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In the low-frequency range, the acoustical behaviour of enclosed
spaces is strongly influenced by excited acoustic modes
resulting in a spatial irregularity of a steady-state sound field.
In the paper, this problem has been examined theoretically and
numerically for a system of coupled spaces with complex-
valued conditions on boundary surfaces. Using a modal
expansion method, an analytic formula for Green’s function
was derived allowing to predict the interior sound field for a
pure-tone excitation. To quantify the spatial irregularity of
steady-state sound field, the parameter referred to as the mean
spatial deviation was introduced. A numerical simulation
was carried out for the system consisting of two coupled
rectangular subspaces. Eigenfunctions and eigenfrequencies
for this system were determined using the high-accuracy
eigenvalue solver. As was evidenced by computational
data, for small sound damping on absorptive walls the mean
spatial deviation peaks at frequencies corresponding to
eigenfrequencies of strongly localized modes. However, if the
sound damping is much higher, the main cause of spatial
irregularity of the interior sound field is the appearance of
sharp valleys in a spatial distribution of a sound pressure level.
1. Introduction
The main objective of interior acoustics is to investigate the
steady-state and transient acoustical behaviour of enclosed
spaces. There are many theoretical methods for modelling the
interior sound field and among them are statistical-acoustic
methods, acoustic diffusion equation model, geometrical acoustics
approaches, element-based techniques, wave-based method and
modal expansion method. Statistical-acoustic methods [1] assume a
uniform distribution of the acoustic energy in the field because
they are based on the diffuse sound field hypothesis. The acoustic
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Figure 1. Schematic view of considered coupled spaces and boundary problem definition.
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diffusion equation model [2] is an extension of the statistical theory to spatially varying sound field.
Geometrical acoustics techniques [3] are suitable for high sound frequencies, and the ray tracing method
[4], the beam tracing method [5] and the image source method [6], also known as the mirror source
method [7], are the most popular methods for geometric modelling. In contrast to geometrical methods,
element-based approaches provide a complete description of the interior sound field because they solve
the wave equation after suitable space discretization. The most common among these numerical
techniques are the finite-element method (FEM) [8] and the boundary element method (BEM) [9]. Besides
the FEM, BEM and all their variations, there is another family of methods, the so-called Trefftz methods
which differ from the FEMs by the choice of shape and weighting functions. Examples of Trefftz-based
methods are the wave-based method [10] and the method of fundamental solutions [11]. The finite-
difference time-domain (FDTD) method is a numerical technique that simulates the time-dependent
acoustic field using discrete approximations of the spatial derivative operators and an explicit time-
stepping [12]. Alternatives to the FDTD technique are the pseudospectral time-domain method [13] and
the adaptive rectangular decomposition, which achieve a good accuracy with a much coarser spatial
discretization [14]. The modal expansion method (MEM) yields the acoustic modes of pressure vibrations
inside enclosed spaces, and the sound field is expressed as a linear combination of these modes [15]. This
method is more difficult to apply for irregularly shaped cavities [16] and coupled spaces [17], but it fully
describe a wave nature of the sound field like a diffraction and a creation of standing waves. The MEM
also enables to identify typicalmodal effects such as amodal degeneracy [18] and a localizationofmodes [19].

In this paper, the MEM is implemented to model a low-frequency steady-state acoustical behaviour of
coupled spaceswith complex-valued conditions on boundary surfaces. Using amodal expansion of a sound
pressure, a general solution of the inhomogeneous wave equation is found which allowed us to determine
Green’s function. To quantify the spatial irregularity of steady-state sound field, the parameter called the
mean spatial deviation is defined. A theoretical method is numerically tested for a system consisting of
two coupled rectangular subspaces. Eigenfunctions and eigenfrequencies for this system are calculated
using the FEAST eigenvalue solver. Based on calculation results, the influence of damping properties of
sound absorbing walls on the mean spatial deviation is investigated, and changes in a steady-state
distribution of a pressure amplitude are analysed. In the last part of the paper, major research findings of
this study are summarized and concluding remarks are given.
2. Theoretical modelling
Coupled spaces in a of form the enclosed three-dimensional domain Ω filled by an air are considered
(figure 1). Characteristic properties of the air are the speed of sound c and the air density ρ. When
inside Ω there is a volume sound source, spatial and temporal behaviours of a sound field are
governed by the inhomogeneous wave equation

