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The computing performance optimization of the Short-Lag Spatial Coherence (SLSC) method applied
to ultrasound data processing is presented. The method is based on the theory that signals from adjacent
receivers are correlated, drawing on a simplified conclusion of the van Cittert-Zernike theorem. It has
been proven that it can be successfully used in ultrasound data reconstruction with despeckling. Former
works have shown that the SLSC method in its original form has two main drawbacks: time-consuming
processing and low contrast in the area near the transceivers. In this study, we introduce a method that
allows to overcome both of these drawbacks.

The presented approach removes the dependency on distance (the “lag” parameter value) between
signals used to calculate correlations. The approach has been tested by comparing results obtained with
the original SLSC algorithm on data acquired from tissue phantoms.

The modified method proposed here leads to constant complexity, thus execution time is independent of
the lag parameter value, instead of the linear complexity. The presented approach increases computation
speed over 10 times in comparison to the base SLSC algorithm for a typical lag parameter value. The
approach also improves the output image quality in shallow areas and does not decrease quality in deeper
areas.
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1. Introduction

Speckle reduction in various imaging modalities
has been extensively studied using various methods. It
is extremely important in ultrasound imaging due to
rough structures on the scale of the used wavelengths
(Hiremath et al., 2013). It was shown that some re-
duction can be obtained by applying simple signal fil-
tering (Benzarti, Amiri, 2012) or different versions
of diffusion-based filtering (Ovireddy, Muthusamy,
2014). However, these attempts make it difficult to pre-
serve edges in a filtered image (Gungor, Karagoz,
2015; Vanithamani, Umamaheswari, 2014) and re-
quire additional pre/post-processing. Novel techniques
use wavelet transform, which allows to remove the

speckles without losing much detail contained in an
image (Gupta et al., 2004).

The development of synthetic aperture approaches
in ultrasound research provides additional possibilities
to deal with speckle reduction. One of the methods is
based on the theory that the signals from adjacent re-
ceivers are correlated, which is a simplified conclusion
of the van Cittert-Zernike theorem (Mallart, Fink,
1991). The theorem’s applicability to pulse-echo ultra-
sound imaging has been discussed and proved (Liu,
Waag, 1995) and the application of this theory was
used in the introduction of the Short-Lag Spatial Co-
herence (SLSC) method (Lediju et al., 2011; Dahl
et al., 2011). It has been shown that the method gives
promising results in liver and fetal visualization despite
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the fact that spatial coherence of the backscattered
field is influenced by many factors (Bamber et al.,
2002). The visualization quality of this method used
along the Synthetic Aperture transmission-reception
scheme has been analyzed in detail (Bottenus et al.,
2013) and showed that the quality of the SLSC method
in its original form suffers from two main drawbacks:
low contrast in the area near the transceivers and time-
consuming processing.

The development of software-based ultrasound de-
vices (Verasonics, 2019; S-sharp, 2019; Walczak
et al., 2013) and performance improvements of GPU
processing enable a new approach to real-time imple-
mentation of the SLSC method. Unfortunately, the
earlier proposed implementation (Hyun et al., 2013)
allowed authors to achieve processing with the speed
not higher than 6 fps (frames per second). The sub-
sequent attempt (Hyun et al., 2014) focuses on the
performance. It reduces covariance computations by
shortening the covariation kernel to a single sample
for I/Q data and performs uniformly sparse sampling
on the receiving aperture. These techniques, when im-
plemented on a GPU-based software beamformer, de-
liver real-time SLSC imaging system that generates im-
ages with frame rates ranging from 21 to 31 fps (Hyun
et al., 2015).

The main goal of this paper is to significantly im-
prove the processing time of the SLSC not through
data reduction, but through algorithm modification
and efficient implementation.

2. Methods

2.1. SLSC algorithm and its modifications

Let us take into account the transducer with N ad-
jacent transmit/receive elements used to insonify the
medium and to receive returning echoes scattered in
the medium. In the classical reconstruction attempt,
for every receiving element, the values of the signals
corresponding to the reconstructed pixel value of the
image are summed up from values of the signals accord-
ing to the delays in the transmission-reception scheme
and the delays dependent on the position of the re-
constructed image pixel (Delay and Sum technique)
(Matrone et al., 2015).

