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The charging of electrical double layers inside a cylindrical pore has applications to supercapacitors,
batteries, desalination and biosensors. The charging dynamics in the limit of thin double layers, i.e., when
the double layer thickness is much smaller than the pore radius, is commonly described using an effective
RC transmission line circuit. Here, we perform direct numerical simulations (DNS) of the Poisson-Nernst-
Planck equations to study the double layer charging for the scenario of overlapping double layers, i.e.,
when the double layer thickness is comparable to the pore radius. We develop an analytical model that
accurately predicts the results of DNS. Also, we construct a modified effective circuit for the overlapping
double layer limit, and find that the modified circuit is identical to the RC transmission line but with
different values and physical interpretation of the capacitive and resistive elements. In particular, the
effective surface potential is reduced, the capacitor represents a volumetric current source, and the charging
timescale is weakly dependent on the ratio of the pore radius and the double layer thickness.
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Porous electrodes with pore diameters between
0.5–10 nm range are commonly utilized in supercapacitors
[1,2], batteries [3,4], desalination [5] and biosensors [6].
These pores are filled with ions that are attracted to the
surface of the pore and form an electrical double layer. The
charging dynamics of such a system is typically modeled as
an RC transmission line, first proposed by de Levie [7],
where the double layers (DLs) are represented as capacitive
elements and the electroneutral solution is represented by a
resistive element. Over the past three decades, numerous
studies have been conducted that exploit some form of
the RC transmission line model to understand the self-
discharge mechanism [8–10], the effect of pore size and
shape [11–18], and the effect of electrolyte concentration
[19,20], among others [21]. More recently, several studies
have argued for more detailed analysis of ion transport
inside the DL [4,5,22–26].
The ratio of DL thickness to the pore radius impacts

the ion transport inside a cylindrical pore [4,5,7,26]. The
standard RC transmission line model assumes that the DL
thickness is significantly smaller than the pore radius [7].
However, since the concentrated electrolytes can behave as
dilute electrolytes [27] with DL thickness as large as
5–10 nm [27–29], and since the typical pore radii in
experiments are between 0.5–10 nm [1,2], the DL thickness

is often comparable to the pore size. Some reports have
acknowledged the limit of the RC transmission model
[4,5,30] but a model of the charging dynamics that describes
the overlapping DL limit remains unavailable. In this Letter,
we overcome these limitations by performing direct numeri-
cal solutions (DNS) on the Poisson-Nernst-Planck (PNP)
equations. In addition, we introduce a reduced-order model
that quantitatively agrees with the results from DNS and is
applicable to the scenario of overlapping DLs. Specifically,
we study the overlapping DL limit for small potentials and
dilute electrolyte concentrations, i.e., the physical conditions
when the PNP equations are valid.
We consider a cylindrical pore of radius a and length

lpore where a=lpore ≪ 1. The pore is filled with a binary
electrolyte such that the cation and anion valences are equal
to unity [Fig. 1(a)]. We assume that the pore wall exhibits
an ideal blocking electrode condition, i.e., the normal flux
of ions vanishes at the pore wall. We further assume that the
diffusivities of the ions are equal and are denoted by D. We
describe the cation and anion concentrations by variables
c�ðr; z; tÞ and the electrical potential by ψðr; z; tÞ, where r
is the radial direction, z is the axial direction, and t is time.
The mouth of the pore is at z ¼ 0. In addition, we assume
that there exists a stagnant diffusion layer (SDL) of thick-
ness lSDL and cross sectional area ASDL. The bulk is located
at z ¼ −lSDL where c� ¼ c0 and ψ ¼ 0 [Fig. 1(a)]. In the
uncharged state, i.e., t < 0, the system is electroneutral
everywhere. At t ¼ 0, the walls of the pore are set to a
constant potential ψD such that the counterions are attracted
towards the pore wall to form a DL in the radial direction.
During the charging process, i.e., t > 0, the charge inside
the DL begins to accumulate such that the charge decreases
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along the length of the pore. In the fully charged state, the
axial gradients vanish and the charge stored inside the DL is
constant throughout the length of the pore.
We define dimensionless charge density ρ¼ðcþ −c−Þ=c0,

