetric in the slow case. At the initial stage of the transformation,
the domains grow in a symmetric manner, however, later, the sym-
metry is broken and further evolution during loading and unloading
proceeds in an unsymmetric manner, see Fig. 6. This effect is not ob-
served in the reference and fast cases, and the respective micro-
structures evolve in a symmetric manner during the complete forward
and reverse transformation. It has been checked that the non-symmetric
microstructure is energetically more favorable than the symmetric one,
i.e. at the instant of the symmetry breakdown the incremental energy is
lowered thanks to non-symmetric evolution, and this is captured by the
present incremental energy minimization framework. It has also been
confirmed that the symmetry breakdown is not a numerical artifact.
The simulations of the slow case have been repeated several times with
different time stepping, and the symmetry breakdown has been ob-
served in all those simulations.

The effect of the indentation speed on the P–h curve is depicted in
Fig. 7. As expected, the decrease of the indentation speed leads to the
decrease of the maximum indentation load and also to the decrese in
the hysteresis width. The resulting rate-dependent response is evidently
the outcome of the assumed rate-dependent viscous-type dissipation,
c.f. Eq. (8). Note that with further reduction of the indentation speed
the dissipated energy does not decrease to zero. As discussed by
Tůma et al. (2018), this is because the nucleation event, associated with
a sudden load drop, proceeds dynamically with a non-zero local strain
rate that is independent of the indentation speed and is associated with
non-zero dissipation.

Fig. 7 illustrates also the effect of the stiffness of the loading device.
So far, the simulations have been performed by assuming an infinite
stiffness of the loading device, i.e. the position of the indenter was
controlled directly by prescribing a constant indentation speed. How-
ever, in practice, the indentation machine possesses a finite stiffness
that may affect the load–indentation depth response, due to the release
of the accumulated elastic energy at the instant of nucleation. In order
to study the impact of the loading-device stiffness, additional simula-
tions have been performed in which the position of the indenter is
controlled through an elastic spring with the stiffness K, see the inset in

Fig. 3. Square-to-parallelogram transformation: (a) P–h curve; (b) snapshots of the microstructure evolution at selected indentation depths during loading, see the
red marks in figure (a). The dashed line in figure (a) represents the elastic response. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Square-to-parallelogram transformation: comparison between the or-
ientations of the interfaces in the simulated microstructure (at =h 30 nm) and
those predicted by the crystallographic theory (shown in the circles).
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Fig. 7c. The indentation speed is then adjusted in such a way that the
resulting speed of the indenter is approximately equal to the speed of
the indenter in the case of the infinitely stiff loading device, so that a
direct comparison of the results is meaningful.

The case of the infinitely stiff loading device is denoted by = ∞K .
For a finite, but very high stiffness =K 1 GPa, the predicted response is
essentially identical to that corresponding to = ∞K and is not included
in Fig. 7. Note that the indentation load and the spring stiffness are
referred to a unit thickness in the out of plane direction, and hence the
unit of the stiffness is 1 Pa. Upon reducing the stiffness K, the sudden
load drop at the instant of nucleation is replaced by a gradual transition
zone in the P–h curve. The corresponding response resembles the pop-in
effect, which is commonly observed in nano-indentation of materials
that deform through plastic slip. Pop-in has also been observed in
materials undergoing martensitic transformation, but the corre-
sponding experimental results are much more scarce (e.g. Caër et al.,
2013; Dar and Chen, 2017).

Finally, the effect of the penalty regularization parameter ϵη, c.f.
Eq. (21), on the accuracy and efficiency of the computational scheme is
examined. To this end, the simulations have been performed for several
values of the penalty parameter, = ⋯ϵ 10, 10 , ,10η

2 6 GPa.
Fig. 8a shows the profile of the order parameters ηi along a hor-

izontal line at the distance of 10 nm from the contact surface (taken in
the reference configuration), where the stresses are the highest and thus
the violation of the bound constraints 0≤ ηi≤ 1 is more severe. It
follows that for =ϵ 10η GPa (dashed lines in Fig. 8a) the constraints are
significantly violated. For =ϵ 10η

2 GPa (dotted lines in Fig. 8a), the
violation is visible, but small (of the order of 0.01). With further in-
crease of ϵη, the violation becomes insignificant. The results corre-
sponding to =ϵ 10 , 10η

4 5 and 106 GPa are barely distinguished from
those for =ϵ 10η

3 GPa and thus are not included in the figure. The
impact of the penalty parameter ϵη on the P–h curve is qualitatively
similar to that revealed in Fig. 8a, and the corresponding results are
thus not shown here.

