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DYNAMICS OF COVID-19 PANDEMIC AT CONSTANT

AND TIME-DEPENDENT CONTACT RATES

Marek Kochańczyk1, Frederic Grabowski2 and
Tomasz Lipniacki1,*

Abstract. We constructed a simple Susceptible–Exposed–Infectious–Removed model of the spread
of COVID-19. The model is parametrised only by the average incubation period, τ , and two rate
parameters: contact rate, β, and exclusion rate, γ. The rates depend on nontherapeutic interventions
and determine the basic reproduction number, R0 = β/γ, and, together with τ , the daily multiplication
coefficient in the early exponential phase, θ. Initial R0 determines the reduction of β required to contain
the spread of the epidemic. We demonstrate that introduction of a cascade of multiple exposed states
enables the model to reproduce the distributions of the incubation period and the serial interval reported
by epidemiologists. Using the model, we consider a hypothetical scenario in which β is modulated solely
by anticipated changes of social behaviours: first, β decreases in response to a surge of daily new cases,
pressuring people to self-isolate, and then, over longer time scale, β increases as people gradually accept
the risk. In this scenario, initial abrupt epidemic spread is followed by a plateau and slow regression,
which, although economically and socially devastating, grants time to develop and deploy vaccine or
at least limit daily cases to a manageable number.
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1. Introduction

COVID-19 is a rapidly spreading disease caused by a novel coronavirus, SARS-CoV-2, transmitted between
people via respiratory droplets. Typical symptoms are fever, dry cough, and shortness of breath. In severe cases,
infection leads to pneumonia and acute respiratory distress syndrome. There is currently no vaccine or specific
antiviral treatment. The virus was first reported in Wuhan, Hubei, China, in December 2019. The disease
had spread widely over the province of Hubei, but was contained after imposing strict quarantine. Reported
peak of the daily confirmed cases of about 4000 was reached on February 3, ten days after the quarantine had
been imposed. The number of daily new cases decreased below 100 in early March. Currently (as of March 20,
2020), despite some efforts, nearly exponential growth with more than 20 000 cumulative cases is observed in
Italy (nearly 50 000 cumulative cases), Spain, Germany, and the US. The World Health Organization (WHO)
declared COVID-19 a pandemic.
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Figure 1. Scheme of the model with notation guide and default parameter values. The model is
fully characterized by parameters β, γ, and τ . The latent period, assumed to be substitutable
with the incubation period, results from the inclusion of k = 5 intermediate exposed states
and follows the Erlang distribution with average τ = 5 days. The serial interval follows the
hypoexponential distribution with rates Λ = {k/τ , k/τ , k/τ , k/τ , k/τ , γ}.

To characterize the dynamics of COVID-19 spread and be able to consider hypothetical long-term scenarios,
we developed a simple Susceptible–Exposed–Infectious–Removed model. The model has only 3 parameters:
average incubation period, τ , estimated to be approximately 5 days [11, 14], and two parameters that are affected
by nonpharmaceutical protective measures: the infectious–susceptible contact rate, β, and the exclusion rate, γ.
Isolation (quarantine) reduces β, while testing increases the rate at which infectious individuals are hospitalised
or isolated, γ. These two rates determine the basic reproduction number, R0 = β/γ. The model is applied
to estimate the fold change of β required to contain the epidemic at its early stage. Since initial government-
mandated restrictions appear to be insufficient to contain the spread of the disease at its early stage in European
countries, we use the model to put forward long-term scenarios, in which we assume time-dependent β that
reflects anticipated changes in social behaviour rather than the impact of administratively-imposed control
measures.

2. Results

2.1. Model

We consider a variant of the Susceptible–Exposed–Infectious–Removed (SEIR) model, itself an extension
of the commonly used SIR model [1, 8]. As in typical SEIR models, we assume that susceptible individuals
get infected by infectious individuals at the rate proportional to the contact rate, β, and in this way become
exposed (and infected), and later, after the latent period, become infectious. Ultimately, at the exclusion rate
γ, infectious individuals turn into removed individuals (which is an umbrella class comprising confirmed cases
currently quarantined, handled by the healthcare, recovered with acquired resistance, or the deceased). Removed
individuals do not infect.

