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The basic reproduction number R0 of the coronavirus disease
2019 has been estimated to range between 2 and 4. Here, we
used an SEIR model that properly accounts for the distribution
of the latent period and, based on empirical estimates of the
doubling time in the near-exponential phases of epidemic
progression in China, Italy, Spain, France, UK, Germany,
Switzerland and New York State, we estimated that R0 lies
in the range 4.7–11.4. We explained this discrepancy by
performing stochastic simulations of model dynamics in a
population with a small proportion of super-spreaders. The
simulations revealed two-phase dynamics, in which an initial
phase of relatively slow epidemic progression diverts to a faster
phase upon appearance of infectious super-spreaders. Early
estimates obtained for this initial phase may suggest lower R0.
1. Introduction
The basic reproduction number R0 is a critical parameter
characterizing the dynamics of an outbreak of an infectious
disease. By definition, R0 quantifies the expected number of
secondary cases generated by an infectious individual in an
entirely susceptible population. R0 may be influenced by natural
conditions (such as seasonality) as well as socio-economic factors
(such as population density or ingrained societal norms and
practices) [1]. Accurate estimation of R0 is of crucial importance
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because it informs the extent of control measures that should be implemented to terminate the spread of an

epidemic. Also, R0 determines the immune proportion f of population that is required to achieve herd
immunity, f ¼ 1� 1=R0.

A preliminary estimate published by the World Health Organization (WHO) suggested that R0 of
coronavirus disease 2019 (COVID-19) lies in between 1.4 and 2.5 [2]. Later this estimate has been
revised to 2–2.5 [3], which is broadly in agreement with numerous other studies that, based on official
data from China, implied the range of 2–4 (see Liu et al. [4] or Boldog et al. [5] for a summary). This
range suggests an outbreak of a contagious disease that should be containable by imposition of
moderate restrictions on social interactions. Unfortunately, moderate restrictions that were
implemented in e.g. Italy or Spain turned out to be insufficient to prevent a surge of daily new cases
and, consequently, nationwide quarantines had to be introduced.

We estimated the range of R0 of COVID-19 based on the doubling times observed in the exponential
phases of the epidemic in China, Italy, Spain, France, UK, Germany, Switzerland and New York State.
For each of these locations, we used trajectories of both cumulative confirmed cases and deaths [6]. Since
our stochastic simulations suggested that the epidemic may have two-phase dynamics—slow (and
susceptible to extinction) before any super-spreading events occur, and fast and steadily expanding after
the occurrence of super-spreading events—to capture the second phase of the trajectories, we analysed
them after a fixed threshold of cases or deaths had been exceeded, in two-week intervals. Both the
stochastic simulations and R0 estimates were obtained within a susceptible–exposed–infected–removed
(SEIR) model that correctly reproduces the shape of the latent period distribution and yields a plausible
mean generation time. We concluded that the range of R0 is 4.7–11.4, which is considerably higher than
most early estimates. We conjecture that these early estimates were obtained for the first phase of the
epidemic in which super-spreading events were absent.
2. Results
2.1. The SEIR model
We used an SEIR model (see Methods for model equations and justification of parameter values) in which:

— we assumed that the latent period is the same as the incubation period and is Erlang-distributed with
the shape parameter m = 6 and the mean of 5:28 days ¼ 1=s [7];

— we assumed that the infectious period is Erlang-distributed with the shape parameter n = 1
(exponentially distributed) or n = 2, and the mean of 2:9 days ¼ 1=g [8,9];

— the infection rate coefficient β was determined from σ, γ, m, n and doubling time T d, which in turn
was estimated based on the epidemic data as described in the next subsection, ultimately allowing us
to estimate R0 ¼ b=g as R0(T d).

The use of the Erlang distributions directly translates to the inclusion of multiple consecutive substates in
the SEIR model, meaning that we assumed m ‘exposed’ substates and n ‘infectious’ substates (Erlang
distribution is a distribution of a sum of independent exponentially distributed variables of the same
mean).