D� 1
c2

@2

@t2

� �
p(r, t) ¼ �q(r, t), (2:1)

where Δ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator, p is the sound pressure, q is the volume source
term and r = (x, y, z) is a position coordinate of a field point. The pressure p must satisfy the causality
condition. It also fulfils initial conditions defined for the time t0. It is assumed that p(r, t0) and
p0 (r, t0) = @p(r, t)=@tjt¼t0 are non-zero, thus, these conditions must appear in a general solution of the
wave equation (2.1). A boundary of the domain Ω is denoted by Γ and it is partitioned into two
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parts: Γr, which is acoustically hard and Γz, where a sound absorptive material with the impedance Z is

placed. On these parts, the following boundary conditions for the pressure gradient are applied:

r [ Gr: rp � n ¼ 0 (2:2)
and

r [ Gz: rp � n ¼ � 1
cz

@p
@t

, (2:3)

where r ¼ i@=@xþ j@=@yþ k@=@z is the gradient vector operator, the dot is a scalar product, n is the
outward normal vector and ζ =Z/ρc is the normalized impedance of absorptive material. The
impedance’s real part ζr represents the normalized resistance, whereas its imaginary part ζi is referred
to as the normalized reactance. Equation (2.1) together with the boundary conditions (2.2) and (2.3)
describes a generation of a sound field inside the domain Ω when it is subjected to a volume sound
source. Since the temporal variability of this source can be arbitrary, it is possible to predict both
steady-state and transient behaviours of a sound field inside Ω.

2.1. Determination of Green’s function
In the low-frequency range, dimensions of the domain Ω are comparable with a length of sound wave;
thus, the method which is most appropriate for determining the interior sound field is the modal
expansion method. According to the MEM, the solution of the wave equation (2.1) can be expressed
as a linear combination of the eigenfunctions Φm

p(r, t) ¼
X1
m¼1

pm(t)Fm(r), (2:4)

where pm are time-dependent modal amplitudes. It is assumed that eigenfunctions Φm are mutually
orthogonal and are normalized in the volume V of the domain Ω by the relationð

V
FmFn dv ¼ dmn, (2:5)

where δmn is the Kronecker delta function. Each eigenfunction Φm is related to the corresponding natural
eigenfrequency ωm through the equation

DFm ¼ � vm

c

� �2
Fm: (2:6)

A method for determining the amplitude pm relies on suitable transformation of equation (2.1). First,
multiply both sides of equation (2.1) by Φm and integrate over the volume V. This gives

1
c2

ð
V
Fm

@2p
@t2

dv�
ð
V
FmDpdv ¼

ð
Vs

q(r, t)Fm(r) dv, (2:7)

where Vs is the source volume. The application of equations (2.4) and (2.5) in the first volume integral in
equation (2.7), and the utilization of equations (2.2), (2.3)–(2.6) and Green’s theorem [20],ð

V
(pDFm �FmD p)dv ¼

ð
S
(prFm �Fm rp) � nds, (2:8)

in the second volume integral leads to the following equation for the modal amplitude pm:

@2pm
@t2

þ 2
X1
n¼1
n=m

gmn
@pn
@t

þ 2(rm þ jwm)
@pm
@t

þ v2
mpm þ c2

ð
S
p
@Fm

@n
ds

¼ c2
ð
Vs

q(r, t)Fm(r) dv:

(2:9)

In the above equation, γmn are modal coupling factors expressed as

gmn ¼ c
2

ð
Sz
(zr � jzi)jzj�2 FmFn ds, (2:10)

and the quantities rm and wm are modal coefficients determined by

rm ¼ c
2

ð
Sz
zrjzj�2 F2

m ds, wm ¼ � c
2

ð
Sz
zijzj�2 F2

m ds, (2:11)
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where jzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2r þ z2i

q
is a magnitude of the normalized impedance of absorptive material, Sz is a surface

of the part Γz of a domain boundary and j ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit. In the low-frequency range,
typical absorptive materials are characterized by a small sound damping [21], thus it is possible to
assume that jzj�1 is much smaller than unity. In this case, series components in equation (2.9)
containing the coefficients γmn can be omitted and it is possible to approximate the functions Φm

by real-valued eigenfunctions predicted for acoustically hard boundary. Thus, boundary conditions
∂Φm/∂n = 0 are met, therefore, equation (2.9) simplifies to the uncoupled differential equation

