ON A PROBLEM OF NIRENBERG CONCERNING EXPANDING MAPS IN HILBERT SPACE

JANUSZ SZCZEPAŃSKI

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let **H** be a Hilbert space and $f: \mathbf{H} \to \mathbf{H}$ a continuous map which is expanding (i.e., $||f(\mathbf{x}) - f(\mathbf{y})|| \ge ||\mathbf{x} - \mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{H}$) and such that $f(\mathbf{H})$ has nonempty interior. Are these conditions sufficient to ensure that fis onto? This question was stated by Nirenberg in 1974. In this paper we give a partial negative answer to this problem; namely, we present an example of a map $F: \mathbf{H} \to \mathbf{H}$ which is not onto, continuous, $F(\mathbf{H})$ has nonempty interior, and for every $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ there is $n_0 \in \mathbb{N}$ (depending on \mathbf{x} and \mathbf{y}) such that for every $n \ge n_0$

$$||F^{n}(\mathbf{x}) - F^{n}(\mathbf{y})|| \ge c^{n-m} ||\mathbf{x} - \mathbf{y}||$$

where F^n is the *n*th iterate of the map F, c is a constant greater than 2, and m is an integer depending on \mathbf{x} and \mathbf{y} . Our example satisfies $||F(\mathbf{x})|| = c||\mathbf{x}||$ for all $\mathbf{x} \in \mathbf{H}$.

We show that no map with the above properties exists in the finite-dimensional case.

1. INTRODUCTION

In 1974 Nirenberg [9] stated the following problem:

(P₁) Let H be a Hilbert space and let $f: H \to H$ be a continuous map that is expanding and whose range contains an open set. Does f map H onto H? This question could be generalized to the case (in this paper called (P₂))

when the spaces considered are Banach spaces X, Y. There are several partial positive answers to (P_1) and (P_2) in the following

cases:

(a) X is finite dimensional [1, 2],

(b) f = I - C where C is compact or a contraction or more generally a k-set-contraction [6, 10],

(c) f strongly monotone, i.e., there exists s > 0 such that [3, 7]

$$\operatorname{Re}\langle f(\mathbf{x}) - f(\mathbf{y}), \, \mathbf{x} - \mathbf{y} \rangle \ge s \|\mathbf{x} - \mathbf{y}\|^2$$
 for all $\mathbf{x}, \, \mathbf{y} \in \mathbf{X}$.

In [4] Chang and Shujie proved the surjectivity of the map $f: \mathbf{X} \to \mathbf{Y}$ (X, Y Banach spaces) under the additional assumptions that Y is reflexive, f is

1991 Mathematics Subject Classification. Primary 47H06; Secondary 46C15.

©1992 American Mathematical Society 0002-9939/92 \$1.00 + \$.25 per page

Received by the editors February 13, 1991 and, in revised form, April 18, 1991; presented at the Conference Dynamics Days, Berlin, Germany, June 1991.

Fréchet-differentiable, and

$$\limsup_{\mathbf{x}\to\mathbf{x}_0} \|f'(\mathbf{x}) - f'(\mathbf{x}_0)\| < 1 \quad \text{ for all } \mathbf{x}_0 \in \mathbf{X}.$$

Seven years ago Morel and Steinlein [8] gave a beautiful counterexample to (P_2) in the case when f acts in the Banach space $L^1(\mathbb{N})$.

In this paper we suggest a negative answer to (P_1) ; namely, we present an example of a map $F: \mathbf{H} \to \mathbf{H}$ which is not onto, continuous, $F(\mathbf{H})$ has nonempty interior, and for every $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ there is $n_0 \in \mathbb{N}$ (depending on \mathbf{x} and \mathbf{y}) such that for every $n \ge n_0$

$$||F^{n}(\mathbf{x}) - F^{n}(\mathbf{y})|| \ge c^{n-m} ||\mathbf{x} - \mathbf{y}||,$$

where F^n is the *n*th iterate of F, c is a constant greater than 2, and m is an integer depending on x and y. This condition means that the distance between any two trajectories of the discrete dynamical system $F: \mathbf{H} \to \mathbf{H}$ tends to infinity in an exponential way.

2. The example

We start by constructing a map $f: L^2(\mathbb{N}) \to L^2(\mathbb{N})$ with the following properties:

- (a) f is continuous,
- (b) $B(0, 1) \subset f(L^2(\mathbb{N}))$ where B(0, 1) is the unit ball in $L^2(\mathbb{N})$,
- (c) $f(L^2(\mathbb{N})) \neq L^2(\mathbb{N})$,
- (d) f is an injection.

Then we define a map F by $F(\mathbf{x}) := cf(\mathbf{x})$. Taking into account the properties of f we show that F satisfies the required assumptions.