In the SLSC technique, the value of each pixel of
the resulting image is generated from spatial correla-
tion and is calculated using pairs of signals (si, sj) from
receivers located at varying positions i, j with the lag
number between them m = j − i. To keep coherence in
the signal for every pixel of the resulting image with
coordinates (x, y), the respective data sample from re-
ceiver k is calculated using delays from transmission
reception schema, i.e. using Plane Wave insonification:

dk(x, y) = (y +
√

(x − rk)2 + y2) fs/c0, (1)

where fs stands for sampling frequency and c0 stands
for signal propagation speed.

It is schematically shown in Fig. 1. The correlation
values R̂(m) (for each pixel of the resulting image cor-
responding to sample number di(x, y) in the center of
the correlation kernel of the length 2∆c) are averaged
from all pairs at a given spacing (2) (Lediju et al.,
2011):

R̂m(x, y) =
1

N −m

N−m
∑
i=1

a∗
√
b∗

(2)

where

a∗ =
∆c

∑
n=−∆c

si(di(x, y) + n)si+m(di+m(x, y) + n),

b∗ =
∆c

∑
n=−∆c

s2
i (di(x, y) + n)

∆c

∑
n=−∆c

s2
i+m(di+m(x, y) + n),

and m is the lag number, N is the number of receivers,
n are sample numbers, si(n) is the zero-mean signal
from the i-th receiver, 2∆c is the length in samples of
correlation kernel.

Fig. 1. Scheme of the transducer with imaging area and
signals received by two elements separated using lag value

equal to 4 and used to calculate correlation.

Finally, each pixel value in the resulting image is
described as the sum of the spatial coherence function
over the first M lags (3):

Rsl =
M

∑
m=1

R̂(m). (3)

The optimization presented here relies on removing
the averaging factor ( 1

N−m) from the correlation cal-
culation (2). Without loss of generality, and for further
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simplicity of the following equations, it is assumed here
that the signal sample positions are the same in signals
i and i +m and the center of the correlation kernel is
at sample 0. As a result, the original SLSC Eq. (3) can
be rewritten in a new form:

Rsl =
N

∑
i=1

min(i+M,N)
∑
j=i+1

∆c

∑
n=−∆c

si(n)sj(n)

√
∆c

∑
n=−∆c

s2
i (n)

∆c

∑
n=−∆c

s2
j(n)

. (4)

Eequation (4) changes the perception of the recon-
struction process. Before, the main focus was on the
calculation of individual lags and collecting the re-
sults. Now, it resembles the Delay & Sum class method
(Matrone et al., 2015), where we iterate over subse-
quent transceivers. A further transformation of Eq. (4)
leads to:

Rsl =
N

∑
i=1

n2

∑
n=n1

si(n)L(i, n,N,M)

√
n2

∑
n=n1

s2
i (n)

, (5)

where L(i, n,N,M) is defined by Eq. (6):

L(i, n,N,M) =

min(i+M,N)
∑
j=i+1

sj(n)
√

n2

∑
n=n1

s2
j(n)

, (6)

and can be calculated recursively starting from the first
transceiver (i = 1):

L(i + 1, n,N,M) = L(i, n,N,M) −
si(n)

√
n2

∑
n=n1

s2
i (n)

+
si+1+M(n)

√
n2

∑
n=n1

s2
i+1+M(n)

. (7)

It should be noted that Eq. (7) is the general version
and is only valid for transceivers from 1 to N −M − 1.
For the rest of the transceivers, the last term of Eq. (7)
should be omitted.

Forms (5) and (7) are the final modification of the
original SLSC method for speeding up the computa-
tion process. Instead of computing each lag separately,
the method presented utilizes results from i -lag value
at (i + i)-lag value. The MATLAB (Mathworks, USA)
scripts illustrating the algorithm are available1.

2.2. Calculation speed

The presented method of removing coefficient
1/(N −m) is adequate both for implementing on the
CPUs2 as well as on GPUs3. However, GPUs allow to

1SLSC-O Optimized Short Lag Spatial Coherence in Ultra-
sound Visualization, https://github.com/usgold/SLSC.

