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ABSTRACT 
 
Driving on uneven roads causes vibrations of the vehicle. Modern smartphones are 
equipped with accelerometers and gyroscopes which allow for inexpensive acquisition of 
information about the shaking level. This study reports on field tests of a system, which 
measures vibrations of a driving vehicle using four smartphones as sensors. The collected 
data undergo a series of processing steps, namely synchronization, virtual reorientation, 
temporal and spectral filtering, and assignment of road localization. We use quarter-car 
and half-car suspension models to retrieve the longitudinal road profile and to compute 
unevenness indicators. The accuracy of the system was computed by comparison with 
traditional laser profilometer on an 18.6 km long test section using eight rides with different 
speeds. It averages to 71% and exceeds 80% for the best calibrated cases. Additionally, 
we report on the feedback obtained during tests of the system in a district road 
administration in Poland. 

1. INTRODUCTION 

Effective decision-making on the maintenance strategies of road network requires 
information on the road pavement condition. State-of-the-art inspection vehicles 
simultaneously collect data on the pavement evenness, ruts, surface distresses (cracks, 
patches), and make panoramic images. Measurements of skid resistance and road 
deflections are usually done by separate, dedicated vehicles. However, wide scope and 
high quality of the road condition data comes at a price prohibitively high for local road 
administrators. Consequently, there is a need for a more affordable solution for objective 
network-wide surveying.  

Proliferation of smartphones creates a possibility to easily measure vibrations during a 
ride. After clearing the acceleration signal from the influence of the vehicle’s suspension 
and taking into account the driving conditions, most notably speed, it is possible to 
evaluate the pavement evenness and identify certain surface distresses. In this paper, we 
report on the field tests of system ASPEN (Accelerometer System for Pavement 
Evaluation), which allows for approximate road condition assessment with smartphones 
mounted in a driving car. 
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2. RELATED STUDIES 

The concept of using smartphones to evaluate road roughness is increasingly popular as 
they combine satellite navigation system and inertial sensors in a compact and commonly 
available device. Vibration-based measurements performed by smartphones offer 
significantly lower costs in comparison to laser profiling, at the same time being more 
reproducible and less labour intensive than visual inspection (Radopoulou et al. 2016, 
Wahlström et al. 2016, Alavi & Buttlar 2019). 
 
Various aspects are relevant to the evaluation of road quality. In general, two main 
approaches can be distinguished. First of them concentrates on the identification of point 
distresses, which cause significant inconvenience for the driver and passengers, such as 
potholes, bumps or sunken manholes. After detection they can be reported to road 
administrators and repaired. This type of system was tested e.g. in Boston (Brisimi et al. 
2016). A range of studies tested various types of classification algorithms in order to detect 
point anomalies (Brisimi et al. 2016, Mukherjee & Majhi 2016, Xue et al. 2017, Bello-Salau 
et al. 2018, Celaya-Padilla et al. 2018, Silva et al. 2018). The second type of road quality 
evaluation is calculating values of given indices for road segments, typically of the length 
20-100 meters. This approach is more compatible with methodology used currently in road 
maintenance in planning and long-term management, in contrast to the ad hoc 
maintenance of detected local distresses. On-time diagnostics and proper treatment allow 
to significantly reduce the overall costs of road maintenance (Alavi & Buttlar 2019, Haas 
and Hudson 1978). The approach presented in this work focuses on the evaluation of 
quality of road segments, rather than point anomalies detection. 
 
Among different measures used by road administrators in the decision making process, 
the most common are International Roughness Index IRI (Mucka 2017), road classes 
assigned by the power spectral density of the profile (ISO 8608), Present Serviceability 
Index PSI, German Längsebenheitswirkindex LWI (Ueckermann 2002) and Chinese 
Riding Quality Index RQI (Yang 2006). The most common indicator is IRI and it is the 
primary goal for identification by smartphone based systems (Douangphachanh & 
Oneyama 2014, Forslöf & Jones 2015, Grimmer 2015, Yagi 2017). Estimation of other 
quality measures is also topic of studies, e.g. for PSI (Aleadelat et al. 2018), RQI (Chen et 
al. 2016) or profile PSD (González et al. 2008), which is also used in ISO classification. In 
addition, some new quality indices are proposed (Alessandroni et al. 2014, Badurowicz et 
al. 2016). 
 