@2pm
@t2

þ 2(rm þ jwm)
@pm
@t

þ v2
mpm ¼ c2

ð
Vs

q(r, t)Fm(r) dv ¼ sm(t), (2:12)

where sm(t) is a modal source function. Equation (2.12) was solved using the method of variation of
parameters [22], and a general solution that includes initial conditions has the following form:

pm(t) ¼ pm(t0) e�(rmþjwm)(t�t0)
�
cos [Vm(t� t0)] cosh [qm(t� t0)]

� j sin [Vm(t� t0)] sinh [qm(t� t0)]
�

þ e�(rmþjwm)(t�t0)[(Vm þ jqm)pm(t0)þ p0m(t0)]
Vm þ jqm

� �
sin [Vm(t� t0)] cosh [qm(t� t0)]þ j cos [Vm(t� t0)] sinh [qm(t� t0)]

�
þ e�(rmþjwm)t

2(qm � jVm)

� e(qm�jVm)t
ðt
t0
sm(t) e[rm�qmþj(wmþVm)]t dt� e�(qm�jVm)t

ðt
t0
sm(t) e[rmþqmþj(wm�Vm)]t dt

� �
,

(2:13)

where the quantities Vm and qm are determined by the following equations:

Vm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
m þ b2

m

q
2

vuut
and qm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�am þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
m þ b2

m

q
2

vuut
, (2:14)

where am ¼ v2
m � r2m þ w2

m and βm =−2rmwm. To calculate Green’s function, it is assumed that a sound
excitation has a form of a point source located at the position r = r0, which generates the Dirac pulse at
the time t = t0. This means that q(r, t) = δ(r− r0)δ(t− t0) in equation (2.12), thus, the modal source
function sm(τ) in equation (2.13) is as follows:

sm(t) ¼ c2d(t� t0)Fm(r0): (2:15)

An insertion of equation (2.15) in equation (2.13) enables to determine the function pm(t) for a temporal
impulse. Since integrals in equation (2.13) have the lower limit corresponding to a peak of the delta
function δ(t− t0), the integration was carried out from t�0 = t0− ε, where ε is positive and arbitrarily
small. In this case, the interval of integration includes the value at which the delta function peaks, but
pm(t�0 ) and p0m(t

�
0 ) are equal to zero, because of a causality condition. Finally, inserting pm(t) in

equation (2.4) the following formula for Green’s function can be found:

G(r, tj r0, t0) ¼ c2
X1
m¼1

e�(rmþjwm)(t�t0)

V2
m þ q2

m

�
sin [Vm(t� t0)] cosh [qm(t� t0)]

þ j cos [Vm(t� t0)] sinh [qm(t� t0)]
�
(Vm � jqm)Fm(r0)Fm(r):

(2:16)

The function G and its time derivative ∂G/∂t are zero for t < t0 because if an impulse occurs at t0, no
effects of the impulse should be present at the earlier time (a causality condition).
2.2. Quantification of spatial irregularity of steady-state sound field
By using Green’s function G it is possible to predict a sound field generated inside the domain Ω by any
sound source because when the source function q(r, t) is known, the pressure response to this excitation is
described by the following equation [23]:

p(r, t) ¼
ð
Vs

ðt
�1

q(r0, t)G(r, tj r0, t) dtdv0: (2:17)
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The steady-state pressure response to a point source can be found assuming that in equation (2.17) the

source function q takes the form q(r0, t) ¼ Qd(r0 � r0) ejvt, where ω is the angular source frequency,
r0 = (x0, y0, z0) determines a source position and the amplitude Q is dependent on the source power W
according to the formula Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8prcW
p