2Central Processing Unit.
3Graphics Processing Units.

parallelize computation and get the results in a shorter
time. In this case, standard NVidia’s CUDA4 paral-
lelization was used and a kernel for each pixel of output
image calculation was created. When using the GPU
to further improve performance, the values of L param-
eter should be stored in fast access Shared Memory to
efficiently manage cached data.

Four different implementations of the SLSC algo-
rithm were tested. All versions were implemented with
the use of NVidia’s CUDA technology: The Original –
original SLSC implementation rewritten to use SIMD5

architectures,Original with Shared – original SLSC im-
plemented with CUDA’s and rewritten to use SIMD
architectures with CUDA’s Shared Memory6 technol-
ogy, Speed Optimized – as presented here, SLSC op-
timization with only speed optimization, and finally
SLSC-O – as presented here, SLSC utilizing both
depth-dependent lag number changing and speed op-
timization. It should be noted that for each signal, the
average value from a signal was subtracted. The dura-
tion of this operation is included in algorithm timings.

2.3. Image quality verification

2.3.1. Synthetic Aperture Scheme

In the MSTA (multi-element synthetic transmit
aperture) algorithm (Trots et al., 2010), used here,
echoes are collected in different matrices. After each
plane wave insonification with the use of multiple el-
ements (ex. 16 of 128), a single transmission aperture
is shifted by one transmitter. The output image is cre-
ated from complementary images each with the width
of one line near the axis of symmetry of the trans-
mission aperture. This is done to ensure that the dis-
tance from a reconstructed pixel and the transmission
elements is accurately defined and not an approxima-
tion as in (Trots et al., 2010). This attempt reduces
the spatial range of the transmit grating lobes and al-
lows to focus on image quality of the presented method
without external disturbances.

2.3.2. Image quality quantification

The differences between the original methods of re-
construction and those proposed here may influence
the resulting image quality. The quality of images re-
constructed with the SLSC technique depends on two
parameters: the number of samples taken into account
in the correlation calculation per single reconstructed
image point, and the number of lags used for spatial co-
herence calculation. The first parameter is commonly
set to a value equal to one wavelength (Pourebrahimi
et al., 2013), while the second one ranges originally
from 1 to 30% of the transmit aperture (Lediju et al.,

4Compute Unified Device Architecture.
5Single Instruction, Multiple Data.
6See: https://docs.nvidia.com/cuda/cuda-c-programming-gui-

de/index.html#variable-memory-space-specifiers.
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2011). Here, the analysed lag number is extended out-
side this range. Lag numbers equal to 21, 41, and 61
are chosen. We choose large lag numbers in order to
compare results from the SLSC and SLSC-O methods
and analyze how removing the 1/(N −m) coefficient in
Eq. (2) influences output images. For lower lag num-
bers (like 21), we observe no difference in the quality
of the results.

In order to test how modifications applied to the
original algorithm affect the resulting images, we con-
sidered the following image quality factors (Bottenus
et al., 2013; Chen et al., 2003; Wang et al., 2004):
Contrast (dB scale), Signal to Noise Ratio (SNR), Con-
trast to Noise Ratio (CNR), Peak Signal to Noise Ratio
(PSNR), and Structural Similarity (SSIM).

The comparison of different versions of the SLSC
method requires a peculiar normalization of colormaps
of the resulting images. This is not part of the SLSC-O
method, but rather the post-processing of resulting im-
ages of the original SLSC method. It aids in viewing
and visually comparing images. It is explained as fol-
lows. Taking into account the absolute output values,
the Original and Original with Shared methods give
different results than the Speed Optimized and SLSC-O
methods as can be seen in Eq. (6). The differences in
the algorithms analyzed here influence the absolute re-
sulting values. The coefficient 1/(N −m) in Eq. (2) is
removed from Eq. (4), which leads to a different way
of weighing the data, particularly for higher values of
lags. This results in the first two versions of the SLSC
method producing some artifacts in the output data.