One of the approaches to evaluate the road quality is based on the estimation of its 
longitudinal profile. It was adopted e.g. by Yagi (2017), Ngwangwa et al. (2014) and Xue et 
al. (2017). Also some theoretical works (with simulated data) addressed this issue (Noack 
et al. 2018, Zhang et al. 2018). A significant advantage of profile estimation is that it allows 
to easily calculate virtually any index of interest which is required by road administrator for 
the proper maintenance management. 
 
In surface roughness evaluation, an important role is played by mechanical models of car 
suspensions. They are commonly used in modelling of pavement-car interactions 
(Agostinacchio et al. 2014, Rath et al. 2015, Tomiyama & Kawamura 2016) and also 
directly involved in calculation of some of the pavement quality indices, such as IRI or LWI. 
Mechanical models of car suspension are also a valuable tool for vibration-based road 
quality evaluation.  They significantly reduce the number of parameters which have to be 
tuned for a given vehicle. They are also physics aware and compatible with methodology 
used in the field of road diagnostic. The most common type of mechanical model is a 
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quarter car with a single or two degrees of freedom (Agostinacchio et al. 2014, Xue et al. 
2017, Yagi 2017). Half car model is more expressive and allow for pitch rotation of the car 
body (Gao et al. 2007, Mukherjee & Majhi 2016). Half car models may be especially useful 
if the sensor (measuring smartphone) is not located directly over one of the car axles. In 
this work we investigate both quarter and half car models. In the literature, sometimes 
even the full-car model is considered (Ngwangwa et al. 2014, Noack et al. 2018), however 
it was not applied to the real world data yet, presumably due to the difficulties in its 
identification. 
 
In different systems aiming to evaluate the road quality or to detect anomalies many 
preliminary steps of data analysis are common. Reorientation of the measured 
accelerations to the vehicle reference frame is well established (Wahlström et al. 2016). 
Another task is the data filtering, typically performed in order to remove high frequency 
noise (Mukherjee & Majhi 2016, Aly & Youssef 2015, Xue et al. 2017) and low frequency 
modes, originating from manoeuvres or macroscale road geometry rather than pavement 
quality (Astarita et al. 2012, Eriksson et al. 2008, Ghadge et al. 2015, Mohamed et al. 
2015). For both purposes often moving average (Xue et al. 2017) or Butterworth filters 
(Ghadge et al. 2015, Mohamed et al. 2015) are used. Mapping of the measurements on 
road network can be challenging (Aly & Youssef 2015, Delpriori et al. 2015), however in a 
typical environment it becomes a standard procedure, in our case conducted by software 
previously developed in our company. 
 
Practical aspects of the measurements, such as smartphone mounting and the influence 
of velocity, have been reviewed e.g. by (Sattar et al. 2018). Corrections for the vehicle 
speed are often necessary (Fazeen et al. 2012, Alessandroni et al. 2017). The influence of 
smartphone model itself is rather negligible. Results described in the literature suggest that 
in the problem of road quality estimation, apart from the modelling challenges, also a 
range of practical aspects plays an important role. 

3. MECHANICAL MODELS 

One of the features provided by the ASPEN system is road profile computation by using 
acceleration measured with a smartphone. Road profile data allows for obtaining common 
ride quality indicators. Two mechanical models of car suspension were implemented, 
quarter car (QC) and half car (HC). They are presented in Fig. 1. In this section we will 
briefly present the methodology. Moreover, transfer function for profile computation with 
HC model are derived.  

 
 

Fig. 1. Schemes of a quarter car and half car models 
 
The QC model consists of five elements: 

● 𝑘t – spring coefficient representing the tire, 
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● 𝑚u – unsprung mass representing a half of the axle, 

● 𝑘s – spring coefficient representing resilient reaction of the vehicle suspension, 
● 𝑐s – damping coefficient representing the viscous reaction of the vehicle 

suspension, 

● 𝑚s – sprung mass representing a quarter of the mass of the vehicle body. 
 
The vibrations of the model elements are excited during the ride over the road profile with 

speed 𝑣. The height of the profile right under the tire is denoted by 𝑦. The unsprung and 

sprung masses of the QC model may experience vertical displacements 𝑧u and 𝑧s 
respectively.  
 
The notation for HC model differs only slightly. Since the HC model includes both front and 

rear suspension elements, they are designated with index 1 for front axle and 2 for rear 
axle. Moreover, sprung element joining the axles has an additional (rotational) degree of 

freedom. Therefore, it may rotate around its centre of mass (𝑚s) located with distance 𝐿1 

from front axle. The rotary angle is 𝜃 and the mass moment of inertia for the car body is 𝐼s. 
It is assumed that angular and vertical accelerations (𝑧𝑑) may be acquired with sensor 
(smartphone) located at distance 𝑑 from front axle. 
 
