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Received March 31, 2006; revised August 12, 2006
Published online: November 6, 2006 � Springer-Verlag 2006

Summary. Taking for granted that the free energy function is invariant under a change of a finite strain

measure and/or the reference configuration, Hill’s transformation rules for selected fundamental con-

stitutive quantities (such as tangent elastic modulus, plastic increments of total strain and work conjugate

stress, the work of work-conjugate stress, the work expended in the plastic part of incremental strain etc.)

are derived in a manner different from that of Hill. On this background distinguished by Hill [6] subtle

aspects of invariance in mechanics of elastic plastic solids are discussed. It is shown that the plastic part of

the increment of elastic strain energy (when taken with reverse sign) defines the true invariant incremental

plastic work which in general is not equal to the work expended in the plastic part of the strain increment.

It plays the role of a potential for the plastic part of the increment of work-conjugate stress. This fun-

damental fact has not found proper account in the literature. The analytical interrelations between two

apparently different theoretical frameworks, Hill-Rice (fixed reference configuration) and Eckart-Mandel

(mobile unloaded configuration) are discussed showing their equivalence. Since the transformation rules

are complex in the general 3D case, the first part of the paper illustrates instructively the discussed aspects

in a 1D situation (simple tension or simple extension).

1 Introduction

In mechanics of finite elastic-plastic deformations the partitioning of the strain rate (or,

equivalently, the total strain increment) into elastic and plastic parts is not an invariant

concept (cf., e.g., [8] and [10]). That is, in general, the physical dimension change of the

material element corresponding to the plastic part of the strain increment is not independent

of the choice of strain measure and reference configuration [16]. As a consequence, neither

the product of the work-conjugate stress and the plastic part of incremental strain nor the

product of stress and incremental permanent strain do, in general, coincide with incremental

true plastic work, say dWp. The latter is commonly understood as the incremental total work

of straining from an elastic-plastic state to a neighboring elastic-plastic state, reduced by the

difference between the elastic strain energies at those two elastic-plastic states. One of the

main purposes of this paper is to derive the general relation between dWp and other defi-

nitions of incremental plastic work. The other objective is to derive the transformation

formula that links different measures of incremental plastic strain. To this end, one has to go

beyond the standard frame of the description of a material behavior, where a single specified

strain measure is adopted. In fact, there are a lot of possible choices of six parameters that

taken together determine the current shape of a material element undergoing a homogeneous
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deformation [6]. The particular choice may be identified with a generalized coordinate system

in a 6-dimensional abstract space of parallelepipeds. In most cases a change of the gener-

alized coordinates (use of the new strain measure or/and new reference configuration) entails

the change of the value of the physical quantity that is employed while describing the con-

stitutive property of a material. The question is: what are the transformation rules linking the

‘‘old’’ and ‘‘new’’ values, and which notions and quantities are invariant. The foundations for

systematic analysis of this type of invariance of the constitutive objects has been developed by

Hill [2], [5], [6], [8], and later extended to thermoelasticity in [7] and thermoplasticity in [10].

The constitutive object is any quantity (e.g., stress, incremental plastic work, hardening

modulus etc.) that enters a constitutive relation and possesses a definite transformation rule

under the change of the generalized coordinate system. The transformation rules need not be

linear nor homogeneous. The analysis of the invariance furnishes transformation rules for

new objects, what enables full discussion of their significance. The elements of that type of

analysis are also employed here. In addition the connections between the two most popular

theoretical frameworks, Hill-Rice [9] and Eckart-Mandel [1], [11] are discussed showing their

formal equivalence. Special attention is focused on the interrelations existing between dif-

ferent measures of incremental plastic work. No assumptions concerning the specific inelastic

behavior of an elastic-plastic material are made.

As the transformation rules have rather involved character in the general case, the discussion

of selected aspects of invariance is divided into two parts. The present first part aims at the

elementary illustration of the analysis on the example of simple tension (or compression).

Without any substantial changes it can also be applied to simple extension (or contraction, e.g.

compression of a material in a rigid cylinder). Some presented formulas may be of interest in

experimental mechanics. Most conclusions drawn here (including those concerning the mate-

rials with intrinsic elastic properties insensitive to prior plastic straining) will be shown in Part

II to be valid in general 3D situations.

