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Precise information about the spatial distribution of sound speed in tissue has diagnostic value in itself, and 
also enables effective aberration correction in standard ultrasonic imaging. An algorithm called Computed 
Ultrasound Tomography in Echo mode (CUTE) makes it possible to reconstruct quantitative sound speed 
images. However, the computational cost is high, which is an obstacle to CUTE implementation in real-time 
imaging systems. This paper presents an improved version of the CUTE algorithm called Quick-CUTE (Q-
CUTE). The CUTE algorithm uses the inverse transformation matrix to reconstruct the sound speed spatial 
distribution. The Q-CUTE algorithm is based on simplified model with unified integration paths which 
enables solving the inverse problem without use of a large transformation matrix. The Q-CUTE algorithm 
was verified through numerical simulations. The obtained results differ from those of the CUTE algorithm 
but maintain the quantitative character of sound speed imaging. The computational complexity of the Q-
CUTE algorithm is proportional to N while in case of the CUTE it is proportional to N squared (where N is a 
number of pixels in the sound speed image). This means that the Q-CUTE algorithm allows the quantitative 
sound speed imaging to operate in real time.
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1. INTRODUCTION
Information on the sound speed is required for correct reconstruction in ultrasound pulse-echo imaging. In

practice, a sound speed value that is an average for soft tissues is used. Locally it may be far from reality and 

may cause aberrations. Development of a method for real-time sound speed reconstruction will enable efficient 

correction of aberrations in pulse-echo ultrasound imaging. Moreover, sound speed reflects mechanical 

properties of tissues and thus may provide additional diagnostic information.  

Recent scientific reports introduced the Computed Ultrasound Tomography in Echo mode (CUTE)
1,2

 –

an algorithm for imaging of sound speed spatial distribution. Its frequency domain version is computationally 

optimized
1
 but the resulting images are qualitative

2
. The spatial domain version of CUTE

2
 offers quantitative

sound speed imaging but at increased computational cost. This raises doubts concerning the application of the 

quantitative method in real-time imaging systems.  

The objective of this work was to develop a quantitative sound speed imaging algorithm capable of 

operating in real-time at reasonable computing power. The said algorithm is called Q-CUTE (Quick CUTE). 

2. METHODOLOGY
Both the reference method (spatial domain CUTE version) and the method being the subject of this work

(Q-CUTE) utilize data obtained through the Compounded Plane Wave Imaging (CPWI) acquisition scheme. 

The CPWI sequence comprises a number of plane wave emissions at various transmit angles θ. Echoes 

acquired after each emission are used for reconstruction of radio frequency images. Due to lack of transmit 

focusing, the resolution of those images is low and therefore they are called Low Resolution Images (LRI). 

The signal propagation path from the probe to a given pixel location P varies with the transmit angle θ 

while the back-propagation paths are independent on the transmit angle θ. Differences between two LRI’s 

obtained at non-equal transmit angles θ are therefore a consequence of different transmit paths (for simplicity 

let us ignore noise, the interference character of the LRI signal, and refraction).  

Any inconsistencies between the actual speed of sound c and its value c0 used in the LRI reconstruction 

lead to application of incorrect delays. For notation simplicity, let us define Δσ as an error in sound slowness 

(inverse of sound speed). The time delay error τ then equals: 

𝜏(𝑧, 𝑥, 𝜃) =
1

𝑐𝑜𝑠 𝜃
∫ (

1

𝑐(𝑟)
−

1

𝑐0
) 𝑑𝑧′ =

𝑧

0

1

𝑐𝑜𝑠 𝜃
∫ ∆𝜎(𝑟) 𝑑𝑧

𝑧

0

′ (1) 

where z and x are the Cartesian coordinates and r is the propagation path (Fig. 1a) such that: 

𝑟(𝑧, 𝑥, 𝜃) = {(𝑧′, 𝑥′): 𝑧′ ∈ 〈0, 𝑧〉, 𝑥′ = 𝑥 − (𝑧 − 𝑧′) 𝑡𝑎𝑛 𝜃} (2) 

The transmit time error difference Δτm,n for transmit angles θm and θn is as follows: 

∆𝜏𝑚,𝑛(𝑧, 𝑥) = 𝜏(𝑧, 𝑥, 𝜃𝑛) − 𝜏(𝑧, 𝑥, 𝜃𝑚) =
1

𝑐𝑜𝑠 𝜃𝑛
∫ ∆𝜎(𝑟𝑛)𝑑𝑧′

𝑧

0

−
1

𝑐𝑜𝑠 𝜃𝑚
∫ ∆𝜎(𝑟𝑚)𝑑𝑧′

𝑧

0

 (3) 