The general workflow for the computation of the road profile is the following: 

● measuring acceleration and vehicle speed with smartphone, 
● preprocessing of the measured acceleration (filtering and reorientation), 
● transforming the acceleration into the frequency domain with Discrete Fourier 

Transformation (DFT), 

● applying the frequency dependent transfer function 𝐻(𝜉), which allows for profile 
𝑌(𝜉) calculation in the frequency domain according to equation (1), 

● transforming the profile signal into the spatial domain with inverse DFT, 
● post processing (e.g. filtering in order to remove some artificial trends). 

 

 𝑌 =  𝐻 ∙ �̈�𝑑 (1) 
 
Further we will focus on the solution for HC model. The transfer function may be derived 
from the system of motion equations for the model. The motion of the HC model elements 
is described by the following second order differential equations system (Gao 2007): 
 

 𝑴�̈� + 𝑪�̇� + 𝑲𝒛 =  𝒑 (2) 
 
where: 
 

𝑴 =

[
 
 
 
𝐿2𝑚s/(𝐿1 + 𝐿2) 0 𝐿1𝑚s/(𝐿1 + 𝐿2) 0

𝐼s/(𝐿1 + 𝐿2) 0 −𝐼s/(𝐿1 + 𝐿2) 0
0 𝑚u1

0 0

0 0 0 𝑚u2 ]
 
 
 

, 𝑪 =

[
 
 
 

𝑐s1
−𝑐s1

𝑐s2
−𝑐s2

𝐿1𝑐s1
−𝐿1𝑐s1

−𝐿2𝑐s2
𝐿2𝑐s2

−𝑐s1
𝑐s1

0 0

0 0 −𝑐s2
𝑐s2 ]

 
 
 

 

𝑲 =

[
 
 
 
 

𝑘s1
−𝑘s1

𝑘s2
−𝑘s2

𝐿1𝑘s1
−𝐿1𝑘s1

−𝐿2𝑘s2
𝐿2𝑘s2

−𝑘s1
𝑘s1

+ 𝑘t1 0 0

0 0 −𝑘s2
𝑘s2

+ 𝑘t2]
 
 
 
 

, 𝒛 = [

𝑧s1

𝑧u1

𝑧s2

𝑧u2

], 𝒑 =

[
 
 
 

0
0

𝑘t1𝑦1

𝑘t2𝑦2]
 
 
 
 

 
After application of Fourier transformation we obtain an equation in the frequency domain: 
 

 𝑴�̈� + 𝑪�̇� + 𝑲𝒁 =  𝑷 (3) 
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The properties of Fourier transformation imply relations: 
 

 𝑍i
̇ =  

1

2𝜋𝑗𝜉
𝑍i
̈  (4) 

 𝑍i = 
−1

4𝜋2𝜉2 𝑍i
̈  (5) 

 
therefore: 
 

 (𝑴 +
1

2𝜋𝑗𝜉
𝑪 +

−1

4𝜋2𝜉2 𝑲) �̈� =  𝑷 (6) 

 

where 𝑗 is the imaginary unit. Relation between 𝑦1 and 𝑦2 in the time domain is as follows: 
 

 𝑦2(𝑡 + ∆𝑡) =  𝑦1(𝑡) (7) 
 

where ∆𝑡 =
𝐿1+𝐿2

𝑣
. It can be expressed in frequency domain by equation: 

 

 𝑌2 = 𝑌1𝑒
−2𝜋𝑗∆𝑡 (8) 

 

Thus, vector 𝑷 may be rewritten as: 

𝑷 =

[
 
 
 

0
0

𝑘t1𝑌1

𝑘t2𝑌1𝑒
−2𝜋𝑗∆𝑡

]
 
 
 

 

 
Hence, we have five unknown values and four equations. After measurement of the 
acceleration in single point of the vehicle we will be able to compute the road profile. 
 