2 1D illustration of the Hill-Rice theoretical framework

2.1 Preliminaries

a. Strain measures, work-conjugate stresses and their increments

i) Suppose that a thin bar of mass m0 under the action of a uniaxial load P (tension or

compression) deforms uniformly, at constant temperature, like a typical elastic-plastic material,

as illustrated in Fig. 1.

Let in the initial state (and at the initial configuration) its length, cross-sectional area and the

mass density be respectively l0, A0, .0 ¼ m0=V0 (V0 ¼ A0l0). Under action of the force PðtÞ the
dimensions of the bar change, and suppose that at time t in the actual state (current configu-

ration) the corresponding quantities are lðtÞ, AðtÞ and .ðtÞ ¼ m0=VðtÞ (VðtÞ ¼ AðtÞlðtÞ).
Assuming that the behavior of the bar material during abrupt unloading is purely elastic, but

not necessarily linear or the same after different preloading (paths A� a, B� b etc. in Fig. 1),

one can associate with its actual state at time t the conceptual instantaneous natural state (and

corresponding instantaneous stress-free unloaded configuration), i.e., the state which the bar

would have attained at time t, had the force P been instantaneously reduced to zero. In Fig. 1

the superscript ‘‘*’’ is used to denote the dimensions of the bar and its mass density in the

instantaneously unloaded configuration.

2 H. V. Nguyen et al.



In the range of large deformations, the family of load-displacement curves such as those

shown in Fig. 1 can be mapped onto many plausible strain-stress planes. The very concept of

strain employs two configurations of the bar: the current configuration and any fictitious

reference one that can be chosen at will. In Fig. 1 the length, cross-section area and mass

density of the bar in an arbitrary fixed reference configuration are denoted by lR, AR and

.R ¼ m0=V
R (V R ¼ ARlR), respectively. In particular, this configuration may be identified with

initial, actual or the conceptual unloaded configuration. In the uniaxial situation no rigid body

rotation of the longitudinal axis of a bar is admitted. The other factor that can be chosen at will

is the strain measure. In systematic analysis it is convenient to distinguish the following general

class of strain measures [3], [4], [8]:

q ¼ f ½UðtÞ�; UðtÞ ¼ lðtÞ
lR
; ð1Þ

where the smooth and monotone function f ðzÞ is called scale function which satisfies the

conditions f ð1Þ ¼ 0, f 0ð1Þ ¼ 1, and U is the stretch of the bar. The most commonly used scale

functions belong to the particular family

f ðzÞ ¼ z2n � 1

2n
; ð2Þ

where n can take any value.

ii) The strain increment that gives rise to the notion of strain-rate is defined by the elementary

total differential of Eq. (1):

dq ¼ f 0ðUÞdU; dq ¼ 1

lR
f 0½lðtÞ=lR�dlðtÞ; f 0ðUÞ � df

dU
; ð3:1–3Þ

from which it follows that in the uniaxial case only the increment of the logarithmic strain

(q ¼ e ¼ ðl� lRÞ=lR; f ðzÞ ¼ ln z;n ¼ 0) is independent of the reference length lR of the bar.
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Fig. 1. Load-displacement curve of
an elastic-plastic bar
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iii) Denote by dW an increment of total specific work (work per unit of mass). The spe-

cific [10] and standard [3] stress measures (p and �p, respectively) work-conjugate to the selected

strain measures q are defined by

dW ¼ p dq ¼ 1

.R
�p dq ¼ 1

m0
PðtÞdlðtÞ; �p ¼ .Rp: ð4Þ

They differ by an unimportant constant multiplier (mass density of a bar in the chosen

reference configuration).

By inserting Eq. (3.2) into Eq. (4) we find

p ¼ lRPðtÞ
m0 f 0½UðtÞ� ¼

s
Uf 0ðUÞ;

�p ¼ PðtÞ
ARf 0½UðtÞ� ¼

�s
Uf 0ðUÞ ð5:1; 2Þ

s ¼ PlðtÞ
m0
¼ 1

.ðtÞrðtÞ; �s ¼ .Rs ¼ .R

.
r ¼ Pl

ARlR
; r ¼ PðtÞ

AðtÞ: ð5:3–5Þ

Here r and �s are the usual Cauchy’s and Kirchhoff stress [6] and s is the specific counterpart of
�s. Note that the experimental determination of the values of work-conjugate stresses p and �p

does not require the knowledge of the actual cross-section area AðtÞ of the bar.