The model described in Eq. (3) is the basis in the spatial domain version of the CUTE algorithm. It is used for 

determination of the Δσ to Δτ transformation matrix which is next inverted and used for finding a solution of 

the inverse problem (estimation of Δσ based on Δτ). Due to ill-conditioning of the inversed problem, the 

Tikhonov regularization is used. 
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Figure 1. Illustration of transmit propagation paths to a given point (pixel) P for plane wave emission at various 

angles: a) path rm for transmit angle θm, b) path rn for transmit angle θn, and c) auxiliary path rm,n and 

a resulting angle θm,n. 

For the purpose of computational optimization, let us define a new path rm,n equally distant in the x-

direction from paths rm and rn, routed at angle θm,n (Fig. 1c). The Δσ values on paths rm and rn can be 

approximated linearly with use of Δσ and Δσx (partial derivative of Δσ with respect to x-direction) values on 

path rm,n: 

∆𝜎(𝑟𝑚) ≈ ∆𝜎(𝑟𝑚,𝑛) + ∆𝜎𝑥(𝑟𝑚,𝑛)(𝑧 − 𝑧′) (
𝑡𝑎𝑛 𝜃𝑛 − 𝑡𝑎𝑛 𝜃𝑚

2
) 

∆𝜎(𝑟𝑛) ≈ ∆𝜎(𝑟𝑚,𝑛) − ∆𝜎𝑥(𝑟𝑚,𝑛)(𝑧 − 𝑧′) (
𝑡𝑎𝑛 𝜃𝑛 − 𝑡𝑎𝑛 𝜃𝑚

2
) 

(4) 

With this approximation, Eq. (3) takes the following form: 

∆𝜏𝑚,𝑛(𝑧, 𝑥) = 𝑎𝑚,𝑛 ∫ ∆𝜎(𝑟𝑚,𝑛)𝑑𝑧′

𝑧

0

+ 𝑏𝑚,𝑛 ∫(𝑧′ − 𝑧)∆𝜎𝑥(𝑟𝑚,𝑛)𝑑𝑧′

𝑧

0

(5) 

where terms am,n and bm,n are: 

𝑎𝑚,𝑛 = (
1

𝑐𝑜𝑠 𝜃𝑛
−

1

𝑐𝑜𝑠 𝜃𝑚
) 

𝑏𝑚,𝑛 = (
1

𝑐𝑜𝑠 𝜃𝑛
+

1

𝑐𝑜𝑠 𝜃𝑚
) (

𝑡𝑎𝑛 𝜃𝑛 − 𝑡𝑎𝑛 𝜃𝑚

2
) 

(6) 

Figure 2. Graphs of: a) am,n and bm,n terms and b) absolute values of bm,n to am,n ratio. 
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Equation (5), after integration by parts of its second integral, takes the form: 

∆𝜏𝑚,𝑛(𝑧, 𝑥) = 𝑎𝑚,𝑛 ∫ ∆𝜎(𝑟𝑚,𝑛)𝑑𝑧′

𝑧

0

− 𝑏𝑚,𝑛 ∫ (∫ ∆𝜎𝑥(𝑟𝑚,𝑛)𝑑𝑧′) 𝑑𝑧′

𝑧

0

 (7) 

The above integral equation is the basis for the Q-CUTE method. The unified integration paths allow solving 

the inverse problem without using large transformation matrices. The proposed solution includes two steps. 

First, Eq. (7) is simplified by neglecting the first term on the right side of the equation. This is justified i.a. by 

the bm,n to am,n ratio, especially for θm,n close to zero (Fig. 2b). Solving the simplified form of Eq. (7) yields: 

∆𝜎𝑥(𝑧, 𝑥, 𝜃𝑚,𝑛) ≈
−1

𝑏𝑚,𝑛
[

𝑑2

𝑑𝑧′2
∆𝜏𝑚,𝑛(𝑟𝑚,𝑛)]

𝑧′=𝑧

(8) 

∆𝜎(𝑧, 𝑥) = ∫ ∆𝜎𝑥
̅̅ ̅̅ ̅

𝑥

−∞

(𝑧, 𝑥′)𝑑𝑥′ + 𝐶(𝑧) (9) 

where ∆𝜎𝑥
̅̅ ̅̅ ̅ is the weighted average of Δσx over θm,n angles, and C is the integration constant depending on z. In

the second step of the Q-CUTE algorithm the missing constant C is calculated. Incorporation of Eq. (9) and 