Let us introduce matrix 𝑨,  
 

 𝑨 = (𝑴 +
1

2𝜋𝑗𝜉
𝑪 +

−1

4𝜋2𝜉2
𝑲) (9) 

 
so the equation (6) may be rewritten as: 
 

 𝑨�̈� =  𝑷 (10) 
 

In order to express 𝑌1 using only  𝑍1̈ we need to calculate vector 𝑵: 
 

 𝑵 = 𝑩−1𝑹 (11) 
 
where 
 

𝑩 = [

𝐴12 𝐴13 𝐴14

𝐴22 𝐴23 𝐴24

𝐴42 − 𝐴32𝑠 𝐴43 − 𝐴33𝑠 𝐴44 − 𝐴34𝑠
],  𝑹 = [

−𝐴11

−𝐴21

𝐴31𝑠 − 𝐴41

], 𝑠 =
𝑘t2𝑒−2𝜋𝑗∆𝑡

𝑘t1

 

Therefore: 
 

 𝑃1 = 𝑍1̈(𝐴31 + 𝐴32𝑁1 + 𝐴33𝑁2 + 𝐴34𝑁3) = 𝑍1̈𝐻′ (12) 
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Transfer function 𝐻′ allows for calculation of 𝑃1 when 𝑍1̈ is known. Nonetheless, 

acceleration measured by sensor (�̈�𝑑) is a combination of �̈�1 and �̈�2: 
 

 �̈�𝑑 = 
�̈�1−�̈�2 

𝐿1+𝐿2
(𝐿1 + 𝐿2 − 𝑑) + �̈�2  (13) 

 
thus, 
 

 �̈�1 = 
�̈�𝑑(𝐿1+𝐿2) 

𝐿1+𝐿2−𝑑(1+𝑁2)
 (14) 

 

Finally, 𝑌1 may be calculated as: 
 

 𝑌1 = �̈�𝑑
(𝐿1+𝐿2)𝐻′ 

𝑘t1
[𝐿1+𝐿2−𝑑(1+𝑁2)]

= �̈�𝑑𝐻 (15) 

 

where the transfer function is denoted as 𝐻. 

4. RESULTS 

The ASPEN system was verified in a field experiment conducted in Warsaw, Poland on a 

18.6 km long test section repeated eight times in the Ford Transit van, Fig. 2. As a source 

of reference data we used measurements done earlier in 2018 using a survey vehicle 

equipped with laser profilometer by the Road and Bridge Research Institute (IBDiM). 

 

 
Fig. 2. Field test route; map source Google Maps 

4.1. Reference acceleration 

Based on the reference measurements of the road profile, we calculated the accelerations, 

which are expected to be experienced by the car body. For this purpose we used quarter 

and half car models and numerical integration of the relevant system of ordinary 

differential equations. In the QC model, we used the “golden car” parameters (Sayers 

& Karamihas 1998), while for the HC model, two variants of the parameters are 

considered: (a) the parameters reported by Gao et al. (2007); (b) optimal parameters 

found within the calibration procedure performed for the considered vehicle type (Ford 

Transit commercial van). For the purpose of calibration, we performed multiple passages 

with various speed over several speed bumps with known shape and height. Optimal 
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parameters were obtained by minimisation of the difference between the acceleration 

measured with smartphones and the one calculated with half car model. In the 

minimisation, we took into account some known physical constraints, such as the total 

length of the car or the ratio of sprung and unsprung masses. Having collected and 

processed the reference profile and accelerations, the results were compared with the 

accelerations measured with four smartphones using the ASPEN app. 

4.2. Measurement setup 

During each ride, recordings from four smartphones (ASUS ZenFone 3 Z017D) were 

gathered and processed. Each smartphone measured vertical acceleration at a constant 

250 Hz frequency. This corresponds to spatial resolution of the order of  7 cm at velocity 

60 km/h and 3 cm at 30 km/h. The position and speed of the vehicle was updated every 

second by the satellite navigation module. Higher spatial resolution was obtained by 

interpolation of these values, as they are relatively smooth. Therefore, in terms of space 

resolution, smartphone measurements offer sufficient accuracy. 

 

Since the sensitivity of all sensors were slightly different, even though the smartphones 

were of the same type, the vertical acceleration signal was normalized so that the mean 

value during the experiment equals 9.81 m/s. Fig. 3. presents mounting of the four 

smartphones included in this field experiment. 
 

 
 

Fig. 3. Mounting of the four smartphones in this experiment; green arrow indicated direction up and magenta 

arrow indicates the driving direction. 
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The first smartphone was located under the bonnet, the second on a side window, the third 

on a side of the cargo area and the fourth on the rear, cargo doors. The first, third and 

fourth smartphone were fixed with cable ties while the second was mounted on a handle 

attached to a window. 