2.2. Estimation of R0 in the exponential growth phase
First, we estimated the doubling time T d within two-week periods beginning on the day in which the
number of confirmed (in the SEIR model naming convention, ‘removed’, see Methods) cases exceeded
100 or the number of deaths exceeded 10 in China, six European countries and New York State
(figure 1a,b). Values of T d that we obtained lie in between T min

d ¼ 1:86 days (based on cases in
New York State) and T max

d ¼ 2:96 days (based on deaths in Switzerland).
Then, we estimated the range of R0 as a function of the doubling time T d using a formula that takes

into account the mean latent and infectious period, 1/σ and 1/γ, respectively, as well as the shape
parameters m and n, see equation (4.8) in Methods. The lower bound has been obtained using the
model variant with n ¼ 2 (two ‘infectious’ substates), whereas the upper bound results from the
model with n ¼ 1 (one ‘infectious’ substate), figure 1c. After plugging T max

d and T min
d in, respectively,

the variant of our model with the lower R0(T d) curve (n ¼ 2) and the variant with the higher R0(T d)
curve (n ¼ 1), we arrived at the estimated R0 range of 4.7–11.4. The cases-based doubling time for
China, 2.36, is consistent with the value of 2.4 reported by Sanche et al. [11], who estimated that R0
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Figure 1. Estimation of the doubling time and the resulting basic reproduction number R0. (a,b) Estimates of the doubling time
T d for China, six European countries and New York State using two-week periods beginning (a) when the number of confirmed
cases exceeds 100 or (b) when the number of deaths exceeded 10, according to data gathered and made available by Johns Hopkins
University [6]. (c) The range ofR0 estimated using two variants of our SEIR model (violet solid and dashed curves) for the range of
T d estimated in (a) and (b). Vertical lines in the yellow area are T d estimates based on the cumulative number cases (orange,
from (a)) or the cumulative number of deaths (brown, from (b)). Blue and green solid curves correspond to R0ðT dÞ according to
SEIR models structured and parametrized as in the study of Kucharski et al. [9] (m = 2, n = 2) and Wu et al. [10] (m = 1, n = 1).
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for China lies in the range 4.7 to 6.6, overlapping with our estimated range for China: 5.6–7.3. The models
having one or two ‘exposed’ substates, often used to estimate the value of R0, substantially
underestimated R0, cf. figure 1c and the articles by Wearing et al. [12], Wallinga & Lipsitch [13] and
Kochańczyk et al. [14].

There are two main reasons why our estimates of the basic reproduction number are higher compared
to other published estimates:
(i) Our SEIR model comprises six ‘exposed’ substates to account for the latent period distribution. As
shown in figure 1c, the broader latent period distribution, exponential (i.e. Erlang with m = 1),
results in lower R0 estimates than the Erlang with m = 2 (at the same remaining model
parameters). We characterized sensitivity of R0 with respect to the mean latent period, 1/σ, in
electronic supplementary material, figure S1, while in figure S2 we show that the assumed
latent period distribution is in agreement with epidemiological estimates [7,15,16].

(ii) We estimated the doubling time, Td, from the growth of the number of cumulative cases and
cumulative deaths in the two-week-long exponential phases of the epidemic in six locations,
obtaining Td ranging from 1.86 to 2.96. These values are much lower than the values reported



Table 1. Relation between T d model parameters (mean latent period or mean incubation period, 1/σ ; mean period of
infectiousness, 1/γ ; and consequent mean generation interval, 〈GI〉), mean serial period, 〈SI〉 and R0. All estimates are based
on the epidemic development in Hubei province of China. The unit of all values, except for R0, is day. Confidence intervals are
given in oval brackets; a credible interval is given in square brackets.

T d 1/σ 1/γ 〈SI〉 or 〈GI〉 R0 reference

? 5.2 2.9 6.65a 2.35 Kucharski et al. [9]

(1.15–4.77)

5.2 6.5 ? 7.0 1.94 Wu et al. [17]

(4.6–6.1) (5.8–8.1) (1.83–2.06)

6.4 6 2.4b 8.4 2.68 Wu et al. [10]

[5.8–7.1] (2.47–2.86)

7.4 5.2 ? 7.5 2.2 Li et al. [16]

(4.1–7.0) (5.3–19) (1.4–3.9)
aThe 〈GI〉 value is not given in the article but calculated from the assumed values of 1/σ and 1/γ as hGIi ¼ 1=sþ 1

2 =g [18].
bThe value 1/γ was obtained by the authors as 〈SI〉− 1/σ, which is inconsistent with the assumption that the infection occurs in
a random time during the period of infectiousness.
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in the early influential studies of Wu et al. [10,17] and Li et al. [16]: 5.2 days, 6.4 days and 7.4 days,
correspondingly. In these studies, the basic reproduction number has been estimated to lie in
between 1.94 and 2.68. A summary in table 1 shows that the lower R0 estimates follow from
much longer estimates of T d.