Remark. The determination of a value of Cauchy’s (true) stress in simple tension/compression

requires the knowledge of AðtÞ which is usually not measured. Therefore, in experimental

mechanics, in the situation when the reference configuration coincides with the initial one

ðlR ¼ l0;A
R ¼ A0Þ, one frequently adopts the ‘‘postulate of material incompressibility’’

AðtÞ ¼ A0l0=lðtÞ. In such a case P=AðtÞ ¼ Pl=A0l0. Thus, the so determined stress is in fact the

Kirchhoff stress �s.
When the strain measure belongs to the family (2), p can be expressed explicitly in terms of s

and q:

p ¼ ð2nqþ 1Þ�1s ¼ Pl

m0

lR

l

� �2n

¼ sU�2n: ð6Þ

It can readily be seen that s in the considered simple situation is the specific stress work-

conjugate to the logarithmic strain q ¼ eL ðn ¼ 0Þ. Within the accuracy of a rigid-body rotation

this holds also in a three-dimensional situation, provided that an elastic-plastic material is

isotropic at every state (cf., e.g., [6] and [14]). The work-conjugate to engineering strain

(n ¼ 1=2; q ¼ e) is the specific nominal stress p ¼ P=ðAR.RÞ.
By treating l or U as a parameter in Eqs. (1) and (5), the possible experimental curve PðlÞ

such as shown in Fig. 1 can be mapped into the fixed p� q plane (Fig. 2). The form of image

curves depends, of course, on the chosen scale function and reference configuration (reference

bar length lR and reference cross-section AR), cf. Fig. 1.

iv) The increments of s, �s and the work-conjugate stress p are:

d�s ¼ .Rds ¼ .R

.
dr� d.

.
r

� �
; ð7:1Þ

dp ¼ lR

m0 f 0ðUÞ dPðtÞ � PðtÞ f 00ðUÞ
f 0ðUÞdU

� �

¼ 1

Uf 0ðUÞ ds� sðf 0 þ Uf 00ÞdU

Uf 0

� �
; ð7:2Þ

and from this formulas one readily deduces the usual engineering necking criterion (substitute

dP ¼ 0 and dq ¼ f 0ðUÞdU into Eq. (7.2), and use Eq. (5.1),

4 H. V. Nguyen et al.



dp ¼ � f 00

ðf 0Þ2
p dq: ð8Þ

When expressed in terms of the work-conjugate couple associated with the family (2), the above

criterion takes the form

dp ¼ 1� 2n

1þ 2nq
p dq: ð9Þ

It supports the familiar observation that the limiting point ðdP ¼ 0Þ is placed on the decreasing

portion of the p� q tension curve whenever n > 1=2 (Fig. 2).

b. Relations between plastic increments of conjugate variables and specific free energy

The concise framework for the structure of the constitutive law for elastic-plastic materials has

been developed by Hill and Rice [9] and Rice [17]. Some basic concepts of this framework, with

slight modifications, are recalled beneath, in the context of uniaxial stress state.

i) Any accessible state of the bar is described by the current value of the selected strain

measure q (or by its work-conjugate stress p) and a number of suitably defined internal state

parameters. If a specific structural model of inelastic behaviour of the bar is employed, the

internal variables describe the microstructural rearrangement of its constituent elements. For

the purpose of this paper the internal variables need not be specified and will be collectively

denoted by H.

All H are presumed to be constant along those segments of loading paths where the

behavior is purely elastic. In particular, all states corresponding to a point on the elastic line

such as A� � B in Fig. 3 are associated with the same natural state (point A�) and have the

same fixed value of H. The change in the cross-section area of the bar could be described by

an appropriate constitutive law for the volume change. The basic concept concerning the

definition of invariant plastic work, however, may be illustrated without explicit reference to

such a relation.