When trying to typically normalize resulting data,
the background of images (absolute values around
zero) appears to be different. The comparison is pre-
sented in Fig. 2.

a) b) c)

Fig. 2. Comparison of phantom W output images consid-
ering the necessity of peculiar normalization at the Origi-
nal method. SLSC-O does not need peculiar normalization
(data were collected using lag value of 61 in order to em-
phasize the effect): a) original, b) original peculiarly nor-

malized, c) SLSC-O.

Artifacts (black areas around the image of the
fiber) can be seen on both sides in the lateral direc-
tion of fiber (white spot) in Fig. 2a. In Fig. 2c, this
effect is not present. While fiber is white in both pic-
tures, the background of the image from the Original
method is brighter. This situation occurs because the
absolute values near the fiber are below zero. This issue
gains greater influence as the value of the lag number

increases, if negative correlation in the Original and
the Original with Shared occurs.

In order to overcome this issue and compare the
methods properly, we introduced peculiar normaliza-
tion to the resulting data. After dividing by the ma-
ximum value, we trim values below the maximum of
minimum value of the images compared. After trim-
ming, the normalization is repeated to achieve the
range from 0 to 1.

2.4. Improvement of quality

In order to improve contrast in the area near the
transducer, the variety of the lag values dependent
on the reconstructed depth of the image was ana-
lyzed. Studying individual outcomes of consecutive
lags shoves that, there is a noticeable gradual de-
crease in information about the upper part of the image
(closer to transceiver) as the number of lags increases.
Regarding this dependence, the prediction about lag
numbers as a function of depth can be calculated with
the use of the formula (8):

M̂(y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∀y ≤H 1 +
y

H
⋅ (M − 1),

∀y >H M,
(8)

where M̂(y) is the depth-dependent lag number, y is
the current image depth,H is the width of the transmit
aperture.

Equation (8) allows for applying a variable number
of lags in the upper part of the image only. The value
of the depth (H) of threshold is related directly to the
range of side lobes and grating lobes affecting the re-
sulting image and should not exceed the aperture size
of the transducer. Equation (8) is derived from the ba-
sic observation that close to the transducer, signals for
larger lag values corresponding to distant transducer
elements are independent.

The variable number of lags used for reconstruction
influences the intensity at distinct depths of the image.
To prevent this disparity and to equalize the outcomes
at various depths, an additional weighing to individual
outcomes is added. As a result, Eq. (3) takes a new
form:

Rsl(y) =
M̂(y)
∑
m=1

R̂(m) ⋅
M

M̂(y)
. (9)

2.5. Measurement and processing setup

The ultrasound data used for analysis of the pre-
sented method was collected using the research ultra-
sound acquisition system Verasonics V-1-128 (Vera-
sonics, USA) with a 128-element linear array probe
(Philips L7-4). The element pitch was equal to D =

0.3048 mm, element width equaled 0.2798 mm and el-
evation height was 4 mm. The medium was insonified
using a plane wave with 4 cycles of 5 MHz sine wave
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with a triangular envelope. The RF echoes were sam-
pled at 36 MHz. The phantoms used as a scattering
medium in the ultrasound measurements consisted of
cysts: model 571 (phantom C) and fibers: model 525
(phantom W), both from Dansk Fantom Service (Den-
mark). The C phantom contained anechoic cysts with
diameters 8, 4, and 2 mm. The W phantom contained
0.1 mm diameter nylon fibers. The speed of sound as-
sumed in all measurements was fixed at 1540 m/s.

The data processing and reconstruction algorithm
was tested on a PC class computer under Microsoft
Windows 7 64-bit operating system. The computer was
equipped with an Intel Core 2 Duo E6400 (2.13 GHz)
processor, 4 GB RAM and Graphics Processing Unit
NVidia QUADRO K5000 card (1536 CUDA cores7).

3. Results and discussion

3.1. Performance of reconstruction

The implementation loads to the Shared Memory
the data of the surrounding of the sample determined
by the pixel delay for the selected receiver. This is
followed by iteration over the subsequent receivers,
thereby forming a larger lag in tandem with the re-
ceiver.

Moreover, the computational time of the new met-
hod is nearly independent of the number of chosen lags.
The main limitation of performance is global memory
access. Assuming that computation and Shared Mem-
ory access is negligibly cheap, and thus counting only
global memory access, we get:

• Original :
2∆c ⋅M ⋅ (2 ⋅N − 1 −M),

• Original with Shared :
2∆c ⋅M ⋅ (N −M + (N − 1)/M − 1 + (M + 1)/2),

• SLSC-O :
2 ⋅ 2∆c ⋅ (N − 1).