[24], where, as before, ρ denotes the air density. Thus, after
performing the volume and time integrations in equation (2.17), a formula for the steady-state
pressure amplitude Pc is found as

Pc(r) ¼
X1
m¼1

(am þ jbm)Fm(r), (2:18)

where the quantities am and bm are determined by

am ¼ Qc2[r2m þV2
m � q2

m � (vþ wm)
2]Fm(r0)

[(rm þ qm)
2 þ (vþ wm �Vm)

2][(rm � qm)
2 þ (vþ wm þVm)

2]
(2:19)

and

bm ¼ � 2Qc2[rm(vþ wm)þVmqm]Fm(r0)
[(rm þ qm)

2 þ (vþ wm �Vm)
2][(rm � qm)

2 þ (vþ wm þVm)
2]
: (2:20)

Since the amplitude Pc is complex, a quantity suitable for a prediction of the steady-state pressure
response is the real pressure amplitude P determined by absolute value of Pc, i.e.

P(r) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc(r)P�

c (r),
q

(2:21)

where an asterisk in a superscript denotes the complex conjugate. Thus, after inserting equation (2.18)
into equation (2.21) one finds the following formula for the pressure amplitude:

P(r) ¼
�X1
m¼1

amFm(r)
�2

þ
�X1
m¼1

bmFm(r)
�2( )1=2

: (2:22)

As it results from equations (2.18) to (2.20), the amplitude P is dependent on the source position r0 and
the source frequency ω and, through the quantities Vm, qm, rm and wm, on the natural eigenfrequency ωm

as well as the real and imaginary parts of the impedance ζ. Thus, for constant r0 and given source
frequency ω, equation (2.22) enables one to predict a spatial irregularity of the steady-state pressure
amplitude for different values of ζr and ζi.

A quantity more accurate for assessing a spatial irregularity of the sound field is the pressure level
given by

L(r) ¼ 20 log
P(r)
p0

� �
, (2:23)

where p0 = 20 μPa, because a knowledge of a spatial distribution of L allows to evaluate how much its
value deviates from point to point on the observation plane. Small variations in L imply great steady-
state response homogeneity, while large variations indicate high irregularity of this response. To
quantify sound pressure level variation on the whole observation area, the parameter D named the
mean spatial deviation will be defined as

D ¼ 1
Sp

ð
Sp
[L(r p)� Lav]

2ds

( )1=2

, (2:24)

where Sp is the size of the observation area, rp is a position coordinate on this area and Lav is the average
sound pressure level determined by

Lav ¼ 20 log
Pav

p0

	 

, Pav ¼ 1

Sp

ð
Sp
P(r p) ds, (2:25)

where Pav is the average pressure amplitude on the observation area. The parameter D is quantified in
decibels and a value of D close to zero dB means that the sound pressure field is uniform. If the
parameter D does not meet this requirement, there is a spatial irregularity of the sound pressure field.
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3. Description of examined system of coupled spaces
The objective of a numerical study was to simulate a steady-state sound field in a system of coupled
spaces consisting of two connected cuboidal subspaces of the same height. This was motivated by the
fact that such a configuration of coupled spaces can be found in many buildings and constructions. It
was assumed that an air filling the coupled spaces is characterized by the speed of sound c =
343 m s−1 and the density ρ = 1.21 kg m−3. A horizontal cross-section of the examined system together
with the associated coordinate system are sketched in figure 2. Simulations were run for the following
dimensions of the system: d1 = 3 m, d2 = 1 m, d3 = 5 m, l1 = 4 m, l2 = 6 m and h = 3 m, which is the
height of subspaces. As may be noted, these dimensions seem realistic for coupled spaces encountered
in practice. It was assumed that the system was excited by a point source with the power W of
10�3 W located at the position: x0 = 9 m, y0 = 4 m, z0 = 1 m.