Following Hill and Rice [9] it is convenient to single out the independent dp-differential

and

O
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Fig. 2. Characteristics states
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dpAðq;HÞ ¼ Aðq;H þ dHÞ � Aðq;HÞ;

dAðq;HÞ ¼ Aðqþ dq;HÞ � Aðq;HÞ;

dpAðp;HÞ ¼ Aðp;H þ dHÞ � Aðp;HÞ;

dAðp;HÞ ¼ Aðpþ dp;HÞ � Aðp;HÞ:

ð10Þ

The differential dpA is interpreted as the isothermal ‘‘plastic part’’ of the total incremental

change in A. For rate-independent plastic materials the parameters H may change only along

those path segments of a process that lie on the yield surface. Therefore, dp-variations of any

quantity can be effected plastically only by a strain or stress cycle process that is associated with

an infinitesimal change in H. d-differential represents the infinitesimal change in A in the course

of an elastic process.

ii) In the course of isothermal processes of loading the value of the specific (per unit of mass)

free energy / of an elastic-plastic material element depends on its actual shape and H,

/ ¼ /ðq;HÞ. The fundamental equation of state is

d/ðq;HÞ ¼ pðq;HÞdqþ dp/ðq;HÞ: ð11Þ

Hence

p ¼ @/ðq;HÞ
@q

: ð12Þ

The term dp/ðq;HÞ represents (isothermal) incremental internal work expended for micro-

structural changes. We shall now restrict the class of considered models of material behavior to

such for which there exists the unique solution q�ðHÞ of the equation

@/
@q

����
q�ðHÞ
¼ 0: ð13Þ

This class includes also models of elastic-ideally damaging bodies (q� ¼ 0 for all H). When the

initial configuration is taken as reference one (lR ¼ l0) the quantity q� usually gets the status of

permanent strain. The stress-free state of a material in the initial configuration is here assumed

A
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*
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Fig. 3. Work-interpretation of basic
invariants
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to be the thermodynamical reference state – an ideal state where / ¼ /0 ¼ const, H ¼ 0 and

@/=@H ¼ 0. If the isothermal curves of elastic behavior (A� � B;C� � C in Fig. 3) are known

for all H, it is possible to construct a family of elastic strain energies /e ¼ /eðq;HÞ. The specific
free energy / of the bar can be expressed as the sum of /0, /e and the part of free energy /sðHÞ
that is independent of q (the free energy that is stored in the material in the course of prior

plastic straining)

D/ ¼ /� /0 ¼ /eðq;HÞ þ /sðHÞ D/jq¼q�ðHÞ ¼ /sðHÞ: ð14Þ

By definition of /e, we have

p ¼ @/eðq;HÞ
@q

; /ejq¼q� ¼ 0; pðq�;HÞ ¼ @/e

@q

����
q¼q�
¼ 0: ð15:1–3Þ

Equation (15.1) describes the family of elastic responses and /e is represented by the area under

the segment of the elastic curve linking a point ðq;HÞ and a point q�ðHÞ;Hð Þ (cf. Fig. 3). The
determination of stored energy requires independent measurements [13].

We shall also employ the usual total complementary energy �wTðp;HÞ and elastic comple-

mentary energy �weðp;HÞ,
wTðp;HÞ ¼ /eðq;HÞ � pq½ �q¼qðp;HÞ; weðp;HÞ ¼ wTðp;HÞ þ pq�ðHÞ; ð16:1; 2Þ

and express the inverse of Eq. (15.1) in the form

q ¼ �@wT

@p
¼ �@weðp;HÞ

@p
þ q�ðHÞ; @we

@p
¼ we ¼ 0 for p ¼ 0: ð17:1; 2Þ

In the case of a rate-independent material the domain of elastic behavior is bounded by a yield

curve (see Fig. 1)

Fðq;HÞ � q� q�ðHÞ � yðHÞ ¼ 0 or Fðp;HÞ � p� YðHÞ ¼ 0; ð18:1; 2Þ

where

YðHÞ ¼ @/e

@q

� �
q¼q�þyðHÞ

and Eq. (18.1) defines the domain of determination of the function /e. In Fig. 3 the initial yield

limit Yð0Þ is marked by the letter E, and the line E� B� C represents the yield curve in the p� q

plane.

iii) Applying d- and d- differentials to Eqs. (15) and (17), we have

dp ¼ 1

.R
L dqþ dpp; dq ¼ .RMdpþ dpq; ð19:1; 2Þ

dp ¼ 1

.R
L dq; dq ¼ .RMdp ðelastic domainÞ: ð20Þ

Here L and M are tangent elastic modulus and compliance measured in the elastic domain and

at its border (18):