2.3. Impact of super-spreading on T d estimation
The discrepancy in T d estimation may be potentially attributed to the fact that not all ‘removed’
individuals are registered. In the case when the ratio of registered to ‘removed’ individuals is
increasing over time, the true increase of the ‘removed’ cases may be overestimated. We do not rule
out this possibility, although we consider it implausible as the expansion of testing capacity in
considered countries has been slower than the progression of the outbreak. We rather attribute the
discrepancy to the fact that in the early phase, in which the doubling time (growth rate) is estimated
based on individual case reports, the consequences of potential super-spreading events (such as
football matches, carnival fests, demonstrations, masses or hospital-acquired infections) are negligible
due to a low probability of such events when the number of infected individuals is low. In a given
region or country, occurrence of first super-spreading events triggers transition to the faster-
exponential growth, in which subsequent super-spreading events become statistically significant and
may become decisive drivers of the epidemic spread [19]. Based on case reports in China, Sanche et al.
[11] inferred that the initial epidemic period in Wuhan has been dominated by simple transmission
chains. Phylogenetic analyses by Worobey et al. [20] revealed that the first cases recorded in USA and
Europe did not initiate sustained SARS-CoV-2 transmission networks. In turn, super-spreading events
were very likely the main drivers of the epidemic spread in e.g. Italy and Germany, where, in the
early exponential phase, spatial heterogeneity of registered cases had been evident [21,22]. In Italy,
Spain and France, this explosive phase was followed by a phase of slower growth, during which mass
gatherings were forbidden, but quarantine (that finally brought the effective reproduction number
below 1) had not been yet introduced.

Motivated by these considerations, we analysed the impact of super-spreading on estimation of T d

based on stochastic simulations of SEIR model dynamics (see electronic supplementary material, listing
S1). Simulations were performed in the perfectly mixed regime according to the Gillespie algorithm [23].
We assumed that a predefined fixed proportion of individuals (equal to 33%, 10%, 3% or 1%) has higher
infectiousness and as such is responsible for on average either half of infections (super-spreaders) or
two-third of infections (hyper-spreaders). To reproduce these fractions in systems with different
assigned proportions of super- or hyper-spreaders, their infectiousness is assumed to be inversely
proportional to their ratio in the simulated population. In figure 2, we show dynamics of the epidemic
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Figure 2. Stochastic epidemic spread in the presence of 1% of hyper-spreaders. (a) Trajectories of confirmed cases (cumulative R in
terms of SEIR compartments) resulting from 100 independent stochastic simulations. When the first hyper-spreading event occurs,
the colour of the line is changed from blue to brown. Dashed grey line shows a deterministic trajectory. (b) Proportion of infections
transmitted by hyper-spreaders among all transmission events over time. Stochastic trajectories stabilize at 66.7%. Trajectories shown
in both panels results from the same set of simulations; simulations resulting in outbreak failure were discarded. Model parameters
used for simulations in both panels: (m, n) ¼ (6, 1), (1=s, 1=g) ¼ (5:28 days, 2:9 days). Infection rate coefficient of hyper-
spreaders was set βh = 198 × βn (where βn is the infection rate coefficient for normal spreaders), which assures that in the
deterministic limit 66.7% of infections are transmitted by hyper-spreaders. In turn, βn was set such that the average infection
rate coefficient β = 2.97 × βn gives T d ¼ 2 days (see equation (4.7) in Methods).
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spread in the presence of 1% of hyper-spreaders to demonstrate that the phase of slower growth is
transformed into the faster-exponential growth phase upon the occurrence of hyper-spreading events.