In contrast to most SEIR models, instead of a single exposed (infected) state, we have introduced multiple
exposed states (E1, . . . , E5 in Fig. 1). With k = 5 exposed states such representation is equivalent to the
assumption that the latent period is distributed according to the Erlang distribution with the “shape” parameter
k = 5 and the rate parameter λ = k/τ , where τ is the mean latent period. Since there are no available estimates
of the mean latent period and the disease spreads mainly through airborne droplets disseminated by the coughing
or sneezing infected persons, we assume that during the incubation period the infected individuals are effectively
noninfectious and thus the mean latent period can be set equal to the estimated average incubation period,
τ ≈ 5 days [11, 14].
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The serial interval, defined as the time between onset of symptoms in a primary case and onset of symptoms
in its secondary cases, that can be seen as an emergent property of the model, is distributed according to the
hypoexponential distribution resulting from a series of k = 5 exponential distributions, each originating from
one step of the incubation process, having mean times τ/k, and one exponential distribution, originating from
the exclusion process, with mean time 1/γ. At τ/k = 1 day and 1/γ = 3 days, at which the rates of the
hypoexponential distribution are Λ = {1, 1, 1, 1, 1, 1

3}, the model implicates a distribution of the serial interval
that agrees perfectly with the distribution obtained from epidemic data (see Fig. 2B in Ref. [12]).

All model parameters—β, γ, and τ (together with k, as demonstrated further)—are thus constrained
by available data. Deterministic model dynamics is described by a system of 8 ordinary differential
equations (4.1a)–(4.1e) given and analysed in more detail in Section 4.

2.2. Dynamics of infection spread with respect to all model parameters

The exponential phase of the epidemic growth, during which the number of removed (confirmed) individuals
grows as R(t) = R(t=0)× exp(α t), can be analysed based on an implicit formula (see Sect. 4 for derivation):

β

γ + α
=
(

1 +
α τ

k

)k
, (2.1)

which, when the number of intermediate exposed steps is very large (formally, when k →∞), can be replaced
by

β

γ + α
= eα τ . (2.2)

In the subsequent analysis we will use the daily multiplication coefficient:

θ := eα, (2.3)

that describes the day-to-day increase of the new confirmed cases (for example, when the number of new cases
is 25% higher than the number of new cases on the previous day, then θ = 1.25).

In Figure 2 we show the dependence of θ on parameters β, γ, and τ , according to (2.1). Either a decrease
of the contact rate, β, or increase of the exclusion rate, γ, result in reduction of θ below 1 and containment of
the epidemic. Practically, β is reduced by quarantine or isolation of individuals, which both lower the potential
number of contacts per individual per day, while γ is increased by performing more diagnostic tests, which
reduces the expected time during which an infected individual may infect susceptible ones. Coefficient θ decreases
also with increasing τ (Fig. 2C), but this parameter is not controllable by protective measures.

Equations (2.1) and (2.2) imply that
α > 0 (equivalently, θ > 1) for β > γ,

α = 0 (equivalently, θ = 1) for β = γ,

α < 0 (equivalently, θ < 1) for β < γ.

Further, parameters β and γ determine the expected number of susceptible individuals that will be infected
by each infectious individual, which in the initial phase of the epidemic is expressed by the basic reproduction
number:

R0 :=
β

γ
. (2.4)
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Figure 2. Dependence of the daily multiplication coefficient, θ, on all model parameters: (A)
contact rate, β, (B) exclusion rate, γ, and (C) average incubation period, τ . Default parameter
values are marked with dotted rectangles.

Although the daily multiplication coefficient, θ, is not a function of solely R0 (Fig. 2), the value of coefficient
R0 is critical for assessment of propagation of the epidemic: R0 > 1 implies exponential progression, R0 < 1
implies exponential regression.

2.3. Relation of the daily multiplication coefficient, θ, and the basic reproduction
number, R0

In Figure 3A we show the dependence θ(R0) for two values of γ, 1/(5 days) and 1/(3 days), and in the
limit of γ →∞. The figure should be read as follows. An initial θ that can be determined based on data for a
considered country or region corresponds to some value of R0. Since to terminate the exponential growth phase,
R0 has to be reduced to 1, Figure 3A shows to which extent R0 should be reduced to contain the epidemic.
The reproduction number can be reduced by either reducing the contact rate or increasing the exclusion rate,
but the latter is problematic when the number of cases grows rapidly.