salt concentration s ¼ ðcþ þ c−Þ=c0, time τ ¼ tD=l2
pore

and potential Ψ ¼ eψ=ðkBTÞ. The coupled PNP equations
can thus be written as

∂ρ
∂τ ¼ ∇2ρþ∇ · ðs∇ΨÞ; ð1aÞ

∂s
∂τ ¼ ∇2sþ∇ · ðρ∇ΨÞ; ð1bÞ

−
�

λ

lpore

�
2∇2Ψ ¼ ρ

2
; ð1cÞ

where the dimensionless coordinates are Z ¼ z=lpore,

R ¼ r=a, ∇ ¼ ðlpore=aÞerð∂=∂RÞ þ ezð∂=∂ZÞ, λ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkBT=ð2e2c0Þ

p
is the Debye length, ε is the electrical

permittivity, kB is the Boltzmann constant, T is the tem-
perature and e is the charge on an electron. We per-
form DNS using OpenFOAM [31]. We set ΨD ¼ 0.4,
λ=lpore ¼ 10−3, ASDL=ðπa2Þ ¼ 4, lSDL=lpore ≈ 0.5,
0.5 ≤ a=λ ≤ 20, and solve the system of Eqs. (1) [31].
The boundary condition for Ψ are (i) Ψ ¼ ΨD at the pore
walls, (ii) Ψ ¼ 0 in the reservoir, and (iii) zero normal
gradient of potential at the boundaries of the SDL. The
boundary condition for ρ and s are (i) zero normal flux at the

porewalls, (ii) ρ ¼ 0 and s ¼ 2 at the reservoir, and (iii) zero
normal flux at the boundaries of the SDL. The initial
conditions are ρ ¼ 0 and s ¼ 2 everywhere with Ψ satisfy-
ing Laplace’s equation with the aforementioned boundary
conditions (see [31] for details).
The results from DNS indicate that the variation in

potential at the center of the geometry Ψð0; Z; τÞ with Z
depends significantly on a=λ; see Fig. 1(b). For the thin DL
scenario, i.e., a=λ ≫ 1, the potential varies gradually across
the Z ¼ 0 interface. However, for the overlapping DLs, i.e.,
a=λ ≤ 1, the potential changes rapidly across Z ¼ 0. In
contrast, the potential near the surface of the pore
ΨðR → 1; Z; τÞ increases rapidly across Z ¼ 0 for all
a=λ; see Fig. 1(c). These trends suggest that the potential
rapidly increases due to the presence of the electrical DL. For
the thin DL, the DL is present only close to the surface and
thus the rapid increase in potential across Z ¼ 0 is observed
only near R → 1. On the other hand, for overlapping DLs,
the DL is present throughout the pore cross section and the
potential increases rapidly across Z ¼ 0 for all R.
Next, we focus on a reduced-order model inside the pore,

i.e., 0 < Z ≤ 1, for the overlapping DLs scenario. In this
limit, we cannot invoke electroneutrality inside the pore.
Furthermore, we can not exploit the separation of length
scales. However, in the linear limitΨD ≪ 1, we can assume
that the salt concentration is constant everywhere and for all
times, i.e., s ¼ 2 [31]. This observation eliminates the need
to solve Eq. (1b). Moreover, since the radial flux of ρ at
R ¼ 0 and R ¼ 1 vanishes, we assume the radial flux of ρ
vanishes for all R. Therefore, we obtain

∂ρ
∂Rþ 2

∂Ψ
∂R ¼ 0; ð2Þ

or

ρðR; Z; τÞ − ρmðZ; τÞ ¼ −2(ΨðR; Z; τÞ −ΨmðZ; τÞ); ð3Þ

where ρmðZ; τÞ and ΨmðZ; τÞ are, respectively, the center-
line charge and potential, which are to be determined. We
substitute Eq. (3) into Eq. (1c). Next, we assume that
∂2=∂Z2 ≪ ðlpore=aÞ2∂2=∂R2, and integrate with boundary
conditions ∂Ψ=∂RjR¼0 ¼ 0 and Ψð1; Z; τÞ ¼ ΨD to obtain

Ψ − Ψm − ρm=2
ΨD −Ψm − ρm=2

¼ I0ðR a
λÞ

I0ðaλÞ
; ð4Þ

where In is the modified Bessel function of the first kind
of order n. We note that as Z → 1, Eq. (4) does not capture
the effects of a change in geometry. However, since
a=lpore ≪ 1, we can neglect the end effects. Using Ψ ¼
Ψm at R ¼ 0 in Eq. (4) yields a relation between centerline
charge and potential:

(a)

(b) (c)

FIG. 1. Problem setup and results from DNS. (a) A cylindrical
pore of radius a and length lpore with an applied potential ψD.
The pore interacts with the bulk through a stagnant diffusion layer
with thickness lSDL and cross sectional area ASDL. (b) Plot of
dimensionless potential ΨðR ¼ 0; Z; τ ¼ 0.14Þ at the center of
the geometry for different a=λ. (c) Plot of dimensionless potential
ΨðR → 1; Z; τ ¼ 0.14Þ near the surface of the pore for different
a=λ. Plots are presented for ΨD ¼ 0.4, λ=lpore ¼ 10−3,
ASDL=ðπa2Þ ¼ 4 and lSDL=lpore ≈ 0.5.
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ρm ¼ 2ðΨm −ΨDÞ
I0ðaλÞ − 1

: ð5Þ

Substituting Eq. (5) in (3) and (4), it is straightforward to
show

ρ

ρm
¼ I0

�
R
a
λ

�
: ð6Þ

Finally, we substitute s ¼ 2 and Eq. (5) in (1), and evaluate
at the center of the pore, to arrive at

∂Ψm

∂τ ¼ I0

�
a
λ

� ∂2Ψm

∂Z2
; ð7Þ

which is the governing equation for the centerline
potential distribution inside the pore for overlapping
DLs. Equation (7) suggests a charging timescale
tc;overlap ¼ l2

pore=(I0ða=λÞD), which is quite different from
the corresponding thin DL limit, as we show later. The
initial condition is ΨmðZ; 0Þ ¼ ΨD. The boundary con-
dition at the end of the pore Z ¼ 1 is simply ∂Ψm=∂Z ¼ 0.
Next, we focus on the boundary condition at Z ¼ 0 where
the pore contacts the SDL.
We assume that the SDL is electroneutral (ρ ¼ 0), which

yields a linear variation in Ψm for Z ≤ 0; see Eq. (1c). In
addition, we treat the sudden increase in the potential across
Z ¼ 0 [Fig. 1(b)] as a discontinuity. To this end, we define
Ψ1 ¼ Ψmð0; 0−; τÞ, i.e., the potential just outside the mouth
of the pore, and Ψ2 ¼ Ψmð0; 0þ; τÞ, i.e., the potential just
inside the mouth of the pore. Similarly, we define ρ1 ¼
ρmð0; 0−; τÞ ¼ 0 and ρ2 ¼ ρmð0; 0þ; τÞ. We equate the
current from the SDL with the current inside the pore at
Z ¼ 0 to obtain

∂Ψ2

∂Z
����
0þ

¼ ASDL

πa2

�
I0ðaλÞ − 1

I0ðaλÞ
��

a=λ
2I1ðaλÞ

� ∂Ψ1

∂Z
����
0−
; ð8Þ

where ∂Ψ1=∂Z ¼ ðΨ1=lSDLÞlpore (recall that Ψm is linear
in SDL due to electroneutrality). To relate Ψ1 and Ψ2, we
invoke the condition that the charge flux in the transition
region is equal to the charge flux in the diffusion layer, or

ρ2 − ρ1
δZ

þ 2
Ψ2 −Ψ1

δZ
¼ 2

Ψ1

lSDL
; ð9Þ

where δZ is the thickness of the thin transition region.
Since δZ=lSDL ≪ 1, we get the condition ρ2 − ρ1 ¼
2ðΨ1 −Ψ2Þ. Physically, this implies that the charge fluxes
arising from the diffusion and electromigration in the tran-
sition region balance each other to maintain current equality.
By substituting ρ1 ¼ 0 and ρ2 ¼ ðΨ2 − ΨDÞ=(I0ða=λÞ − 1)
[from Eq. (5)] in the aforementioned condition, we get

Ψ1 ¼
Ψ2I0ðaλÞ − ΨD

I0ðaλÞ − 1
: ð10Þ

By utilizing Eq. (10) in (8), we obtain

∂Ψ2

∂Z ¼ Bi

�
Ψ2 −

ΨD

I0ðaλÞ
�
; ð11Þ

where

Bi ¼ a=λ
2I1ðaλÞ

lpore

lSDL

ASDL

πa2
: ð12Þ

By a further change of variables ϕ¼Ψm−ΨD=I0ða=λÞ and
T ¼ τI0ða=λÞ, we can rewrite Eqs. (7) and (11) as