We estimated T d in two ways: based on one month of growth of the number of new cases since the
first registered case (30 days since the first case) and based on growth of new cases in the two-week
period after the number of registered cases exceeds 100 (14 days since 100 cases). As we are interested
in the initial phase characterized by exponential growth, we assumed that the susceptible population
remains constant. In figure 3, we show histograms of T d calculated using either the ‘14 days since 100
cases’ method or the ‘30 days since the first case’ method. One may observe that the histograms
calculated using the ‘30 days since the first case’ method are broader than those calculated using the



Table 2. Doubling time (T d) estimates using the ‘14 days since 100 cases’ or the ‘30 days since the first case’ method. For all
locations except China, the data gathered and made available by Johns Hopkins University [6] are used. As for the second
method, the calculation either starts from the first case or from two first cases (if no date is provided for the first case). In the
case of China (for which Johns Hopkins University [6] early data are not available) data from [24] are used.

location

‘14 days since 100 cases’ ‘30 days since the first case’

T d from up to T d from up to

China 2.36 548 cases 23 707 cases 4.43 1 case 37 cases

(22 Jan 2020) (4 Feb 2020) (1 Dec 2019) (30 Dec 2019)

Italy 2.56 155 cases 5883 cases 3.25 2 cases 1128 cases

(23 Feb 2020) (7 Mar 2020) (31 Jan 2020) (29 Feb 2020)

Spain 2.11 120 cases 7798 cases 6.35 1 case 84 cases

(2 Mar 2020) (15 Mar 2020) (1 Feb 2020) (1 Mar 2020)

France 2.61 130 cases 4496 cases 12.30 2 cases 12 cases

(1 Mar 2020) (14 Mar 2020) (24 Jan 2020) (22 Feb 2020)

UK 2.88 134 cases 3077 cases 7.66 2 cases 61 cases

(2 Mar 2020) (15 Mar 2020) (31 Jan 2020) (29 Feb 2020)

Germany 2.56 130 cases 4585 cases 12.56 1 case 17 cases

(1 Mar 2020) (14 Mar 2020) (27 Jan 2020) (25 Feb 2020)

Switzerland 2.86 114 cases 3028 cases 2.34 1 case 10 897 cases

(5 Mar 2020) (18 Mar 2020) (25 Feb 2020) (25 Mar 2020)

NY (state) 1.86 106 cases 11 727 cases 1.92 1 case 75 833 case

(8 Mar 2020) (21 Mar 2020) (2 Mar 2020) (31 Mar 2020)
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‘14 days since 100 cases’method, and the width of all histograms increases with increasing infectiousness
(which is set inversely proportional to ρ). When T d is calculated using the ‘14 days since 100 cases’
method, its median value is slightly larger than T d in the deterministic model (equal to 2 days);
however, when T d is calculated using the ‘30 days since the first case’ method, then for high
infectiousness of super- and hyper-spreaders (correspondingly, for low ρ) its median value becomes
much larger than the deterministic T d. Using the ‘30 days since the first case’ method for the case of
the lowest considered r ¼ 1%, when super-spreaders (hyper-spreaders) have their infectiousness about
100 times (200 times) higher than the infectiousness of normal individuals, one obtains median T d

larger than T d obtained in the deterministic model by 29% (67%), while for ‘14 days since 100 cases’
the T d overestimation is negligible, 3% (6%). This difference is caused by low probability of
appearance of super- or hyper-spreaders in the first weeks of the outbreak.

We note that T d estimation for a given country based on available data is equivalent to the analysis of
a single stochastic trajectory and that at a very initial stage the epidemic can cease. Probability of
extinction is larger when a small fraction of super-spreaders is responsible for a large fraction of cases.
In figure 3, we provide extinction probability, p̂ext, which in the extreme case of 1% of hyper-
spreaders reaches 29%, whereas without hyper-spreaders (or super-spreaders) is 11%.