In the tested system of coupled spaces, the bottom wall was assumed to be nearly hard acoustically,
which means that a magnitude of wall impedance is very large but finite.1 Sound damping in this system
is provided by an absorptive material with the impedance ζ which is uniformly distributed on the side
walls and the top wall. Absorbing properties of the material are described by the random-incident
absorption coefficient α which is related to real and imaginary parts of the impedance ζ by the
following expression [25]:

a ¼ 8zr
jzj2 1� zr ln (1þ 2zr þ jzj2)

jzj2 þ z2r � z2i

zijzj2
arctan

zi
1þ zr

	 
" #
: (3:1)

In figure 3, this relation is represented graphically for the absorption coefficient 0.1≤ α < 0.37. The
diagram shows contours of constant value of α in the complex ζ-plane, i.e. abscissa and ordinate in
this figure are the real and imaginary part of the impedance ζ, respectively. If values of α are small,
the expression in square brackets on the right-hand side of (3.1) approaches unity. This makes it
possible to approximate equation (3.1) by the formula

(zr � R)2 þ z2i ¼ R2, (3:2)

where R = 4/α; therefore, contours of constant value of α represent circles of radius R with the centre
located at the point ζr =R, ζi = 0 (figure 3). From equation (3.1), it also follows that the necessary
condition for sound damping is that the resistance ζr has a positive value. By contrast, there are no
restrictions on the value of the reactance ζi because it can be positive or negative or zero. In the latter
case, equation (3.1) can be transformed into the following form:

a ¼ 8
zr

1� 2
zr
ln (1þ zr)þ

1
1þ zr

� �
: (3:3)

In the numerical study, the damping properties of the absorptive material were modelled as follows: it
was assumed that the resistance ζr has a constant value, namely ζr = 15, so changes in the damping
properties were simulated by variations in the reactance ζi. With these assumptions, the condition
|ζ|−1≤ 0.0667 is obtained because the maximum value of |ζ|−1 is reached when ζr = 15 and ζi = 0.
This maximum value is sufficiently small to consider the analysed system of coupled spaces as
slightly damped. Using equation (3.3), it can be found that for the resistance ζr of 15, the absorption
1When a wall is acoustically hard, a magnitude of wall impedance is assumed to be theoretically infinite.
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coefficient amounts to 0.3695 and this value corresponds to αmax, i.e. the maximum value of α for ζr equal
to 15. This result has a simple geometrical interpretation; namely, the straight line described in
the complex ζ-plane by ζr = 15 represents the tangent line to the contour of constant value of the
absorption coefficient when α is equal to αmax (figure 3).
4. Simulation results and discussion
4.1. Eigenfunctions
As proved by the theoretical analysis, the steady-state sound fields depend on the eigenfunctions Φm. For
a considered system geometry, there is no analytical form of Φm, thus, a determination of their form
requires an application of numerical methods. However, the fact that an absorptive material provides
a small sound damping enables one to assume that Φm are well approximated by real-valued
eigenfunctions predicted for the acoustically hard boundary. In this case, the eigenfunctions Φm are
replaced by the double-indexed eigenfunctions Φκν whose dependence on the coordinate z describes
clearly defined cosine functions. Thus, the expression for the functions Φκν can be written as

Fkn(r) ¼

ffiffi
1
h

q
Cn(x, y), k ¼ 0, n . 0,ffiffiffi

2
V

q
cos (pkz=h), k . 0, n ¼ 0,ffiffi

2
h

q
cos (pkz=h)Cn(x, y), k . 0, n . 0,

8>>>><
>>>>:

(4:1)

where κ and ν are non-negative integers and the eigenfunctions Cn are normalized over a horizontal
cross-section of the system. The functions Cn and corresponding eigenfrequencies vn were computed
in a two-dimensional mesh with 105 902 nodes (a distance between adjacent nodes amounted to 2 cm)
using the FEAST eigenvalue solver which exhibits high accuracy and computational efficiency [26].
Since Cn ¼

ffiffiffiffiffiffiffiffiffiffi
1=S0

p
for ν = 0, where S0 is a surface of a horizontal cross-section of the system, the

eigenfrequency vn corresponding to this eigenfunction is equal to zero. Finally, the eigenfrequencies
ωκν of the examined system of coupled spaces were calculated from the following expression:

vkn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkc
h

� �2
þv2

n

r
, (4:2)