∂ϕ
∂T ¼ ∂2ϕ

∂Z2
; ð13Þ

which is to be solved with boundary conditions ∂ϕ=∂Z ¼
Biϕ at Z ¼ 0 and ∂ϕ=∂Z ¼ 0 at Z ¼ 1. The analytical
solution to this equation is

ϕ ¼ ϕD

X∞
n¼0

4 sin λn
2λn þ sin 2λn

expð−λ2nTÞ cos½λnðZ − 1Þ�;

ð14Þ
where λn tan λn ¼ Bi and ϕD ¼ ΨD(I0ða=λÞ − 1)=I0ða=λÞ.
Equation (14) provides a solution for the centerline potential
ΨmðZ; τÞ and Eqs. (4)–(6) can subsequently be used to predict
ρmðZ; τÞ, ρðR; Z; τÞ, and ΨðR; Z; τÞ for the overlapping
DL limit.
We briefly summarize the “RC transmission line” model

for the thin DL limit [5,7]. This model assumes that the
region outside the DL is electroneutral (ρ ¼ 0) and can be
represented by an effective resistance per unit lengthRpore;
see Fig. 2. Consequently, the potential outside the DL is
only dependent on the axial direction. The DLs are
represented through an effective capacitance per unit (axial)
length Cpore such that the current from the capacitors in the
radial direction is transported through the resistors in the
axial direction; see Fig. 2. Finally, the SDL is assumed to
be electroneutral and is thus also represented by an effec-
tive resistance per unit length RSDL. For the linear limit
ΨD ≪ 1, Cpore¼2πaε=λ, Rpore¼λ2=ðπa2DεÞ and RSDL ¼
λ2=ðASDLD εÞ. Inside the pore, the current at an arbitrary
location z can be evaluated as iðzÞ¼Rpore

−1∂ψ=∂z.

FIG. 2. Effective circuit model is identical for the thin and
overlapping DL limits. However, the values of Cpore,Rpore,RSDL,
and ψD;eff are different for the two limits. A summary of these
values is provided in Table I.
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Furthermore, the change in axial current is equal to the
current arising from the capacitor, or ∂i=∂z ¼ Cpore∂ψ=∂t.
In dimensionless units, we get [5,7]

∂Ψ
∂ τ̃ ¼ ∂2Ψ

∂Z2
; ð15Þ

where τ̃ ¼ τða=2λÞ, ΨðZ; 0Þ ¼ ΨD is the initial con-
dition, and the boundary conditions are ∂Ψ=∂Z ¼ 0
at Z ¼ 1, and ∂Ψ=∂Z¼BiΨ at Z¼0, where Bi ¼
lporeRpore=ðlSDLRSDLÞ¼lporeASDL=ðlSDLπa2Þ. The RC
transmission model suggests that the timescale of charging
tc;thin ¼ RporeCporel2

pore ¼ ð2λ=aÞl2
pore=D [37]. We high-

light that tc;thin varies inversely with a=λ whereas for the
overlapping DL limit tc;overlap ¼ l2

pore=(I0ða=λÞD), is
weakly dependent on a=λ.
We note that the mathematical structure of the governing

equations in the two limits of DL thickness, i.e., Eqs. (13) and
(15), is identical. Therefore, the effective circuit model for
the overlapping DLs remains the same; see Fig. 2. However,
the values of capacitance, resistances and the effective
wall potential are Cpore ¼ ðε=λ2Þπa2,Rpore ¼ λ2=(πa2D ε I0
ða=λÞ), RSDL ¼ 2λ3I1ða=λÞ=(aASDLD εI0ða=λÞ), and
ψD;eff ¼ ψD(I0ða=λÞ − 1)=I0ða=λÞ; see Fig. 2 and Table I.
Physically, three key features differentiate the