Assuming γ = 1/(3 days), which is the default value in the model, the data showing epidemic dynamics in
China (Fig. 3B) can be interpreted as follows. Based on the initial exponential phase (trends in one or two weeks
marked in Fig. 3B) one can estimate that θ = 1.4 which corresponds to R0 ' 8.6 (Fig. 3A). Thus, to “stabilise”
the epidemic, China had to reduce R0 by a factor of 8.6. However, as indicated by the fall of the number of
daily new cases, China reduced θ to approximately 0.89 = θ′ (see Sect. 4), which implies R = 0.34 and effective
reduction of R0 about 25 times. We should notice that several authors [9, 19], also based on epidemiological data
from China, obtained much lower estimates of R0; we will come back to this important issue in the Section 2.4.

The ∼10-day time lag between introduction of the quarantine and the time of the peak number of daily
new cases can be attributed to: (1) the incubation period that causes that infected individuals are registered
about τ = 5 days after infection and (2) the fact that the quarantine does not prevent mixing of infectious and
susceptible individuals in households, adding next τ = 5 days to onset of the disease among family members.
Unfortunately, this implies that even if strict quarantine is imposed immediately in European countries it will
have a delayed effect.

In the case of Italy, “soft quarantine” imposed on February 21 in the most affected Italian province, Lombardy,
allowed to reduce θ from the initial value of 1.5 (calculated based on the week of February 23–29, 2020) to the
current value of θlast week = 1.14 (calculated based on the last week, March 14–20, 2020). This implies reduction
of R0 from about 12 to 2.6, which is less than 5 times. To just contain the epidemic, that is, reduce R0 to 1 and
stabilise the number of daily cases, Italy should further reduce the contact rate more than two-fold. Figure 3A
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Figure 3. Daily multiplication coefficient predicted by the model and estimated from data.
(A) Dependence of the daily multiplication coefficient, θ, on the basic reproduction number
R0 = β/γ. Dotted lines guide the eye to relate R0 and β coming from data for China before and
after quarantine (‘Q’) and for several European countries and the US based on last-week data.
(B) Epidemic dynamics in selected countries with high number of cumulative confirmed cases
of COVID-19 based on data from Johns Hopkins University (JHU) Center for Systems Science
and Engineering (CSSE) [16]. Value of initial θ for China is estimated based on 7 or 14 days of
the early exponential phase; current θ is estimated for countries being in the exponential phase
based on last-week data (7 days since March 14 to March 20, 2020). Introduction of quarantine
in China (January 23) is marked with ‘Q’. The range of values of R0 is computed assuming
that 1/γ is in between 3 and 5 days.

indicates that several other large European countries (Germany, France, Spain, and United Kingdom) as well as
the US, each having thousands of cases and last-week θ ≥ 1.19 (as of March 20, 2020), to contain the epidemic
should reduce the contact rate more than three-fold (in the case of the US, eight-fold). In Figure 3B we give
current values of θ and corresponding values of R0 for the mentioned countries (estimated for 1/γ = 3 days and
1/γ = 5 days).

A much different dynamics can be observed in South Korea, which is exiting the exponential phase (Fig. 3B).
Among many preventive countermeasures, until March 20, 2020, South Korea performed 316 000 tests [7], likely
substantially increasing the exclusion rate. The example of South Korea is promising as it suggests that, in
addition to extensive contact tracing and surveillance, development of easily accessible, fast, and accurate tests
may help to contain the spread of the disease.

2.4. Dependence of the basic reproduction number, R0, on the number of exposed
intermediates, k

Value of R0 for COVID-19 has been already estimated in several important studies (parameters of which
are conveniently summarized on the webpage of an online SEIR model simulator [5]). In particular, Kucharski
et al. [9] estimated that R0 = 2.35 (95% CI: 1.15–4.77), whereas Tang et al. [19] estimated that R0 = 6.47
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Figure 4. (A, B) Dependence of the daily multiplication coefficient, θ(R0), and (C) depen-
dence of the distribution of the incubation period, τ , on the number of intermediate exposed
states. In the model it is assumed that k = 5. In panel C), Erlang distribution with k = 1 is
equivalent to the exponential distribution with rate parameter 1/τ .