4.3. Comparison of measured and reference accelerations 

The primary purpose of the conducted statistical analysis was to compare the 

accelerations measured by smartphones of the ASPEN application and the reference 

accelerations retrieved with the QC model (golden car) and the HC models. Fig. 4. 

presents an example of of the reference acceleration (based on the QC model) and the 

acceleration measured by smartphone from one ride of this field experiment. 

 

 
 

Fig. 4. Reference accelerations (from QC model) and accelerations measured by one smartphone.  

 

Distance in meters (chainage) was calculated based on projection of satellite navigation 

readings, which was locally enhanced with “smartphone odometer” readings obtained from 

smartphones’ data on speed and timestamps. Next, the standard deviation (SD) of the 

accelerations of the sequential, overlapping segments of 50 meters are calculated and 

further processed. Fig. 5. illustrates the dependence between the vehicle speed and the 

standard deviation (SD) of the reference acceleration (based on the QC model) of the 

50 m segments and the SD of the acceleration measured by smartphone. 

 

Shades of green in Fig. 5 illustrate the speed of the vehicle during smartphone-based 

measurements. There exists correlation between the reference and measured data. 

However, as illustrated in Fig. 4, the variability of the reference acceleration is constantly 

lower than the variability of the accelerations measured with smartphone. To verify this 

observation, the 0.25, 0.5 and 0.75 quantiles of the preprocessed series were calculated 

and compared with the Manhattan distance for all measurements of this experiment. Table 

1. presents the resulting quantiles.  

 



 

 [9] 26th World Road Congress 

 
Fig. 5. Dependence between the vehicle speed and the standard deviation (SD) of the reference 

acceleration  

 
Table. 1. Mean and SD of 0.25/0.5/0.75 quantiles comparison for the reference accelerations (R) and 

measured accelerations (M) according to the Golden Car model. 

 

 0.25 quantile 0.5 quantile 0.75 quantile 

Difference (R - M) -0.39 ± 0.13 -0.46 ± 0.16 −0.60 ± 0.16 

 

As presented in Table 1, all three considered quantiles confirm that the standard deviation 

of the reference accelerations is lower. Therefore, we introduce the calibration period at 

the beginning of each ride to shift the measured by a constant term. First 3 km of the route 

were used to calibrate the model and the remaining 15.6 km are used to evaluate the 

similarity between time series holding standard deviation of measured and reference 

accelerations for the sliding segments of 50 m. In Fig. 6, the standard deviation (SD) of the 

reference and measured accelerations from the exemplary ride before and after the 

calibration are presented. 

 
 

Fig. 6. Standard deviation (SD) of the reference and smartphone accelerations for sliding segments of 50 m 

(a) before calibration and (b) after calibration. 
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Recent experimental comparison of nine different similarity measures and their variants for 

time series by Wang et al. (2013) suggest that for large data classical lock-step measures 

(e.g., Manhattan distance) yield similar results to the elastic measures (e.g., dynamic time 

warping DTW). Consequently, in our study, the similarity between two time series, a and b, 

was calculated using the relative Manhattan similarity degree defined as 

 

 𝑠𝑎,𝑏 = 1 − ∑
| 𝑎𝑖−𝑏𝑖|

|𝑎𝑖| + |𝑏𝑖|

𝑛
𝑖=1  (16) 

 

where time series a and b have length n. 

 

In Table 2 and Fig. 7 the average degrees of similarity for series with measured and 

reference accelerations are presented. We distinguish the resulting similarity for the 

considered four sensors and two considered mechanical models and their variants. 

 
Table 2. Mean and standard deviation of similarity degree for SD of reference accelerations (HC and QC 

models) and SD of accelerations measured by smartphones for sliding segments of 50 m  

 

Data source QC  
(“golden car”) 

HC  
Gao et al (2007) 

HC  
(Calib. for Ford 1) 

HC  
(Calib. for Ford 2) 