where the indices κ and ν are not simultaneously equal to zero. By applying the FEAST, the
eigenfunctions Φκν for the first 500 room modes were calculated and the eigenfrequencies fκν = ωκν/2π
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corresponding to these functions were from the range 17.5–308.5 Hz. Examples of computed shapes of
the functions Cn are plotted in figure 4 in the form of filled contour maps which are a two-
dimensional representation of three-dimensional data. These results imply that for some modes the
acoustic energy can be concentrated inside the one of subspaces (figure 4c,d ). This effect is called
the localization of modes and is characteristic for irregularly shaped spaces because in a cuboidal
space all eigenmodes are delocalized. As previously assumed, the eigenfunctions Φκν are normalized
in the system volume V, thus, the integral of F2

kn over V equals unity. In order to identify the
localized model, one should then compute the non-dimensional parameter

lkn ¼
ð
VA

F2
kn dv, (4:3)

where κ≥ 0, ν > 0 and VA is the volume of the subspace A. Therefore, a mode is localized in the subspace
A when the parameter lκν is close to unity and it is localized in the subspace B when the value of lκν is
close to zero. In the numerical study, it was assumed that an eigenmode is recognized as a strongly
localized mode if lκν or 1− lκν has value above 0.95.

It is worth mentioning that among computed eigenmodes, there are also modes which are totally
delocalized. It follows from the fact that they represent eigenmodes of the cuboidal space having the
height of 3 m and the width of 5m, as the system under study, and the length of 10m being a sum of
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l1 and l2 (figure 2). Exemplary shapes of the eigenfunctions Cn corresponding to these modes are shown
in figure 4f,g.

4.2. Mean spatial deviation
An irregular distribution of the steady-state pressure amplitude P inside coupled spaces originates from a
strong dependence of this amplitude on a spatial distribution of the eigenfunctions Φκν. For a small
sound damping on wall surfaces, this leads to highly position-sensitive acoustic responses which
result in a spatial variability of the sound field. To quantify this variability, the mean spatial deviation
D was defined (equation (2.24)) and the purpose of a numerical simulation is to determine a
frequency dependence of D for different values of the absorption coefficient α. This will enable us to
identify sound frequencies for which there is a high irregularity of the sound field and to investigate
how this irregularity is influenced by absorption characteristics of walls. Calculations were carried out
for the observation plane located at the distance z = 1.6 m from the high reflecting bottom wall.
As stated in §3, sound damping inside coupled spaces was provided by an absorptive material with
the complex impedance ζ = ζr + jζi. This material was uniformly distributed on the side walls and the
top wall. Since the absorption coefficient α of the material was chosen as input data in a numerical
implementation, the reactance ζi was determined numerically from equation (3.1) assuming constant
value of the resistance ζr. As shown in figure 3, when the reactance ζi is non-zero, for a constant value
of ζr there are two values of ζi that have the same absolute value but differ in signs. In this study,
calculations were made assuming that the reactance ζi is non-positive.

In the first stage of a numerical simulation, the case of negligible sound damping was considered,
assuming that all walls are nearly hard acoustically. It was established that the absorption coefficient
α corresponding to this case has the value 10−4, and it is equivalent to the wall impedance ζ = 15−
1094j. The aim of numerical test was to identify main causes of spatial irregularity of steady-state
sound pressure when sound damping is negligibly small. Simulation results gained in this case are
presented in figure 5. Numerical data depict changes in the mean spatial deviation D with the source
frequency in the band 20–220Hz. To accurately reconstruct a frequency dependence of D, in
calculations the frequency step of 0.01 Hz was applied. In numerical predictions, all calculated modes
of coupled spaces were used for determining a sound pressure field, to allow the residues from
modes in the region 220–308.5 Hz to influence the frequency response below 220Hz.

As shown in figure 5, in a frequency dependence of D there are many intense peaks apparent for
some frequencies. The most intense peaks denoted in figure 5 by numbers 1, 2 and 3 occur at
frequencies: 60.51, 119.6 and 165.03 Hz and reach values above 15 dB. This proves that in these cases
there is a very large irregularity of the sound field. This finding is confirmed by graphs in figure 6
showing mapped distributions of a sound pressure amplitude P on the observation plane for
frequencies of these peaks. An analysis of simulation data has demonstrated that intense peaks of D
are a direct result of the effect of modal localization, because frequencies of these peaks are in
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Figure 6. Mapped distribution of the sound pressure amplitude P on the observation plane z = 1.6 m for source frequencies:
(a) 60.51 Hz, (b) 119.6 Hz, (c) 165.03 Hz. Absorption coefficient α of 10−4.