These formulas do not include the depth-dependent
lag parameter. The correlation operations’ count can
be calculated by dividing each formula by 2∆c.

For the performance test, an image of 128× 2048
pixels from echo signals of the size 4480 was recon-
structed. Figure 3 shows the execution time of each of
the two versions of the SLSC algorithm implemented
on a CUDA platform with the correlation kernel size
set to the number of samples corresponding to the typi-
cal length of one wavelength (Lediju et al., 2011). The
performance results match theoretical considerations.
The Original approach represents the base algorithm
without our modifications. The method SLSC-O uti-
lizes both optimizations described in this paper. The
execution time, which is stable for different lag values,
is equal to 65 ms, resulting in 15 fps. For lag value

7Quadro K5000 Specifications, http://www.nvidia.com/ob-
ject/quadro-k5000.html

Fig. 3. Comparison of execution time of two versions of the
SLSC algorithm. Tests were performed on the GPU. How-
ever, the speed-up of SLSC-O over Original should be sim-
ilar for the CPU. The tests were performed for 128× 2048

resulting output image size.

equal to 61, the presented approach is about 12 times
faster than the base algorithm, while for lag value equal
to 31, this becomes over 7 times faster. The proposed
techniques appear to be most effective specifically for
large lag numbers. For the typical lag parameter value
(10–30), we still observe significant speed-up. Only for
lag values lower than about 4, the SLSC-O performs
slowlier than Original. Both modifications of the orig-
inal algorithm allow to achieve better results. The in-
creasing differences in performance are more visible for
higher values of lag parameters. Moreover, the compu-
tational time of the new method is almost independent
of the number of chosen lags and leads to constant
complexity execution time.

Higher frame rate can be obtained by decreasing
the size of the reconstructed image. For example, when
reconstructing 128× 512 pixels image, which still gives
similar accuracy and image quality, the execution time
of the algorithm is 39 ms. This timing results in over
25 fps. It should be noted that at lag value not higher
than 4, the SLSC-O method has worse performance,
but in practical applications such values are not used.

The SLSC images of the reconstructed phantoms
used in this study are shown in Figs 4 and 5. A rect-
angular region ranging about 40× 84 mm has been re-
constructed for both the W and C phantoms. The re-
gions of interest chosen for SNR, CNR, contrast and

a) b) c) d)

Fig. 4. Comparison of reconstruction of images of phan-
tom W shows difference when manipulating the lag param-
eter number (the Original method; 25 dB scale): a) Lag 11,

b) Lag 31, c) Lag 51, d) Lag 71.
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a) b) c) d)

Fig. 5. Comparison of reconstruction of images of phan-
tom C shows difference when manipulating the lag param-
eter number (the Original method; 25 dB scale): a) Lag 11,

b) Lag 31, c) Lag 51, d) Lag 71.

PSNR calculations are presented as white rectangles.
The selected regions for phantom C were located in-
side and outside of cysts and collected in pairs at the
same depth. The selected region for phantom W con-
tains one of the fibers. SSIM parameter calculations
(Wang et al., 2003) were applied to the whole result-
ing images.

Additionally, the section lines of the resulting im-
age at depth of 32 mm (phantom C) and 33 mm (pha-
ntom W) were analyzed. The chosen section goes
through the middle of the two cysts (phantom C,
Fig. 5d) and four fibers (phantom W, Fig. 4d). In both
figures, the position of the section line is marked with
the arrows on both sides of each image.

3.2. Quality of the resulting images

Image quality can be compared in Figs 4 and 5,
where the reconstruction of both phantoms was made
using different lag values.

It can be observed that the Original method results
in larger negative correlation values in the area near
the fiber in Fig. 6.

Fig. 6. 33 mm depth line of phantom W result data for
Original and SLSC-O versions of SLSC method. Both
Y -axes were adjusted to show the marked artifact which
is not desirable. All data were collected using the lag

value of 31.