The bar chart in Fig. 8b shows the simulation wall-clock time and
the number of time steps needed to complete the simulation. Note that
an adaptive time-stepping algorithm has been employed in the simu-
lations. Quite surprisingly, the computational efficiency is not sig-
nificantly affected when the penalty parameter is varied between 102

and 106 GPa. Considering that the penalty parameter =ϵ 10η
3 GPa

guarantees satisfactory accuracy, as discussed above, this value has
been used for all simulations.

4.5. Size effects

In this section, the effect of the indenter radius R on the micro-
structure and on the P–h curve is studied for the system with =N 4
martensite variants. In order to quantitatively interpret the related size
effects, the indentation hardness H is calculated at the maximum in-
dentation depth according to

=H P
A

,max
(32)

where Pmax is the maximum indentation load and A is the corresponding
projected contact area, here both quantities are referred to unit thick-
ness in the out-of-plane direction. In the present computations, the fi-
nite-element mesh has been refined in the vicinity of the contact sur-
face. This does not visibly influence the load–indentation depth
response, but it improves the accuracy with which the area A and thus
the hardness H are determined.

The simulation is performed for the indenter radius R varied be-
tween 25 nm and 800 nm. To make the comparisons meaningful, the
ratio between the maximum indentation depth hmax and the indenter
radius R is kept constant. Furthermore, in order to preserve the geo-
metrical similarity, the ratio between the indenter radius and the di-
mensions of the computational domain, i.e. R/Lx and R/Ly, is kept
constant for all simulations. This, in particular, ensures that upon
proper normalization the elastic response is identical in all cases. In

Fig. 5. The effect of the chemical energy Fm
0 on (a) the P–h curve and (b) the microstructure evolution. The microstructure evolution obtained for =F 20m

0 MPa is
similar to that for =F 10m

0 MPa, and thus it is not included. The arrow in figure (a) indicates the instant at which the microstructure pattern changes.
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addition, to avoid mesh bias, the element size is also kept equal to λ/7.
Thus, for a fixed interface thickness parameter λ, upon increasing the
indenter radius, and accordingly increasing the size of the

computational domain, the number of elements increases, and the
computational cost increases (the largest computation in this section
involves about 1.2 million elements and 7.2 million degrees of

Fig. 6. The effect of the indentation speed v on the microstructure evolution.

Fig. 7. The effect of the stiffness K of the loading device on the P–h curve for the indentation speed: (a) =v 0.5 nm/s; (b) =v 5 nm/s; (c) =v 50 nm/s.
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Fig. 8. The effect of the penalty parameter ϵη on the accuracy and efficiency of the computational scheme: (a) profiles of the order parameters ηi at 10 nm below the
top surface for =h 30 nm; (b) the simulation wall-clock time and the number of time steps needed to complete the simulation.

Fig. 9. The effect of the indenter radius R on the microstructure evolution for the system with =N 4 martensite variants with =λ 12 nm. The spatial dimensions have
been normalized with respect to the indenter radius R (note the scale makers at the bottom).
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freedom). This restrains the computations to a limited range of the
indenter radius. To evade this limitation and to study the size effects for
a wider range of the indenter radius, several values of the interface
thickness, i.e. =λ 24, 48 and 96 nm, are used in addition to the re-
ference case of =λ 12 nm. The element size (kept equal to λ/7) is then
increased accordingly, thus reducing the number of elements for a
given size of the computational domain. Upon increasing the interface
thickness parameter λ by the factors of 2, 4 and 8, the mobility para-
meter m must be reduced by the respective factors, so that the effective
mobility of the interfaces is not influenced, see the related discussion in
Tůma et al. (2018). Note that λ is bounded from above, since too large
values of λ result in microstructures with excessively diffuse interfaces.

The effect of the indenter radius R on the microstructure evolution
for the case with =λ 12 nm is depicted in Fig. 9. Similar to the effect of
the indentation speed in Fig. 6, the general pattern of the micro-
structure is not affected much, however, some small differences are
noticeable. For the cases with =R 25 nm and =R 50 nm, the micro-
structure evolves in a symmetric manner. On the other hand, for the
case with =R 100 nm, the symmetry of the microstructure breaks at the
final stage of loading, and then the microstructure evolution proceeds
in an unsymmetric manner, see the related discussion in Section 4.4.