Table 1. Frequencies fκν of strongly localized modes in the frequency band 20–220 Hz together with corresponding mode
numbers κ and ν.

κ ν fκν (Hz) κ ν fκν (Hz) κ ν fκν (Hz)

0 3 35.31 2 3 119.66 3 3 175.10

0 4 46.27 2 4 123.34 3 4 177.63

0 6 60.08 2 6 129.16 2 27 179.00

1 3 67.19 1 20 129.31 3 6 181.72

0 9 69.81 1 22 132.11 3 9 185.16

1 4 73.55 2 9 133.96 0 56 206.20

1 6 82.93 0 27 137.72 3 20 207.04

1 9 90.22 1 27 149.12 3 22 208.80

0 20 115.99 2 20 162.87 1 56 213.97

0 22 119.11 2 22 165.10 3 27 219.95
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agreement with frequencies of strongly localized modes (table 1). For example, using computational data
from table 1, it is easy to check that frequencies of the most intense peaks correspond to the frequencies of
strongly localized modes having the following mode numbers: κ = 0 and ν = 6, κ = 2 and ν = 3, κ = 2 and
ν = 22. The effect of modal localization is characteristic for coupled spaces because among 200 modes
found in the frequency range 20–220Hz, 30 modes were recognized as strongly localized modes
(table 1). This means that in the considered frequency band, the strongly localized modes account for
15% of all modes.

As may be seen in figure 5, the value of D in the considered frequency band is above 7 dB with the
exception of three frequencies for which there are sharp minima in D. This fact has a simple explanation;
namely, at these frequencies values of D are close to zero because they correspond to frequencies of
z-axial modes for which the eigenfunctions Φκν are not dependent on the coordinates x and y.
Frequencies of z-axial modes can be calculated from equation (4.2) assuming vn ¼ 0 and then
inserting κ = 1, 2, 3…

The way to reduce intense peaks of D is to increase the sound attenuation inside the coupled spaces.
This is due to the fact that with increased sound damping, the energy of strongly localized mode is
physically attenuated. Consequently, neighbouring modes have a much greater impact on a
distribution of a sound field for a frequency of localized mode, resulting in a reduction of point-to
point variations in a sound pressure level. In the tested system of coupled spaces the sound damping
is provided by an absorptive material uniformly distributed on the side walls and the top wall.
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As assumed in §3, damping properties of this material are described by the absorption coefficient α
which is dependent on the impedance ζ according to equation (3.1). Calculation results in figure 7
show frequency dependence of the mean spatial deviation D for the absorption coefficient α equal to
0.01 and 0.1. These values of α correspond to the impedance ζ of 15− 107.1j and 15− 28.8j,
respectively. A comparison of figures 5 and 7a proves that the increase in α to the value of 0.01 results
in a reduction of most intense peaks of D occurring at frequencies of strongly localized modes.
However, the sharp peaks are still visible for frequencies close to 35 and 60 Hz, which, as shown by
the data in table 1, correspond almost exactly to frequencies of the first and third strongly localized
mode. It should also be emphasized that a minimum value of D is still close to zero because the
increase of α to 0.01 does not eliminate strong drops of D occurring at frequencies of z-axial modes.
A more effective reduction of intense peaks and strong drops in the frequency dependence of D takes
place when the absorption coefficient α grows to 0.1 (figure 7b). However, even for such considerable
increase in the sound damping, the maximum value of D is still greater than 10 dB, whereas the
minimum value is below 2 dB.