(95% CI: 5.71–7.23). Both estimates were based on SEIR-type models. The main difference between our model
and these models is the inclusion of a cascade of five intermediate exposed states. This is equivalent to assuming
that (1) the incubation period is Erlang-distributed with parameters k = 5 and λ = k/τ , and (2) the serial
interval follows a hypoexponential distribution (in agreement with Li et al. [12]). Importantly, the simplifying
assumption that there is only one intermediate state is equivalent to the assumption that the incubation period
follows an exponential distribution. A bit surprisingly, this simplification substantially modifies R0 estimated
from θ. In Figure 4, we show θ(R0) for two values of γ: 1/3 (default) and 1/5 day−1, calculated assuming that
the number of intermediate states is 1, 2, 3, 5, 10, or∞ (the last case has been determined based on an equivalent
model represented by delay differential equations, see Sect. 4). One can observe that for θ = 1.4, the value of
R0 predicted using a model with one intermediate state is more than 1.5 times smaller than R0 predicted for
the model with k = 5 intermediate states (5.4 vs. 8.6 at γ = 1/3 day−1; of note, the discrepancy would be larger
for larger θ; the ratio of R0 computed for two different fixed values of k does not depend on γ). As shown in
Figure 4C, the exponential distribution of the incubation period with rate 1/τ , or even Erlang(k=2, λ = k/τ),
are not supported by data that indicate much narrower distribution with its probability mass separated from
zero [11, 14]. In conclusion, we think that our estimate of the basic reproduction number is closer to its true
value.

2.5. Hypothetical long-term scenarios

2.5.1. A scenario with constant contact rate, β

The above analysis of the epidemiological situation in several European countries and in the US suggests
that the protective measures instituted in these countries failed to contain the epidemic. It is thus worth to
consider long-term scenarios in which the cumulative number of removed cases, R, becomes comparable to the
population size, N , substantially decreasing the susceptible fraction, fS. In such case, initial exponential growth
ceases, the number of daily new cases culminates in a maximum and then drops due to depletion of susceptible
individuals.

When the reproduction number remains constant, the maximum number of daily new cases is fully determined
by initial θ and exceeds 0.3 million for θ = 1.05 and 1 million for θ = 1.1 in a population of N = 50 million
people (Fig. 5A). It is clear that even the lower of the two numbers exceeds the healthcare capacity of a country
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Figure 5. Long-term epidemic dynamics at a constant contact rate. (A) Daily new cases for
two values of the initial daily multiplication coefficient, θ, and the initial number of removed
(confirmed) cases, R(t= 0), equal 500. (B) Time to the worst day for three initial numbers
of removed (confirmed) cases and new cases in the worst week and month. In both panels,
population size N = 50 million, 1/γ = 3 days.

of tens of millions inhabitants such as Italy (∼60 million), South Korea (∼50 million), or Poland (∼40 million).
This, in turn, implies higher case fatality rate, which may approach the rate of severe cases (10–15% [10]).
Correspondingly, with θ changing from 1.05 to 1.1, time to reach the maximum of daily new cases shortens
nearly twice: from 7.5 to 4 months, assuming the initial number of removed cases, R(t = 0), equal 500. We
should notice that achieving θ = 1.05 as well as θ = 1.1 require quarantine; in “non-quarantined” countries,
such as currently France, Germany, Spain, United Kingdom, and the US, θ & 1.2 (Fig. 3B).

In Figure 5B, we simultaneously show the number of the maximum weekly and monthly new cases and
the time to reach the maximum. Parameter θ > 1.1 implies that within one (worst) month more than half of
population will be infected, whereas θ < 1.1 require long-term quarantine.