∆𝜎𝑥
̅̅ ̅̅ ̅ into the unmodified form of Eq. (7), after rearrangement, yields:

𝐶𝑚,𝑛(𝑧, 𝑥) =
1

𝑎𝑚,𝑛
[

𝑑

𝑑𝑧′
∆𝜏𝑚,𝑛(𝑟𝑚,𝑛)]

𝑧′=𝑧
− ∫ ∆𝜎𝑥

̅̅ ̅̅ ̅

𝑥

−∞

(𝑧, 𝑥′)𝑑𝑥′ +
𝑏𝑚,𝑛

𝑎𝑚,𝑛
∫ ∆𝜎𝑥

̅̅ ̅̅ ̅

𝑧

0

(𝑟𝑚,𝑛)𝑑𝑧′ (10) 

Finally, the integration constant C in Eq. (9) is substituted with Cm,n values averaged over x-dimension and θm,n 

angles. Knowing the Δσ one can calculate the speed of sound c: 

𝑐(𝑧, 𝑥) =
𝑐0

1 + 𝑐0∆𝜎(𝑧, 𝑥) (11) 

As in case of the CUTE algorithm, Q-CUTE needs regularization. It is realized by replacing the derivative 

operators in Eq. (8,10) with regularized ones. These, in turn, are precisely approximated using computationally 

efficient infinite impulse response filters. 

At the end it should be explained how the transmit time error differences Δτm,n are obtained. They translate 

into phase differences Δφm,n which can be estimated as: 

∆𝜑𝑚,𝑛 = arg[filt(𝐿𝑅𝐼𝑛 ∘ 𝐿𝑅𝐼𝑚
∗ )] (12) 

The LRIs in Eq. (12) denote complex signals obtained from real valued LRIs using the Hilbert transform. The * 

and ◦ operators are the complex conjugate and Hadamard product respectively. The filt and arg functions 

denote spatial smoothing filtration (implemented with use of a finite impulse response filter) and calculation of 

the argument of complex numbers. The phase differences Δφm,n and mean signal frequency f are sufficient 

information to estimate Δτm,n. 

∆𝜏𝑚,𝑛 =
∆𝜑𝑚,𝑛

2𝜋𝑓
(13) 
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3. RESULTS AND DISCUSSION
Sound speed imaging quality with use of CUTE (spatial domain version) and Q-CUTE methods is

compared in Fig. 3. The raw echo signals were simulated using a numerical tissue model containing the 

information on sound speed spatial distribution (Fig. 3a). The value of the sound speed in the model (1520 m/s 

and 1530 m/s for the background and for the circular inclusion, respectively) was lower than that assumed in 

the reconstruction (1540 m/s). The CPWI method was used for acquisition of LRIs which were next used as 

inputs for the CUTE and Q-CUTE algorithms. The regularization factor for each algorithm was optimized to 

reach a compromise between imaging contrast and distortions level. The Q-CUTE gives slightly lower contrast 

and introduces horizontal distortions. The inclusion, however, is still clearly visible, and there is less distortion 

at the bottom of the image.  

Figure 3. Sound speed maps: a) used in input data simulation, b) obtained with the reference algorithm (spatial 

domain CUTE version), and c) obtained with the presented algorithm (Q-CUTE). 

The key feature of the Q-CUTE algorithm is its low computational complexity O(N), where N denotes 

a number of reconstructed sound speed image pixels. This is a significant improvement when compared to the 

spatial domain CUTE algorithm whose computational complexity is O(N
2
) (Fig. 4). In practical application,

e.g. in a mobile device with a NVIDIA TEGRA X1 processor, the CUTE provides 256x256 images with

a frame-rate of 3 fps while Q-CUTE reaches nearly 2000 fps (provided that the processor uses its entire

computing power for this one task, and each output frame is calculated with use of 20 LRI pairs).

Figure 4. Computational complexity of spatial domain CUTE and Q-CUTE algorithms. 

4. CONCLUSION
The presented algorithm (Q-CUTE) maintains the quantitative character of sound speed imaging while

being much less computationally demanding than the reference algorithm (spatial domain version of CUTE). 

This advantage may be decisive in the implementation of the sound speed imaging algorithm in ultrasound 

systems, especially in mobile devices where power consumption, and with it also the computing power are 

limited. 
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