To determine the effect of the sound damping on the maximum and minimum values of D, in figure 8
changes in Dmax and Dmin on the coefficient α are depicted in the whole range of its possible values,
i.e. from 10−4 to αmax = 0.3695. Additionally, in figure 8 changes in Davg, i.e. the average value of D
in the considered frequency range, are also shown. Calculations were carried out with an increment
of α of 0.01 and the obtained results are indicated by coloured dots. As evidenced in figure 8, the
rapid decrease in Dmax occurs up to the coefficient α of 0.07, and this behaviour is caused by a
substantial reduction in the peaks of D appearing at frequencies of strongly localized modes. For
values of α > 0.07, variations in Dmax are much smaller because its values range from 8.94 (α = 0.3) to
10.41 (α = 0.15). On the other hand, the increase of Dmin visible up to α of 0.23 is associated with a
disappearance of strong drops of D occurring at frequencies of z-axial modes. The important finding
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resulting from figure 8 is such that for α changing from 0.25 to αmax, a sound damping inside coupled
spaces has a negligible effect on Dmin and Davg. Variations in Dmax are much more pronounced
because Dmax reaches a local maximum for the coefficient α of 0.35. As can be inferred, this is due to
the appearance of a sharp peak in a frequency dependence of D because the increase in Dmax is not
accompanied by an increase in Davg. This deduction is confirmed by graphs in figure 9 illustrating a
frequency dependence of the mean spatial deviation D for the absorption coefficient α of 0.25 and
0.35. These values of α correspond to the impedance ζ equal to 15− 12j and 15− 4.1j, respectively.
A comparison between figure 9a,b leads to the conclusion that the increase in α from 0.25 to 0.35 does
not entail big changes in the frequency dependence of D, and the only significant difference is a sharp
peak of D at the frequency of 110.2 Hz occurring for α of 0.35.

In figure 9b, the most intense peaks are numbered from 1 to 4. In these peaks, the mean spatial
deviation D reaches values above 8.5 dB, which indicates a considerable irregularity of a sound field.
To find the cause of this irregularity, for frequencies of these peaks a distribution of the sound
pressure level L was simulated and the results obtained are presented in figure 10. These data show
that the substantial irregularity of a sound field is due to a presence of sharp valleys in a distribution
of the pressure level L. In the greatest valley depth, the minimum value of L is reached and for the
cases depicted in figure 10a,b,d, this value is from the range 15–21 dB. As seen in figure 10c, the drop
in the pressure level L is dramatically large for the frequency of 110.2 Hz because in this case the
minimum value of L amounts to −3.5 dB.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200514
13
5. Conclusion

In this paper, the impact of damping effects on low-frequency steady-state acoustical behaviour of
coupled spaces has been examined. To determine a sound field for a pure-tone excitation, the analytic
form of Green’s function for an enclosed space with complex-valued boundary conditions was
derived using the modal expansion method. The new parameter referred to as the mean spatial
deviation was introduced to quantify the irregularity of steady-state sound field. The numerical
study was performed for a system consisting of two coupled rectangular subspaces which is often
encountered in practice. To ensure high accuracy in the calculation of eigenfunctions and
eigenfrequencies, the FEAST eigenvalue solver was applied. Simulation results have demonstrated that
intense peaks in a frequency dependence of the mean spatial deviation are a direct result of the modal
localization. This effect is characteristic for irregularly shaped or coupled spaces and manifests itself
through a high concentration of acoustic energy in a small space. As was evidenced by numerical
data, strongly localized modes account for about 15% of all modes in the considered frequency range.
As expected, the increase of sound damping contributes to a reduction of the most intense peaks
resulting from the modal localization. However, it turned out that after a substantial growth in the
sound damping, the mean spatial deviation does not reduce to zero due to the appearance of sharp
valleys in a distribution of a sound pressure level. The mechanism of formation of these valleys is not
well recognized, therefore further research on this subject is needed.

A spatial irregularity of a sound field occurs in small rooms because at low frequencies room acoustic
quality is strongly influenced by excited room modes. This irregularity can give rise to highly position-
sensitive acoustical responses that significantly limit a correct perception of speech and music. Therefore,
the proposed theoretical method can be applied in the design or acoustic treatment of small rooms such
as performance studios, studio control rooms, listening rooms, audio programme assessment rooms and
small conference and lecture rooms where speech, music or listening is part of normal use.
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