The microstructure evolution is also influenced by the interface
thickness parameter λ. For a fixed indenter radius R, increasing λ re-
sults in microstructures with more diffuse interfaces. Moreover, for
some cases, it has been observed that increasing λ induces some minor
changes in the microstructure pattern, more specifically, small mar-
tensite domains appear in the vicinity of the indenter (see e.g. the
martensite domains that appear in the vicinity of the indenter in the
case of zero chemical energy, =F 0,m

0 in Fig. 5b). The microstructures
obtained for =λ 24, 48 and 96 nm are not presented here for the sake of
brevity. The reader is referred to Tůma and Stupkiewicz (2016), where
a comprehensive study has been performed to investigate the effect of
the interface thickness parameter on the microstructure of the auste-
nite–twinned martensite interface.

Fig. 10a shows the effect of the indenter radius R on the P–h curve.
It can be seen that, as the indenter radius R decreases, the transfor-
mation initiates at a lower indentation load P. This is because, for the
same indentation load, a smaller indenter radius leads to higher stresses
beneath the indenter. A slight difference can also be noticed in the slope
of the curves in the transformation stage.

In order to capture the size effect in the P–h curves, in Fig. 10b the
load P and the indentation depth h are normalized by the indenter ra-
dius R. In the elastic stage, the normalized P–h curves coincide. In the
transformation stage, however, a size-dependent response is observed.

As the indenter radius R decreases, the normalized load, P/R, required
to initiate the transformation increases (contrary to the actual nuclea-
tion load P in Fig. 10a), and subsequently the transformation proceeds
at a higher load.

Fig. 11 shows the dependence of the hardness H on the indenter
radius R for a fixed normalized indentation depth =h R/ 0.5. The gen-
eral trend is that hardness increases with decreasing indenter radius R.
This size effect is consistent with the well-known indentation size effect
observed in metals that deform through plastic slip. However, the
mechanism is here different. In plasticity, the indentation size effect is
attributed to the geometrically necessary dislocations (GNDs), the
density of which increases as the physical dimension of the deformed
zone decreases with decreasing indentation depth (Nix and Gao, 1998;
Pharr et al., 2010). In martensitic transformation, the size effect is
governed by the interfacial energy. The inelastic deformation proceeds
by formation and evolution of microstructure. As the indenter radius R
decreases (and so does the indentation depth h for a fixed ratio of h/R),
the size of the transformed domain decreases, and the contribution of
the energy of the interfaces to the total free energy increases. As a re-
sult, at a smaller scale, a relatively higher load, i.e. a higher hardness, is
needed to induce the interfaces. The related effects are correctly re-
presented by the phase-field model.

Due to the reasons discussed earlier, the hardness H cannot be de-
termined in the whole range of R for a fixed interface thickness

Fig. 10. Indentation size effect: the effect of the indenter radius R on (a) the P–h curve and (b) the normalized P–h curve for the case with =λ 12 nm.

Fig. 11. Indentation size effect: the dependence of the hardness H on the in-
denter radius R for the fixed ratio of =h R/ 0.5.
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parameter λ. As shown in Fig. 11, parameter λ influences the results.
However, the related effect is moderate and the general dependence of
H on R can be deduced from Fig. 11.

The effect of the interfacial energy manifests itself also in the shape
of the microstructure, see Fig. 9. When the transformed domain is re-
latively large, the interfaces are mostly planar with only small portions
of high curvature. The orientations of the planar interfaces are then
close to those predicted by the crystallographic theory, i.e. the or-
ientations are governed by the kinematic compatibility and by the re-
lated elastic strain energy. On the other hand, when the transformed
domain is relatively small, the interfacial energy becomes dominant,
thus resulting in curved interfaces. The related effects are visible in
Fig. 9 when comparing the microstructures for a fixed indenter radius R
and varying the normalized indentation depth h/R, and for a fixed
normalized indentation depth h/R and varying the indenter radius R.

5. Conclusions

A finite-strain phase-field model of multivariant martensitic trans-
formation has been developed, implemented and successfully applied to
simulate spatially-resolved microstructure evolution during nano-in-
dentation. In view of considerable number of global unknowns, which
comprise displacements and order parameters, the analysis is limited to
2D problems. Extension to 3D problems, which leads to demanding
large-scale computations, is in progress.