The examples shown in figures 2 and 3 are focused on the case in which the Td ¼ 2 days, which is
close to T d estimated for Spain and New York State. After removing super-spreaders (assumed to be
responsible for 50% of transmissions) the doubling time would be equal to 3.05 days, whereas after
removing hyper-spreaders (responsible for 66.7% of transmissions) the doubling time would be equal
to 4.24 days. The doubling times in the range 5.2–7.4, obtained by analysing early onsets of the
epidemic (Wu et al. [10,15] and Li et al. [16]), exceed our model prediction obtained after removing
66.7% of transmissions by hyper-spreaders, suggesting that the fraction of transmissions for which
hyper-spreaders are responsible can be even larger. Endo et al. estimated that 80% of secondary
transmissions could have been caused by 10% of infectious individuals [19].

Finally, we compare T d estimates obtained for eight considered locations using the ‘14 days since 100
cases’method (as in figure 1) or the ‘30 days since the first case’method. As expected, T d estimates using
‘30 days since the first case’method in most cases are larger and more dispersed (in range 1.92–12.6) than
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the estimates based on the primary method (1.86–2.88). Results shown in table 2 clearly indicate that the

‘14 days since 100 cases’ method is more reliable. Its disadvantage lies in the fact that for a given location
the T d estimate is possible when the epidemic is fully developed (see third and fourth columns of table
2). It is, however, important to note that for China the ‘14 days since 100 cases’ method estimate (chosen
in our study and givingR0(T d) in range 5.6–7.3) was possible on 4 February 2020, before the surge of the
epidemic in Europe and USA, and more than one month ahead of the first European country-wide
lockdown that was imposed in Italy (9 March 2020).

3. Conclusion
Based on epidemic data from China, New York State and six European countries, we have estimated that
the basic reproduction numberR0 lies in the range 4.7–11.4 (5.6–7.3 for China), which is higher than most
previous estimates [4,5,8]. There are two sources of the discrepancy in R0 estimation. First, in agreement
with data on the incubation period distribution (assumed to be the same as the latent period
distribution), we used a model with six ‘exposed’ states, which substantially increases R0 ðT dÞ with
respect to the models with one or two ‘exposed’ states. Second, we estimated T d based on the two-
week period of the exponential growth phase beginning on the day in which the number of
cumulative registered cases exceeds 100, or when the number of cumulative registered fatalities
exceeds 10. Importantly, values of T d estimated from the growth of registered cases and from the
growth of the registered fatalities led to similar R0 estimates. This approach, in contrast to estimation
of R0 based on individual case reports, allows to implicitly take into account super-spreading events
that substantially shorten T d. Spatial heterogeneity of the epidemic spread observed in many
European countries, including Italy, Spain and Germany, can be associated with larger or smaller
super-spreading events that initiated outbreaks in particular regions of these countries. Lack of, or
sporadic super-spreading events in first phase of epidemic explains why T d estimated using the ‘30
days since the first case’ method gives in most cases larger and more dispersed values than our
method of choice: ‘14 days since 100 cases’. This, in turn, suggests that in general the reproduction
number calculated based on early epidemic development can be probably underestimated, and thus
in the case of future epidemics must be considered with caution.

Our estimates are consistent with current epidemic data in Italy, Spain and France. As of 24 April
2020, these countries managed to terminate the exponential growth phase by means of country-wide
quarantine. Current COVID-19 Community Mobility Reports [25] show about 80% reduction of
mobility in retail and recreation, transit stations and workplaces in these countries. Together with
increased social distancing, this reduction possibly lowered the infection rate β at least fivefold;
additionally, massive testing reduced the infectious period, 1/γ. Consequently, we suspect that the
reproduction number R = β/γ was reduced more than fivefold, which brought it to the values
somewhat smaller than 1. This suggests that R0 in these countries could have been larger than 5.

4. Methods
4.1. SEIR model equations and parametrization
The dynamics of our SEIR model is governed by the following system of ordinary differential equations:

dS
dt

¼ �b I(t)S(t)=N (4:1)

dE1

dt
¼ b I(t) S(t)=N �msE1(t), (4:2)

dEi

dt
¼ msEi�1(t)�msEi(t), 2 � i � m, (4:3)

dI1
dt

¼ msEm(t)� n g I1(t), (4:4)

dI j
dt

¼ n g I j�1(t)� n g I j(t), 2 � j � n, (4:5)

dR
dt

¼ n g In(t), (4:6)