To define f we first introduce a continuous function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\psi(t) := t$ for all t so that t < 1 and 2 < t,

 $\psi(t) := t$ for an t so that $t \leq 1$ and $2 \leq t$; $\alpha t < \psi(t) < t$ for 1 < t < 2, ψ is C^1 ,

where α is a fixed number which satisfies $0 < \alpha < 1$.

Now for every $\mathbf{x} \in L^2(\mathbb{N})$ let $n_{\mathbf{x}}$ denote the minimal natural number such that

$$\left(\sum_{i=1}^{n_{\mathbf{x}}} x_i^2\right)^{1/2} \le \psi(\|\mathbf{x}\|) \le \left(\sum_{i=1}^{n_{\mathbf{x}}+1} x_i^2\right)^{1/2}$$

(We allow $n_x = 0$ and then the left side of the above inequality is 0.) We set

$$f(\mathbf{x}) := \begin{cases} \mathbf{x} \quad \text{for all } \mathbf{x} \text{ such that } \|\mathbf{x}\| \le 1 \text{ or } 2 \le \|\mathbf{x}\|, \\ (x_1, x_2, \dots, x_{n_x}, \alpha_{\mathbf{x}} x_{n_{x+1}}, \sqrt{1 - \alpha_{\mathbf{x}}^2} x_{n_{x+1}}, x_{n_{x+2}}, x_{n_{x+3}}, \dots) \\ & \text{for } 1 < \|\mathbf{x}\| < 2, \end{cases}$$

where $\alpha_{\mathbf{x}}$ satisfies

(1)
$$\left(\sum_{i=1}^{n_{\mathbf{x}}} x_i^2 + \alpha_{\mathbf{x}}^2 x_{n_{\mathbf{x}}+1}^2\right)^{1/2} = \psi(\|\mathbf{x}\|).$$

(Of course $0 \le \alpha_{\mathbf{x}} < 1$; if $x_{n_{\mathbf{x}}+1} = 0$ then $\alpha_{\mathbf{x}} := 0$.)

1042

The continuity of f and properties (b) and (c) are easy to prove. So we must only prove (d).

Before passing to the proof we make the obvious observation that

(2)
$$||f(\mathbf{x})|| = ||\mathbf{x}||$$
 for every $\mathbf{x} \in L^2(\mathbb{N})$.

Taking into account this observation we show (d).

Lemma. Let $\mathbf{x}, \mathbf{y} \in L^2(\mathbb{N})$ and $f(\mathbf{x}) = f(\mathbf{y})$. Then $\mathbf{x} = \mathbf{y}$.

Proof. By definition of f and (2) it is sufficient to consider the case when $1 < ||\mathbf{x}|| < 2$ and $1 < ||\mathbf{y}|| < 2$. By (2) we see immediately that $\psi(||\mathbf{x}||) = \psi(||\mathbf{y}||)$, and from (1) and the fact that $f(\mathbf{x}) = f(\mathbf{y})$ it follows that $n_{\mathbf{x}} = n_{\mathbf{y}}$ and, consequently, $x_i = y_i$ for both $i = 1, 2, ..., n_{\mathbf{x}}$ and $i = n_{\mathbf{x}} + 2, n_{\mathbf{x}} + 3, ...$ Since $||\mathbf{x}|| = ||\mathbf{y}||$ we conclude that $|x_{n_{\mathbf{x}}+1}| = |y_{n_{\mathbf{x}}+1}|$ and since

$$\alpha_{\mathbf{x}} x_{n_{\mathbf{x}+1}} = \alpha_{\mathbf{y}} y_{n_{\mathbf{x}+1}}, \qquad \sqrt{1 - \alpha_{\mathbf{x}}^2} x_{n_{\mathbf{x}+1}} = \sqrt{1 - \alpha_{\mathbf{y}}^2} y_{n_{\mathbf{x}+1}}$$

where $\alpha_x \ge 0$, we see that $x_{n_x+1} = y_{n_x+1}$, which finishes the proof.

Now we define $F(\mathbf{x}) := cf(\mathbf{x}), c > 2$. We show the following

Theorem. The map F has the following properties:

 (a_1) F is continuous,

(b₁) $F(L^2(\mathbb{N}))$ has nonempty interior,

 (c_1) F is not onto,

(d₁) for arbitrary $\mathbf{x}, \mathbf{y} \in H$ there is $n_0 \in \mathbb{N}$ (depending on \mathbf{x} and \mathbf{y}) such that for every $n \ge n_0$

(3)
$$\|F^n(\mathbf{x}) - F^n(\mathbf{y})\| \ge c^{n-m} \|\mathbf{x} - \mathbf{y}\|$$

where F^n is the nth iterate of F, c is a constant greater than 2, and m is an integer depending on \mathbf{x} and \mathbf{y} .