The computational study focused on pseudoelastic response of SMAs
under nano-indentation has revealed several interesting effects. We are
not aware of any published results of similar scope. Firstly, a significant
indentation size effect has been predicted which is governed by the
interfacial energy. The increase of hardness with decreasing indenter
radius (this effect is often referred to as ‘smaller is stronger’) results
from the related increase of the contribution of the interfacial energy to
the total free energy. The mechanism is thus different from that in
plasticity, but the overall effect is similar. Secondly, nucleation of
martensite may be associated with a load drop (for a stiff loading de-
vice) or with a sudden increase of the indentation depth (for a com-
pliant loading device). The latter behavior resembles the pop-in effect
that is often observed in nano-indentation testing.

It has also been observed that in some cases (e.g., for slower in-
dentation or for larger indenter radius) the symmetry of the micro-
structure is broken. It has been checked that the development of the
non-symmetric microstructure is energetically preferable, which is
captured by the present computational scheme. Note that the compu-
tational scheme is based on the incremental energy minimization ap-
proach, however, the actual governing equations are derived from the
condition of stationarity of the incremental potential, which is only a
necessary condition for the minimum.

One of the features of the present computational model is that the
inequality constraints imposed on the order parameters are enforced
using the penalty method. Explicit treatment of the inequality con-
straints is necessary because the model employs the double-obstacle
potential and the computational treatment is based on an implicit
monolithic scheme. A parametric study has shown that the penalty
parameter can be varied within a very wide range of values without
visible impact on the overall efficiency of the computational scheme,
while the constraints are enforced with a satisfactory accuracy already
for a moderate penalty parameter. The penalty regularization proves
thus to perform very well for the problem at hand.

Acknowledgments

This work has been partially supported by the National Science
Center (NCN) in Poland through Grant No. 2015/17/B/ST8/03242. The
authors wish to thank Dr. Karel Tůma from Charles University in Prague
for his assistance at the initial stage of this work.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.mechmat.2019.103267

References

Ahluwalia, R., Lookman, T., Saxena, A., Albers, R.C., 2004. Landau theory for shape
memory polycrystals. Acta Mater. 52 (1), 209–218.

Amini, A., Yan, W., Sun, Q., 2011. Depth dependency of indentation hardness during
solid-state phase transition of shape memory alloys. Appl. Phys. Lett. 99 (2), 021901.

Bartels, A., Mosler, J., 2017. Efficient variational constitutive updates for Allen–Cahn-
type phase field theory coupled to continuum mechanics. Comp. Meth. Appl. Mech.
Eng. 317, 55–83.

Basak, A., Levitas, V.I., 2019. Finite element procedure and simulations for a multiphase
phase field approach to martensitic phase transformations at large strains and with
interfacial stresses. Comp. Meth. Appl. Mech. Eng. 343, 368–406.

Bhattacharya, K., 1991. Wedge-like microstructure in martensites. Acta Metall. Mater. 39
(10), 2431–2444.

Bhattacharya, K., 2003. Microstructure of Martensite: Why it Forms and How it Gives Rise
to the Shape-Memory Effect. Oxford University Press, Oxford.

Bolzon, G., Maier, G., Panico, M., 2004. Material model calibration by indentation, im-
print mapping and inverse analysis. Int. J. Solids Struct. 41 (11–12), 2957–2975.

Caër, C., Patoor, E., Berbenni, S., Lecomte, J.-S., 2013. Stress induced pop-in and pop-out
nanoindentation events in cualbe shape memory alloys. Mat. Sci. Eng. A 587,
304–312.

Chen, L.Q., 2002. Phase-field models for microstructure evolution. Ann. Rev. Mat. Res. 32
(1), 113–140.

Chen, L.Q., Shen, J., 1998. Applications of semi-implicit Fourier-spectral method to phase
field equations. Comp. Phys. Comm. 108 (2–3), 147–158.

Chen, X., Lu, S., Zhao, Y., Fu, T., Huang, C., Peng, X., 2018. Molecular dynamic simulation
on nano-indentation of NiTi SMA. Mat. Sci. Eng. A 712, 592–602.

Clayton, J.D., Knap, J., 2011. Phase field modeling of twinning in indentation of trans-
parent crystals. Modell. Simul. Mat. Sci. Engng. 19, 085005.

Crone, W.C., Brock, H., Creuziger, A., 2007. Nanoindentation and microindentation of
CuAlNi shape memory alloy. Exp. Mech. 47 (1), 133–142.