where N = S(t) + E1(t) +… + Em(t) + I1(t) +… + In(t) +R(t) is the constant population size, and I(t) = I1(t) +
… + In(t) is the size of infectious subpopulation. As m is the number of ‘exposed’ substates and n is the
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number of ‘infectious’ substates, there are m + n + 2 equations in the system. In the early phase of the

epidemic, 1− S(t)/N≪ 1 and with constant coefficients β, σ and γ the growth of R (as well as Ei

and Ij) is exponential.
An important property of a given SEIR model parametrization is its implied distribution of

generation interval (GI), the period between subsequent infection events in a transmission chain.
While the expected GI is easily computable from model parameters as hGIi ¼ s�1 þ 1

2 g
�1 (the mean

period of infectiousness is halved to reflect the assumption that the infection occurs in a random time
during the period of infectiousness [17]), it can be hardly estimated based on even detailed
epidemiological data. It should be noted that in some sources the formula 〈GI〉 = σ−1 + γ−1 is used (e.g.
[26]), in which it is assumed that the infection occurs at the end of the period of infectiousness, not at
a random point of this period. GI may be related to the serial interval, SI, the period between the
occurrence of symptoms in the infector and the infectee. Although GI and SI may have different
distributions, their means are expected to be equal and thus may be directly compared. Our
parametrization implies 〈GI〉 = 6.73 days, which is consistent with 〈GI〉 of the model by Ferguson et al.
(6.5 days) [27] and the estimates of 〈SI〉 by Wu et al. (7.0 days) [15], Ma et al. (6.8 days) [28] or Bi et al.
(6.3 days) [29].

The short period of effective infectiousness reflects the assumption that the individuals with
confirmed infection are quickly isolated or self-isolated and then cannot infect susceptible individuals.
This enabled us to identify the reported increase of confirmed cases with the transfer of the
individuals from the (last substate of the) ‘infectious’ compartment to the ‘removed’ compartment of
the SEIR model. In addition to the currently diseased individuals that remain isolated, the ‘removed’
compartment contains the recovered (and assumed to be resistant) and the deceased individuals.

We assume the same 1/γ = 2.9 days in all locations and times, being, however, aware that the mean
infectious period may shorten over time due to the implementation of protective health-care practices,
increased diagnostic capacity, and contact tracing [29]. In turn, the mean latent period, 1/σ, may be
considered an intrinsic property of the disease. As the distribution of the latent period is not known,
as a simplification, in our model, the distribution of the latent period (time since infection during
which an infected individual cannot infect) is assumed to be the same as the distribution of the
incubation period (time since infection during which an infected individual has not yet developed
symptoms). We demonstrated the influence of 1/σ on the estimation of R0 in electronic
supplementary material, figure S1.

4.2. Estimation of the doubling time and the basic reproduction number
Growth rates used for estimation of respective doubling times, T d, were determined by linear regression
of the logarithm of the cumulative confirmed cases and cumulative deaths in the exponential phase of
the epidemic separately in each of eight considered location. We discarded initial parts of trajectories
with less than 100 confirmed cases (or 10 registered fatalities) and used two-week-long periods to
strike a balance between: (i) analysis of epidemic progression when stochastic effects associated with
individual transmission events, including super-spreading, are relatively small (see stochastic
simulation trajectories in electronic supplementary material, figure 2a), and (ii) analysis of the
exponential phase of epidemic progression, which is relatively short due to imposition of restrictions.
We expect that the trajectories of deaths may be less affected by under-reporting; nevertheless,
doubling times obtained from growth rates of cumulative cases and cumulative deaths turn out to be
quite consistent.

In the context of our SEIR model, the doubling time T d and parameters β, σ, γ, n, m satisfy the relation

b(T d; s, g, m, n) ¼
log 2
T d

log 2
T d ms þ 1

� �m

1� log 2
Td n g þ 1

� ��n (4:7)

that enables calculation of the basic reproduction number using the doubling time T d estimated directly
from the epidemic data as

R0(T d) ¼ b(T d; s, g, m, n)
g

, (4:8)

in accordance with Wearing et al. [12] and Wallinga & Lipsitch [13].

Data accessibility. All data used in this theoretical study are referenced.
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