2.5.2. Scenarios with time-dependent contact rate, β

We consider the scenario with the constant reproduction parameter not realistic. Initially, when the number
of cases is relatively low, the only way to reduce the contact rate is an administratively-imposed quarantine.
However, one could expect that when the number of daily new cases exceeds a threshold, people will begin
reducing their contacts voluntarily [2] or taking other protective measures such as careful hand-washing or
physical distancing to reduce their number of effective contacts (reviewed in Ref. [4]). To account for this
behavioural aspect, we assume that the contact rate is a decreasing function of daily new cases. We propose to
assume that

β = β0 ×
H

H + (daily new cases)
. (2.5)
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Figure 6. Long-term epidemic dynamics with time-dependent contact rate. (A, B) Contact
rate reduced in response to the surge in the daily number of cases. (C) Contact rate reduced
in response to the surge in the daily number of cases and modulated by the duration of the
quarantine. In panels A and C, initial θ = 1.14, which is equal to last-week θ for Italy. In all
panels, population size N = 50 million and R(t=0) = 500.

This simple formula implies, in particular, that when the number of daily new cases equals H, people reduce
their contacts twice. The value of parameter H can be culture-dependent. In Figure 6A we show long-term
epidemic dynamics assuming H = 10 000. In the considered scenario, the number of daily new cases relatively
quickly reaches 15 000 and then decreases slowly (over years) with a decreasing susceptible fraction, fS. The
scenario shown in Figure 6A results in a manageable number of new cases and grants time to develop, produce,
and distribute a vaccine. For a given β0, the maximum number of daily cases is an increasing function of H,
whereas the time in which the number of daily new cases decreases to the half of the maximum value, t↘max/2,
decreases with H; a bit surprisingly, t↘max/2 depends mainly on β0 ×H (Fig. 6B).

Finally, we consider a scenario in which a secondary behavioural effect modifies the primary effect discussed
above. As before, we assume that people reduce their contacts in response to an increasing risk, but in the course
of their (self)quarantine they gradually accept an increasing risk [17]. (As an aside, when protective measures
are lifted rapidly, such behaviour can lead to epidemic waves observed during the 1918–1919 A/H1N1 influenza
pandemic [6].) Here we propose to model this effect by assuming that

H(t) = H0 ×
t+ Tnegl

Tnegl
, (2.6)

where t is (somewhat arbitrary) time from the beginning of the epidemic and Tnegl is the time scale on which H
(and risk acceptance, or “negligence”) doubles. In Figure 6C we show long-term epidemic dynamics assuming
H = 10 000 and three values of Tnegl: 3, 6, and 9 months. Interestingly, the dynamics is characterized by a
relatively broad plateau, which is desirable due to limited capacity of the healthcare system.

3. Discussion

In this study, we proposed a Susceptible–Exposed–Infectious–Removed model to analyse how the dynamics of
the COVID-19 spread depends on the contact rate, β, and the exclusion rate, γ—two model parameters that can
be modulated by nontherapeutic interventions. The remaining model parameter is the average incubation period,
assumed equal 5 days [11, 14]. A decrease of the contact rate, that can be achieved by imposing quarantine,
results in a decrease of the daily multiplication coefficient θ that describes growth of the cumulative as well as
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the daily new cases in the exponential phase. Coefficient θ can be reduced also by an increase of the exclusion
rate that in turn depends on efficiency of the healthcare. Large exclusion rate is achieved by fast identification
and isolation of infectious individuals. However, when the number of cases is very high, achieving large exclusion
rate is nearly impossible; in this case, reduction of the contact rate remains the only option.

In the early phase, before preventive measures were introduced, COVID-19 had been spreading in China and
then in Italy with θ = 1.4 and θ = 1.5, respectively. This allowed us to estimate the initial basic reproduction
number in these countries: R0 ' 9 and R0 ' 12, respectively. Of note, even without prevention the reproduction
number depends on numerous different factors such as sociological context, hygiene, and weather.

Data describing epidemic dynamics in China suggest that very strict quarantine and other preventive efforts
imposed in the most affected China province, Hubei, [9, 20] allowed to reduce R0 about 25-fold (which is on par
with the estimated reduction of transmissibility of 97–100% [18]). This allowed the Chinese to reduce coefficient
θ from about 1.4 in the exponential growth phase to about θ′ = 0.89 in the regression phase. In Italy, however,
in response to the mild restrictions, θ was reduced from about 1.5 in the early phase to 1.14 observed currently
(March 14–20, 2020), which corresponds to the reduction of R0 from about 12 to 2.6; thus, further ∼3-fold
reduction is necessary to contain the exponential epidemic spread.