Smartphone 1 66.3% ± 2.2% 55.4% ± 3.0% 61.7% ± 2.2% 64.5% ± 2.0% 

Smartphone 2 62.0% ± 6.7% 44.9% ± 5.1% 52.0% ± 5.3% 56.1% ± 5.9% 

Smartphone 3 72.7% ± 4.4% 52.7% ± 5.4% 76.4% ± 2.0% 81.4% ± 1.3% 

Smartphone 4 56.9% ± 6.6% 40.5% ± 4.3% 81.3% ± 0.5% 81.2% ± 1.2% 

mean 64.4% ± 8.0% 47.9% ± 7.4% 68.3% ± 12.5% 71.3% ± 11.8% 

 
The mean similarity degree is the highest for the HC model calibrated based on the vehicle 
type that was used to hold the ASPEN application. For this model, the mean similarity 
amounts on average 71%. Moreover, we observe high repeatability of individual sensors, 
which shows that good measurement setup coupled with appropriate calibration can lead 
to accuracies consistently exceeding 80%. However, when the parameters in the HC are 
chosen inadequately, the similarity is also dissatisfactory and amounts to less than 50%. 
Therefore, it is essential to ensure proper measurement conditions and perform calibration 
to find optimal parameters. In addition, the use of several smartphones at once gives the 
potential to increase accuracy. 

 
 

Fig. 7. Boxplots for the similarity degree for reference accelerations (Half Car vs QC models) and 

accelerations measured by smartphones calculated for sequential segments of 50 meters.  
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5. USER ENGAGEMENT 

5.1. Feedback on system requirements 

To identify users’ needs and requirements towards the ASPEN system, a survey was 
carried out among students of civil engineering at the Rzeszów University of Technology 
as a part of the “Road information systems” course. We collected 12 surveys indicating i.a. 
strong interest in smartphone-based monitoring of the pavement condition but also a clear 
expectation that the accuracy and reliability of this new technology is evaluated, Fig. 8.  
 

 
 

Fig. 8. Some results from the user surveys. 

 
The survey served as a basis for in-depth interviews with several representatives of district 
level road administrations. The most important feedback collected concerned necessity to 
integrate the application with routine inspection of roads and adding a functionality of 
taking photographs, e.g. concerning safety issues or related to the inspection. The results 
should be provided on-line in the form of maps, graphs (profiles) and documents.  

5.2. Application test by District Road Authority in Lidzbark Warmiński, Poland 

To pursue user-centric development of the ASPEN system it was send to the Director of 
District Road Authority (ZDP) in Lidzbark Warmiński – the operator of a low-level road 
network. He acted as an “alpha customer”, an early adopter of the technology providing 
feedback on its usage and results.  
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Fig. 9. Five smartphones of the ASPEN system together with supplementary equipment. 

 

Five smartphones with the ASPEN application installed were delivered as well as all the 
supplemental equipment (handles, chargers, manual, quick start guide), Fig. 9. 

 
The customer drove a few times over his whole network. His overall perception of the 
system and results was positive, however, he proposed some improvements to the user 
interface of the smartphone application and suggested a choice of handles, which grip the 
window stronger. Moreover, he indicated interest in measurements on unpaved roads.  
 
Fig. 10 presents the results of the user measurements. They are presented separately for 
each driving direction. The elementary data was attributed spatial location with resolution 
of 1 m and is shown as small, black histograms. For convenient presentation, these data 
were aggregated into diagnostic sections of 50 m. Their colours show the assessment of 
road condition based on vertical accelerations (the inner band) and on pitch (the outer 
band). Pitch was obtained from gyroscope after virtual device reorientation. It is an 
additional data source related to the pavement evenness, which can support identification 
of the half-car model. 
 

 
 

Fig. 10. A map presenting the pavement condition evaluation; background source: OpenStreetMap. 
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6. CONCLUSIONS 

This paper reports on operation principles and field tests of ASPEN system, which 
performs road evenness diagnostics using smartphones mounted in a driving vehicle. The 
system is based on mechanical quarter car and half car models. The latter is more 
general, as it allows for pitch rotation of the vehicle, yet more difficult to correctly identify in 
a calibration process.  
 
The system was tested on an 18.6 km loop. The measured, vertical accelerations were 
compared against the accelerations expected to be experienced by the vehicle body. The 
latter were computed using the road profile obtained with standard, laser profilometer. 
Results indicate high repeatability of the system and accuracy ranging from 64% to 71% 
and exceeding 80% for the best calibrated smartphones. 
 
The ASPEN system was also used by the road operator of a district road network in north-
eastern Poland, yielding positive feedback about its operation and results.  
 
The obtained results are satisfactory and sufficient for supporting local road 
administrations with objective network-wide survey data. Nevertheless, there is still 
significant room for improvement concerning particular processing steps, the model 
identification and calibration to different vehicle types. These tasks can be supported by 
hybridizing mechanical models with machine learning methods. Finally, there are some 
more practical needs such as ensuring high reliability and ease of use, integration with 
other functionalities, such as taking photographs and making notes, and streamlining of 
the whole procedure.  
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