Dar, R.D., Chen, Y., 2017. Nanoscale martensitic phase transition at interfaces in shape
memory materials. Appl. Phys. Lett. 110 (4), 041906.

Dhala, S., Mishra, S., Tewari, A., Alankar, A., 2019. Analyses of orientation dependent
nanoindentation response of pseudoelastic NiTi alloy using a crystal plasticity model.
Mech. Mat. 135, 1–12.

Fischer-Cripps, A.C., 2011. Nanoindentation. Springer-Verlag, New York.
Frick, C.P., Lang, T.W., Spark, K., Gall, K., 2006. Stress-induced martensitic transforma-

tions and shape memory at nanometer scales. Acta Mater. 54 (8), 2223–2234.
Gall, K., Juntunen, K., Maier, H.J., Sehitoglu, H., Chumlyakov, Y.I., 2001. Instrumented

micro-indentation of NiTi shape-memory alloys. Acta Mater. 49 (16), 3205–3217.
Hildebrand, F.E., Miehe, C., 2012. A phase field model for the formation and evolution of

martensitic laminate microstructure at finite strains. Philos. Mag. 92 (34),
4250–4290.

Hudobivnik, B., Korelc, J., 2016. Closed-form representation of matrix functions in the
formulation of nonlinear material models. Finite Elem. Anal. Des. 111, 19–32.

Korelc, J., 2009. Automation of primal and sensitivity analysis of transient coupled
problems. Comp. Mech. 44, 631–649.

Korelc, J., Stupkiewicz, S., 2014. Closed-form matrix exponential and its application in
finite-strain plasticity. Int. J. Num. Meth. Engng. 98 (13), 960–987.

Korelc, J., Wriggers, P., 2016. Automation of Finite Element Methods. Springer
International Publishing, Switzerland.

Kružík, M., Mielke, A., Roubíček, T., 2005. Modelling of microstructure and its evolution
in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40 (4),
389–418.

Kucharski, S., Mróz, Z., 2007. Identification of yield stress and plastic hardening para-
meters from a spherical indentation test. Int. J. Mech. Sci. 49 (11), 1238–1250.

Levitas, V.I., Levin, V.A., Zingerman, K.M., Freiman, E.I., 2009. Displacive phase transi-
tions at large strains: phase-field theory and simulations. Phys. Rev. Lett 103 (2),
025702.

Levitas, V.I., Preston, D.L., 2002. Three-dimensional Landau theory for multivariant
stress-induced martensitic phase transformations. i. austenite↔martensite. Phys. Rev.
B 66 (13), 134206.

Maciejewski, G., Stupkiewicz, S., Petryk, H., 2005. Elastic micro-strain energy at the
austenite-twinned martensite interface. Arch. Mech. 57 (4), 277–297.

Muir Wood, A.J., Clyne, T.W., 2006. Measurement and modelling of the nanoindentation
response of shape memory alloys. Acta Mater. 54 (20), 5607–5615.

Neff, P., Ghiba, I.-D., Lankeit, J., 2015. The exponentiated Hencky-logarithmic strain
energy. part i: constitutive issues and rank-one convexity. J. Elast. 121 (2), 143–234.

Nix, W.D., Gao, H., 1998. Indentation size effects in crystalline materials: a law for strain
gradient plasticity. J. Mech. Phys. Solids 46 (3), 411–425.

Oliver, W.C., Pharr, G.M., 2004. Measurement of hardness and elastic modulus by in-
strumented indentation: advances in understanding and refinements to methodology.
J. Mat. Res. 19 (1), 3–20.

Petryk, H., Stupkiewicz, S., Kucharski, S., 2017. On direct estimation of hardening ex-
ponent in crystal plasticity from the spherical indentation test. Int. J. Solids Struct.
112, 209–221.

Petryk, H., Stupkiewicz, S., Maciejewski, G., 2010. Interfacial energy and dissipation in
martensitic phase transformations. part II: size effects in pseudoelasticity. J. Mech.