The comparison of the reconstructed section line of
phantom W at the depth of 33 mm using lag values of
41 and 81, respectively, presented in linear, normalized

scale is shown in Fig. 7. It can be seen that absolute val-
ues of reconstructed images are similar. Peaks of data
representing the fibers have almost the same shape.
The baseline is flat in each case. The main differences
between the Original and SLSC-O methods are the
areas near the fibers. Data obtained using the Orig-
inal method have higher variability than the SLSC-
O, which stems from the fact that for higher lag val-
ues, correlation is less stable. The SLSC-O method for
higher lag values results in the preservation of more
detail. The reason why we observe such artifact are
negative values caused by different weights, especially
when using a higher lag value parameter. Using Orig-
inal, when the coherence is strong negative for higher
lag numbers (for example, when there is a small strong
scatterer surrounded by no scatterers), the output val-
ues of coherence calculation can be also strong neg-
ative. However, when using SLSC-O, strong negative
coherence for higher lag numbers is reduced, while for
lower lag numbers (where coherence is typically still
positive) calculations are much the same. It should be
noted that when no negative or positive coherence oc-
curs, both Original and SLSC-O method give the same
values (baseline). It can be observed in Figs 6 and 7.

a)

b)

Fig. 7. Result values at 33 mm depth line for phantom W
(values are normalized and in linear scale): a) Lag 41,

b) Lag 81.

In Fig. 7, one can see all four fibers from SLSC-O ,
while the Original did not reconstruct the fiber at
16–17 mm axial position. Note that we do not observe
such differences for smaller lag values.
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a) b) c)

d) e) f)

Fig. 8. Comparison of reconstructed images of chosen region of phantom W (25 dB scale): a) Original Lag 21, b) Original
Lag 41, c) Original Lag 61, d) SLSC-O Lag 21, e) SLSC-O Lag 41, f) SLSC-O Lag 61.

Images of the phantom W obtained from the Orig-
inal and SLSC-O algorithms are shown in Fig. 8. The
first row shows the reconstruction with the Original
method, while the lower row used the SLSC-O algo-
rithm. The lag values used in the presented cases were
set to: 21, 41, and 61. The resulting images show a mag-
nification of one of the fibers located at 33 mm depth.
All images in Fig. 8 are displayed in a 25 dB loga-
rithmic scale (calculated for the whole imaging area).
A strong similarity can be observed between images
obtained using both the SLSC-O and Original meth-
ods. The lag value of 21 allows us to obtain images
with no visual difference. For higher lag values, that is
41 and 61, the differences appear in areas close to the
sides of the fiber. Other areas of the resulting images
are comparable for all lag values.

Figure 9 shows the comparison of the reconstructed
line of the phantom C at the depth of 32 mm using
lag number values equal to 21 and 41, respectively.
Both the Original and SLSC-O methods’ results are
shown in each figure. The data are presented in linear,
normalized scale. The main difference can be seen in
the data representing cysts (from −2 to 2 and from
8 to 17 mm of axial position). Inside these cysts, the
Original method gave higher data values. However, the
overall shape of the plot of data is similar.

Taking into account all points at the 32 mm depth
line, the average difference between absolute values of
the result is 0.73% and the maximum is 2.02%.

a)

b)

Fig. 9. Result values at 32 mm depth line for phantom C
(values are normalized and in linear scale): a) Lag 21,

b) Lag 41.
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a) b) c) d) e) f)

g) h) i) j) k) l)

Fig. 10. Comparison of Original (top row) with SLSC-O (bottom row) for both phantoms C and W for lag numbers of 21,
41, and 61 (25 dB scale): a) Lag 21, b) Lag 41, c) Lag 61, d) Lag 21, e) Lag 41, f) Lag 61, g) Lag 21, h) Lag 41, i) Lag 61,

j) Lag 21, k) Lag 41, l) Lag 61.

The comparison of the whole resulting images of
phantoms C and W are presented in Fig. 10. The first
row shows reconstruction using the Original method,
while the second row uses the SLSC-O method for lags
set to: 21, 41, and 61. All images are shown in a 25 dB
logarithmic scale.