Higher reduction of R0 is required in four other considered European countries, France, Germany, Spain, and
United Kingdom, with the number of cases exceeding 10 000 and current θ & 1.2 (March 14–20, 2020). Such
reduction of R0 would allow only to limit growth of daily new cases, but further four-fold reduction is necessary
to bring the epidemic to the regression phase with θ′ = 0.89, as was reported in Hubei. Higher θ′ ∈ (0.89, 1.0)
may also allow to eliminate the disease but the required quarantine time would be longer. It appears that most
of European countries follow the relatively mild regulations adopted in Italy, which (as of March 20, 2020)
proved to be insufficient to contain the epidemic, and, correspondingly, with a week-to-month delay, follow the
Italian trajectory of the cumulative daily new cases.

It is important to notice that the current number of removed (confirmed) individuals may be much lower
than the total number of current exposed and infectious individuals: E1(t) + · · ·+ Ek(t) + I(t). The epidemic
growth that is associated with large R0 implies a proportional large number of not yet confirmed cases that
in the next few days will contribute to the number of cumulative confirmed cases. The confirmed fraction
fconfirmed(t) = R(t)/[E1(t) + · · ·+ Ek(t) + I(t) +R(t)], that remains constant in time in the exponential phase,
can be calculated based on (4.3) and (4.4) as fconfirmed = 1/R0.

Of concern is COVID-19 lethality, which in quantitative terms is usually expressed as the case fatality rate,
assessed as the ratio of deaths to confirmed cases. This definition, used by WHO, works well in the steady state
when the number of active cases remains constant or when historical data of previous epidemics are analysed.
However, in the exponential growth phase, the case fatality rate underestimates the real rate of deaths due to
the disease. When the average time between the onset of symptoms or positive test and death is n days, the
current cumulative number of deaths should be divided by the cumulative number of cases recorded m days
before, which is θn times lower than the current number. This observation may to some extent explain puzzling
large differences between fatality rates across European countries. In Germany, having the lowest fatality rate
(among countries with a high number of cases), identification of people by testing at early stage of the disease
and high standard of public healthcare may result in large n, which together with high θ = 1.28 (March 14–20,
2020) may result in a significant underestimation of the case fatality rate. Assuming n between 10 and 14 days,
one can find that the case fatality rate may be underestimated by a factor between 1.2810 and 1.2814, that is,
12–32 times. Finally, we should notice that in noncontainment scenarios, the expected death toll may not be
predicted based on the case fatality rate, because a significant number of cases may be asymptomatic (and some
individuals could possibly turn out resistant) [13].

Since current data suggest that in Europe, US, and Iran the epidemic will not be contained in its early phase,
we have analysed longer-term scenarios. The model with the constant contact and exclusion rates predicts that
even for a relatively small exponential growth phase coefficient, θ = 1.05, the number of daily new cases (in a
50-million population) will exceed 0.3 million, well above the capacity of the healthcare system. Additionally,
keeping the coefficient θ at such low level requires stringent limitation of personal contacts, while the time to
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the peak of the epidemic would be about 7 months. One of potential consequences of exceeding the healthcare
system capacity is the increase of case fatality rate due to the lack of necessary medical staff and equipment.

We think that the more realistic scenarios are these in which the contact rate varies over time. In early
phase of the epidemic, the contact rate may be reduced only by forcing people to stay home; in the latter
phase, when the number of daily cases exceeds a threshold, people isolate themselves to reduce the risk. In such
scenario, the number of daily new cases reaches peak proportional to an assumed “fear” threshold and then
slowly decreases due to the decreasing fraction of susceptible individuals. Such scenario seems more realistic
and, although devastating for both the economy and social life, grants time to develop and administer vaccine.
Historical data on the 1918–1919 A/H1N1 influenza pandemic suggest also that this “fear” threshold may not
be constant in time, because people suffering from prolonged quarantine may tend to accept higher risk. When
this “negligence” effect is included, one may obtain trajectories for which fast growth is followed by a plateau
and then relatively fast decrease of daily cases. A bit surprisingly, this scenario, although not resulting from
centrally imposed preventive policies, may be the most plausible non-containment scenario balancing health
and economic costs.