scenario of the overlapping DLs (a=λ≲ 1) from the
thin DLs (a=λ ≫ 1). First, the effective driving force for
DL charging is reduced from ψD to ψD;eff ¼
ψD(I0ða=λÞ − 1)=I0ða=λÞ. Second, since the DLs fill the
entire pore, the capacitor represents a volumetric current
source (see Cpore in Table I), which is in contrast to the thin
DL limit where the capacitor is a surface areal current
source. Lastly, the effective resistance from the static
diffusion layer is different as compared to the thin DL
limit as this resistance also depends on the geometric
parameter a=λ; see Table I. Overall, due to the reduced
ψD;eff , the net current predicted from the overlapping DL
model would be lower than the current predicted by
extrapolating the thin DL limit. Furthermore, due to the
volumetric nature of capacitance, the effective time scale of

charging becomes the diffusion time scale along the pore,
or tc;overlap ≈ l2

pore=D.
Next, we compare the predictions of the reduced-order

models with the results from the DNS simulation for a=λ ¼
0.5 and a=λ ¼ 1 [Fig. 3]. The overlapping DL model
displays excellent agreement between ΨmðZ; τÞ and the
DNS simulations, including the rapid increase in Ψm across
Z ¼ 0; see Figs. 3(a) and 3(c). We note that the thin DL
model is unable to capture the variation in Ψm and thus
should not be extrapolated in systems where a=λ≲Oð1Þ.
Furthermore, the predicted ρmðZ; τÞ also exhibits excellent
quantitative agreement with the DNS results; see Figs. 3(b)
and 3(d). Lastly, our model is able to capture the radial
variation in ρðR; Z; τÞ; see Fig. 3(e). Therefore, our model
is able to capture most of the details of the DNS solution.
We plot the dimensionless current at the mouth of the

pore IðτÞ, i.e., current normalized by πa2ec0D=lpore, for
different a=λ [Fig. 4]. We find that IðτÞ decreases with an
increase in a=λ, which implies that the utilization of pore
volume for DL charging decreases with an increase in a=λ.
We observe that the thin DL model is able to accurately
predict IðτÞ for a=λ ¼ 5 and 20 [Fig. 4]. However, for
a=λ ¼ 0.5, the predicted values of IðτÞ from the thin DL
model are significantly higher than those predicted by the
DNS simulations. In contrast, our overlapping DL model is

TABLE I. Summary of parameters for the effective circuit
models in the limits of thin and overlapping DL as shown in
Fig. 2. The values of resistance and capacitance are described per
unit axial length.

thin DL overlapping DL

Cpore ðε=λÞ2πa ðε=λ2Þπa2
Rpore λ2=ðπa2D εÞ λ2=(πa2D εI0ða=λÞ)
RSDL λ2=ðASDLD εÞ 2λ3I1ða=λÞ=(aASDLD εI0ða=λÞ)
ψD;eff ψD ψD(I0ða=λÞ − 1)=I0ða=λÞ
tc ð2λ=aÞl2

pore=D l2
pore=(I0ða=λÞD)

FIG. 3. Comparison of effective circuit models with the results
from DNS. (a) Potential at the center of the pore ΨmðZ; τ ¼
0.07; 0.2; 0.4Þ and (b) local charge at the center of the pore
ρmðZ; τ ¼ 0.07; 0.2; 0.4Þ for a=λ ¼ 0.5. (c) ΨmðZ; τ ¼ 0.07;
0.2; 0.4Þ and (d) ρmðZ;τ¼0.07;0.2;0.4Þ for a=λ ¼ 1. (e) Radial
variation of charge ρðR; Z; τÞ for Z ¼ 0, 0.2, 0.4, 0.6, 0.8 and
τ ¼ 0.07 for a=λ ¼ 0.5.
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able to quantitatively capture the trend. The reduction in the
values of IðτÞ between the two models arises mainly
because of the lower ΨD;eff, an important feature not
captured by the thin DL model.
The analytical form of our analysis can be readily used to

characterize cyclic voltammetry data in experimental inves-
tigations of batteries and supercapacitors. Furthermore, the
dependence of current and charging timescales on a=λ is
useful for the design of nanoporous electrodes. Our results
are also informative for ion transport inside nanopores for
biosensing and nanofluidic applications [38,39], and are
especially relevant for ion transport in conical nanopores
[40]. Our approach can be extended to account for finite ion
size [41], dielectric decrement [42], electrolyte valence
[43,44], electrolyte mixtures [45], asymmetric diffusivities
[46] and atomistic physics [47,48]. Finally, our approach
can also be extended to ion-selective electrodes and large
potentials where additional effects such as concentration
polarization can become important [49].
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