Figure 10 shows the comparison of the Original
with the SLSC-O method for both phantoms C and W

Table 1. Comparison of phantom C resulting images quality factors. In tests there were included 4 selected regions.

Original SLSC-O
Contrast [dB] CNR SNR PSNR Contrast [dB] CNR SNR PSNR

Lag 21
Region 1 −0.67 0.77 11.90 23.2 −2.40 1.62 7.63 17.6
Region 2 −9.60 1.75 2.62 13.7 −12.2 2.08 2.76 12.6
Region 3 −12.0 1.49 2.00 12.9 −14.1 1.80 2.25 12.1
Region 4 −12.0 2.47 3.38 11.8 −13.5 2.90 3.75 11.1
Lag 41
Region 1 −0.28 0.38 13.58 25.9 −1.84 1.33 8.19 18.1
Region 2 −5.53 0.97 2.08 18.2 −8.81 1.48 2.32 15.5
Region 3 −7.49 0.90 1.55 16.0 −10.5 1.37 1.96 14.3
Region 4 −7.83 1.29 2.20 15.1 −10.5 1.94 2.78 13.0
Lag 61
Region 1 −0.02 0.03 14.80 26.7 −1.61 1.18 8.15 19.0
Region 2 −3.65 0.70 2.02 18.6 −7.44 1.34 2.32 17.8
Region 3 −5.49 0.61 1.30 17.0 −9.12 1.20 1.84 15.5
Region 4 −5.80 0.73 1.50 17.0 −9.22 1.51 2.31 14.3

and different lag numbers. The images differ funda-
mentally only in the upper part where the lag pa-
rameter was manipulated. For phantom C, the shallow
cysts at the depth of 16 mm can be observed with the
SLSC-O method, mainly at higher lag values.

Several image quality parameters have been
calculated: Contrast, CNR, SNR, and PSNR for se-
lected pairs of regions and are reported in Table 1. The
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SLSC-O images have a better contrast and SNR for
regions 2–4, however, other factors are slightly inferior.

Additionally, calculations of the SSIM factor have
been performed. Comparing the Original with Speed
Optimized or SLSC-O methods results in SSIM value
close to 1. For phantom W and lag numbers from 11 to
91, the calculated SSIM was always 1. For phantom C,
however, the value was 1 for lag numbers below 21,
and 0.9999 for lag numbers higher or equal to 21.

4. Conclusion

The article presents a modification of the base
SLSC (Lediju et al., 2011) algorithm, which enables
real-time implementation without a loss in quality of
the reconstructed images.

The proposed method renders the execution time
independent of the value of the lag parameter. The uti-
lization of the GPU allowed to achieve 25 fps for a re-
sulting image with a resolution of 128× 512 pixels, and
15 fps for 128× 2048 pixels. Moreover, the presented
optimizations are not dedicated to the GPU only. The
same speed-up results should be obtained while utiliz-
ing different platforms (ex. FPGA, CPU).

The higher values of lags carry less important but
still valuable information. In such a case removing the
averaging factor does not invalidate the data. It simply
assigns a new weight to the correlation outcome, which
decreases with the increasing lag value. These new
weights match the importance of the parts of a sum.
Changes in the results of the algorithm are at most at
the level of 1/(N −m) (see Fig. 2). When considering
a large aperture size (N > 100), the differences can be
negligible. However, when SLSC-O is used for a small
aperture, the difference can not be negligible.

The presented results show an improved quality in
the upper part of the resulting images in comparison
to classical SLSC. For the remaining parts of the im-
ages, the optimization results influence the differences
in quality at a negligible level. We do not observe ar-
tifacts like in the Original approach at higher lag val-
ues. Unfortunately, our method does not reduce the
general limitations of SLSC imaging in its inability to
detect point-like targets in speckle-based background
and signals away from the transmit focal depth show
decreased spatial coherence (Thompson et al., 2017;
Lediju et al., 2011; Mallart, Fink, 1991).

The SLSC-O method depends only on the number
of elements in the aperture used, which can lead to
different results with different apertures. The generic
drawbacks of the SLSC algorithm, i.e. the need to
choose the correct lag parameter number, still occur.