Proof. Properties (a_1) , (b_1) , (c_1) are easy to prove. We show (d_1) .

By definition of f and (2), for every $\mathbf{x} \in L^2(\mathbb{N})$

$$\|F^n(\mathbf{x})\| = c^n \|\mathbf{x}\|,$$

and there is some integer p depending on \mathbf{x} (we choose the smallest one) such that

(5)
$$F^{n}(\mathbf{x}) = c^{n-p} F^{p}(\mathbf{x}) \quad \text{for } n \ge p.$$

Now consider the expression $||F^n(\mathbf{x}) - F^n(\mathbf{y})||$. By (5),

$$||F^{n}(\mathbf{x}) - F^{n}(\mathbf{y})|| = ||c^{n-p}F^{p}(\mathbf{x}) - c^{n-k}F^{k}(\mathbf{y})||$$

= $c^{n-p}||F^{p}(\mathbf{x}) - c^{p-k}F^{k}(\mathbf{y})||$

(k corresponds to y according to (5)), and since

$$c^{p-k}F^k(\mathbf{y}) = F^p(\mathbf{y})$$

(without loss of generality we can assume that $p \ge k$) we have

$$\|F^p(\mathbf{x}) - c^{p-k}F^k(\mathbf{y})\| = \|F^p(\mathbf{x}) - F^p(\mathbf{y})\| > 0 \quad \text{for } \mathbf{x} \neq \mathbf{y},$$

because f, and hence F, is an injection. Finally, since c > 2 there is n_0 such that for every $n \ge n_0$

$$||F^n(\mathbf{x}) - F^n(\mathbf{y})|| \ge c^{n-p} ||\mathbf{x} - \mathbf{y}||$$

and $m := \max\{k, p\} = p$. Thus, the proof of (d_1) is finished.

Proposition. There is no map F_1 with properties (a_1) , (b_1) , (c_1) , (d_1) , and $(e_1) ||F_1(\mathbf{x})|| = c||\mathbf{x}||$ in the finite-dimensional case.

Proof. Assume that $F_1: \mathbb{R}^n \to \mathbb{R}^n$ is such a map. Then, by (c_1) and (e_1) there is $0 \neq \mathbf{x}_0 \notin F_1(\mathbb{R}^n)$. From (e_1) it follows that F_1 maps spheres (centered at 0) into spheres, in particular it maps the sphere \mathscr{S} with radius $\|\mathbf{x}_0\|/c$ into the sphere with radius $\|\mathbf{x}_0\|$. By (a_1) and $(d_1) F_1|_{\mathscr{S}}$ is continuous injection and because each sphere in a finite-dimensional space is compact, $F_1|_{\mathscr{S}}$ is a homeomorphism onto a compact proper subset of the other sphere. But this contradicts the well-known theorem stating that the necessary condition for a compact set in \mathbb{R}^n to be homeomorphic to a sphere in \mathbb{R}^n is that its complement has exactly two connected components [5].

ACKNOWLEDGMENT

The author would like to thank the referee for his suggestion of including the above Proposition, which shows that the infinite-dimensionality of our example is essential.

References

- 1. L. E. J. Brouwer, Bewels der Invarianz des n-dimensionalen Gebiets, Math. Ann. 71 (1912), 305-313.
- 2. ____, Zur Invarianz des n-dimensionalen Gebiets, Math. Ann. 72 (1912), 55-56.
- 3. F. E. Browder, *The solvability of non-linear functional equations*, Duke Math. J. **30** (1963), 557-566.
- 4. K. C. Chang and L. Shujie, *A remark on expanding maps*, Proc. Amer. Math. Soc. **85** (1982), 583–586.
- 5. K. Kuratowski, Topology, vol. II, Academic Press and PWN, New York and Warsaw, 1968.
- 6. J. Leray, Topologie des espaces abstraits de M. Banach, C. R. Acad. Sci. Paris Sér. I Math. 200 (1935), 1083-1085.
- 7. G. J. Minty, Montone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.
- 8. J. M. Morel and H. Steinlein, On a problem of Nirenberg concerning expanding maps, J. Funct. Anal. 59 (1984), 145-150.
- 9. L. Nirenberg, *Topics in nonlinear functional analysis*, Lecture Notes, Courant Inst. of Math. Sci., New York Univ., New York, 1974.
- R. D. Nussbaum, Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972), 741-766.

Polish Academy of Sciences, Institute of Fundamental Technological Research, 00-049 Warsaw, Swietokrzyska 21, Poland

1044