4. Methods

4.1. Model equations

The dynamics of the system depicted in Fig. 1 is governed by the following system of 8 ordinary differential
equations:

dS

dt
= −β fS(t) I(t), (4.1a)

dE1

dt
= β fS(t) I(t)− k

τ
E1(t), (4.1b)

dEj
dt

=
k

τ
Ej−1(t)− k

τ
Ej(t) for 2 ≤ j ≤ k, (4.1c)

dI

dt
=
k

τ
Ek(t)− γ I(t), (4.1d)

dR

dt
= γ I(t), (4.1e)

where k = 5 is the assumed number of intermediate exposed states and fS = S(t)/N with constant N =
S(t) + E1(t) + · · ·+ Ek(t) + I(t) +R(t) being the population size (with included deaths).

In the early phase of the epidemic, fS ∼ 1. Under the assumption that fS = 1, the systems has the exponential
solution:

Ej(t) = Ej0 exp(α t) for 1 ≤ j ≤ k, (4.2a)

I(t) = I0 exp(α t), (4.2b)

R(t) = R0 exp(α t), (4.2c)

with R0 being the initial cumulative number of confirmed cases and

I0(R0) = R0
α

γ
, (4.3a)

Ej0(R0) = R0
β

γ

ατ

k

(
1 +

ατ

k

)−j
for 1 ≤ j ≤ k, (4.3b)
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where α is given implicitly:

β = (γ + α)
(

1 +
α τ

k

)k
. (4.4)

When the population cannot be considered as entirely susceptible, that is, when N −S(t)� N is not satisfied,
the system becomes essentially nonlinear and has no analytical solutions. This system is solved numerically using
Wolfram Mathematica (Wolfram Research, Inc., Champaign, IL, US; notebook is available online [15]). All
numerical simulations start from an initial condition in which Ei(t= 0) = Ei0, I(t= 0) = I0, R(t= 0) = R0,

and S(t= 0) = S0 = N −
∑k
j=1Ej0 − I0 − R0, where R0 is the given initial cumulative number of confirmed

cases and Ei0(R0) and I0(R0) are computed according to 4.3, assuring that the initial condition lies on the
exponential trajectory. In the model variant with time-dependent contact rates, daily new cases are computed
as γ I(t). Simulations of this model variant start from the same initial condition that lies on the exponential
trajectory.

It is noteworthy that in the limit of k → ∞ the considered model converges to the following three-
compartment “SER” model with delay τ (equal to the average incubation period):

dS

dt
= −β fS(t)E(t− τ), (4.5a)

dE

dt
= β fS(t)E(t− τ)− γ E(t− τ), (4.5b)

dR

dt
= γ E(t− τ). (4.5c)

with fS(t) = S(t)/N where N = S(t) +E(t) +R(t) = const. The delay differential equations-based formulation
(4.5a–4.5c) may admit negative-valued solutions in the epidemic regression phase.

4.2. Estimation of θ

Parameter θ for the initial exponential growth case is estimated based on JHU CSSE data [16] of cumulative
cases as:

θ =

(
cumulative number of cases in day dlast

cumulative number of cases in day dfirst

) 1
∆t

, (4.6)

where for China day dfirst is January 20 and day dlast is January 26 or February 2, 2020, with ∆t = dlast − dfirst

− 1 = 6 or 13, respectively. For other countries, last-week data are used: dfirst is March 14 and dlast is March 20,
2020; ∆t = 6.

It should be noticed that as long as the epidemic progresses exponentially, coefficient θ estimated based
on the increase of cumulative cases R(t) and coefficient θ′ estimated from the number of daily new cases,
R(t)−R(t− (1 day)), should be equal (which is obscured by unavoidable fluctuations in daily data). However,
when the epidemic ceases, θ calculated based on R(t) reaches 1, while θ′ becomes smaller than 1, reflecting
an exponential fall of the number of the daily new (as well as the active) cases. Parameter θ′ in the epidemic
regression phase in China has been estimated as the decay rate of the daily new cases in the time span from
February 2 to March 2, 2020.

Note added in the proof. As of April 4, 2020, the nonessential industry lockdown in Italy, Spain, and
France, which led to an unprecedented decrease of workplace traffic to 1/3 of pre-epidemic level [3], allowed to
terminate the exponential growth phase. These three countries appear to have reached (at least local) maxima
of daily new cases.
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