Appendix A. Detailed derivations of equations

Let us concentrate on Eqs (2) and (4). One can see
that within these formulas a little different notations

are used (without loosing generality and for further
simplicity). The simplification can be expressed as:

si(n) = si(di(x, y) + n). (10)

For more simplification let us introduce a formula
that is a single component of sum in Eq. (4):

f(i, i +m) =

∆c

∑
n=−∆c

si(n)si+m(n)

√
∆c

∑
n=−∆c

s2
i (n)

∆c

∑
n=−∆c

s2
i+m(n)

. (11)

Going further, the combination of Eqs (2), (3), and
the newly introduced Eq. (11), without the averaging
factor 1/(N −m) can be rewritten as:

Rsl =
M

∑
m=1

N−m
∑
i=1

f(i, i +m), (12)

which corresponds to the original method. Our pro-
posed method uses notation (see Eq. (4)) that can be
simplified using Eq. (11) and rewritten as:

Rsl =
N

∑
i=1

min(i+M,N)
∑
j=i+1

f(i, j). (13)

The formulas (12) and (13) may seem not equal,
but they are. To explain that fact let us assume that
N = 5 and M = 3 and consider the following example.
Table 2 enumerates each single component of the sum
of the sum for Eq. (12) and Table 3 enumerates the
same components for Eq. (13).

Table 2. Single components for Original
(see Eq. (12)).

m = 1 m = 2 m = 3

i = 1 i = 1 i = 1

m = 1 m = 2 m = 3

i = 2 i = 2 i = 2

m = 1 m = 2

i = 3 i = 3

m = 1

i = 4

Table 3. Single components for proposed SLSC-O
(see Eq. (13)).

i = 1 i = 2 i = 3

j = 2 j = 3 j = 4

i = 1 i = 2 j = 4

j = 3 j = 4 j = 5

i = 1 i = 2

j = 4 j = 5

i = 1

j = 5
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Now let us concentrate on derivation Eq. (5). Let us
rewrite Eq. (4) to following formula with some trivial
moves:

Rsl =
N

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min(i+M,N)
∑
j=i+1

∆c

∑
n=−∆c

si(n)sj(n)
√

∆c

∑
n=−∆c

s2
j(n)

√
∆c

∑
n=−∆c

s2
i (n)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

Now focus on the bottom divider. In our consider-
ations here it depends only on value i. Because it does
not depend on value j, one can separate this divider
and the sum with j. As a result, the equation can take
a new form:

Rsl =
N

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min(i+M,N)
∑

j=i+1

∆c

∑
n=−∆c

si(n)sj(n)
√

∆c

∑
n=−∆c

s2
j(n)

√
∆c

∑
n=−∆c

s2
i (n)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

The next step is similar. Because si(n) does not
depend on value j, it can be moved before the sum.
This gives the following form:

Rsl =
N

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆c

∑
n=−∆c

si(n)
min(i+M,N)
∑

j=i+1

sj(n)√
∆c

∑
n=−∆c

s2
j(n)

√
∆c

∑
n=−∆c

s2
i (n)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(16)
which gives Eq. (5) with considering Eq. (6).

Appendix B. Simulated data

For the validation of the experimental results,
Field II software was used to simulate a PSF using
1D uniform linear array as a transducer with 128 el-
ements and a center frequency of 5 MHz. The data
were acquired from all 128 channels at a 50 MHz sam-
pling rate. The speed of sound was set to the value of
1540 m/s. The element pitch was equal to 0.328 mm.
A synthetic transmit aperture was generated using sin-
gle element transmits to achieve full dynamic focusing
on both transmit and receive parts. For the simulated
data, uniform white noise was added to simulate acous-
tic noise received by the transducer. The noise was

added at the level such that the ratio of channel Sig-
nal to Noise (SNR) was 10 dB. This noise was added
to simulate reverberation and the coherence of low-
amplitude echoes.

a) b)

c) d)

Fig. 11. Comparison of reconstructed images of a fragment
for the simulated fiber (30 dB scale): a) Original Lag 15,
b) Original Lag 50, c) SLSC-O Lag 15, d) SLSC-O Lag 50.

In Fig. 11, one can observe results for such sim-
ulation data for both the Original and the SLSC-O
methods. Both methods give the same visual results
on simulated data.
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