M. Rezaee-Hajidehi and S. Stupkiewicz Mechanics of Materials 141 (2020) 103267

13

https://doi.org/10.1016/j.mechmat.2019.103267
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0001
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0001
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0002
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0002
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0003
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0003
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0003
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0004
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0004
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0004
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0005
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0005
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0006
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0006
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0007
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0007
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0008
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0008
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0008
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0009
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0009
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0010
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0010
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0011
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0011
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0012
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0012
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0013
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0013
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0014
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0014
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0015
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0015
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0015
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0016
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0017
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0017
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0018
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0018
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0019
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0019
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0019
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0020
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0020
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0021
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0021
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0022
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0022
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0023
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0023
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0024
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0024
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0024
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0025
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0025
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0026
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0026
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0026
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0027
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0027
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0027
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0028
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0028
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0029
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0029
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0030
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0030
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0031
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0031
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0032
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0032
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0032
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0033
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0033
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0033
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0034
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0034


Phys. Solids 58 (3), 373–389.
Pfetzing-Micklich, J., Somsen, C., Dlouhy, A., Begau, C., Hartmaier, A., Wagner, M.F.X.,

Eggeler, G., 2013. On the crystallographic anisotropy of nanoindentation in pseu-
doelastic NiTi. Acta Mater. 61 (2), 602–616.

Pharr, G.M., Herbert, E.G., Gao, Y., 2010. The indentation size effect: a critical ex-
amination of experimental observations and mechanistic interpretations. Ann. Rev.
Mat. Sci. 40, 271–292.

Schuh, C.A., 2006. Nanoindentation studies of materials. Mat. Today 9 (5), 32–40.
Steinbach, I., 2009. Phase-field models in materials science. Modell. Simul. Mat. Sci.

Engng. 17 (7), 073001.
Steinbach, I., 2013. Phase-field model for microstructure evolution at the mesoscopic

scale. Ann. Rev. Mat. Sci. 43, 89–107.
Suezawa, M., Sumino, K., 1976. Behaviour of elastic constants in Cu-Al-Ni alloy in the

close vicinity of Ms-point. Scripta Metall. 10 (9), 789–792.
Tůma, K., Stupkiewicz, S., 2016. Phase-field study of size-dependent morphology of

austenite–twinned martensite interface in CuAlNi. Int. J. Solids Struct. 97, 89–100.
Tůma, K., Stupkiewicz, S., Petryk, H., 2016. Size effects in martensitic microstructures:

finite-strain phase field model versus sharp-interface approach. J. Mech. Phys. Solids
95, 284–307.

Tůma, K., Stupkiewicz, S., Petryk, H., 2018. Rate-independent dissipation in phase-field
modelling of displacive transformations. J. Mech. Phys. Solids 114, 117–142.

Wang, Y., Khachaturyan, A., 1997. Three-dimensional field model and computer mod-
eling of martensitic transformations. Acta Mater. 45 (2), 759–773.

Wriggers, P., 2006. Computational contact mechanics. Springer, Berlin Heidelberg New
York.

Yan, W., Sun, Q., Feng, X.Q., Qian, L., 2007. Analysis of spherical indentation of super-
elastic shape memory alloys. Int. J. Solids Struct. 44 (1), 1–17.

Zhang, H.S., Komvopoulos, K., 2006. Nanoscale pseudoelasticity of single-crystal
Cu–Al–Ni shape-memory alloy induced by cyclic nanoindentation. J. Mat. Sci. 41
(15), 5021–5024.

Zhang, Y., Cheng, Y.-T., Grummon, D.S., 2007. Finite element modeling of indentation-
induced superelastic effect using a three-dimensional constitutive model for shape
memory materials with plasticity. J. Appl. Phys. 101 (5), 053507.

M. Rezaee-Hajidehi and S. Stupkiewicz Mechanics of Materials 141 (2020) 103267

14

http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0034
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0035
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0035
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0035
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0036
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0036
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0036
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0037
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0038
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0038
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0039
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0039
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0040
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0040
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0041
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0041
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0042
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0042
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0042
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0043
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0043
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0044
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0044
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0045
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0045
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0046
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0046
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0047
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0047
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0047
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0048
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0048
http://refhub.elsevier.com/S0167-6636(19)30542-3/sbref0048

	Phase-field modeling of multivariant martensitic microstructures and size effects in nano-indentation
	Introduction
	The multiphase-field model
	Computational treatment
	Contact problem
	Penalty regularization
	Governing equations in the weak form
	Remark 1.

	Finite-element implementation

	Phase-field simulations of nano-indentation
	Preliminaries
	Microstructure evolution: square-to-rectangle transformation
	Microstructure evolution: square-to-parallelogram transformation
	Parametric studies
	Size effects

	Conclusions
	Acknowledgments
	Supplementary material
	References