1

.R
L ¼ @p

@q
¼ @

2/
@q2
¼ @

2/e

@q2
; .RM ¼ @q

@p
¼ �@

2wT

@p2
¼ �@

2we

@p2
: ð21Þ

In general, they depend on q (or p) and H. The second terms occurring on the right-hand sides

of Eq. (19) define the plastic part dpp of the conjugate stress increment and the plastic part dpq

of total strain increment (cf. (10)),

Incremental plastic work and related aspects of invariance 7



dpp ¼ pðq;H þ dHÞ � pðq;HÞ ¼ @dp/e

@q
;

dpq ¼ qðp;H þ dHÞ � qðp;HÞ ¼ @dpwC

@p
¼ �@dpwe

@p
þ dq�ðHÞ:

ð22:1; 2Þ

The basic identities following from the existence of dual potentials and connections (15), (17)

are obtained by appropriate differentiations of Eqs. (15.1) and (16.1) with account of Eqs. (21)–

(22):

LM ¼ 1; dp/e ¼ dpwT jp¼pðq;HÞ¼ ½dpwe � pdq�ðHÞ�p¼pðq;HÞ; ð23:1; 2Þ

and the calculation of the partial derivative of Eq. (23.2) with respect to q shows the known

connection between dpp and dpq:

dpp ¼ � 1

.R
L dpq ð24Þ

2.2 The transformation rules

a. Two basic transformation rules-Prototypes of invariants

i) Suppose that two observers take different scale functions (f1 and f ) and different reference

configurations to describe the deformation state of a bar. The corresponding strains q1 and q

are

q1 ¼ f1½lðtÞ=lR

1� ¼ f1ðU1Þ and q ¼ f ½lðtÞ=lR� ¼ f ðUÞ; ð25Þ

where U1 ¼ lRU=lR

1. The elimination of U between the above two equations yields the symbolic

relation between q1 and q that concerns also the permanent strains (lR=lR

1 ¼ 1 for common

reference configuration)

q1 ¼ q1ðqÞ; q�1ðHÞ ¼ q1½q�ðHÞ�: ð26:1; 2Þ

When f1 and f belong to the family (2), the relation (26) becomes

q1 ¼
1

2n1
ð1þ 2nqÞ

n1
n ðlR=lR

1Þ
2n1 � 1

h i
; ð27:1Þ

q ¼ 1

2n
ð1þ 2n1q1Þ

n
n1ðlR

1=l
RÞ2n � 1

h i
; ð27:2Þ

where n1 and n are exponents defining two different scale functions.

The inverse relation (27.2) is found directly from (27.1) by interchanging the ordered

quantities ðq;n; lRÞ and ðq1;n1; l
R

1Þ.
Suppose also that the observers use the elements of the theoretical framework presented in

Sect. 2.1.b to describe the properties of the same physical solid. One of the basic aims of the

algebra of constitutive objects is to find the relations between values of the quantities (defined in

Sect. 2.1.b) measured independently by the two observers. The relations are referred to as the

transformation rules.

ii) Since the infinitesimal increments of dq1 and dq describe the same change in the length of

the bar, they are connected by

dq1 ¼ Qdq; dq ¼ Q�1dq1; Q ¼ dq1ðqÞ
dq

> 0; Q�1Q ¼ 1: ð28:1–4Þ

8 H. V. Nguyen et al.



For the common reference configuration lR

1 ¼ lR, the relation (26.1) between q and q1 has the

properties:

q1jq¼0¼ 0; Qjq¼0¼ 1: ð29Þ

The transformation rules for dq and dq are the same, of course. For the class (27) the explicit

form of Q is

QðqÞ ¼
C0

1ðq1Þjq1¼q1ðqÞ

C0ðqÞ
or Qðq1Þ ¼

C0
1ðq1Þ

C0ðqÞjq¼qðq1Þ
; ð30Þ

where

2C0ðqÞ ¼ 1þ 2nq; 2C0
1ðq1Þ ¼ 1þ 2n1q1: ð31Þ

During any infinitesimal strain cycle the net increment of a strain vanishes, no matter whether

the process is associated with the infinitesimal change in H or not. Since according to Eq. (28)

dq ¼ 0) dq1 ¼ 0 one concludes that the notion of the strain cycle is the invariant concept.

iii) To derive the transformation formula for other incremental constitutive quantities,

Hill [6] regards the variation of the total external work p dq as the only prototype of the

invariant. We here additionally take for granted that the (isothermal) incremental internal work

dp/ expended for microstructural changes is also invariant. This work when taken with inverse

sign, �dp/, represents the incremental mechanical energy dissipation, provided that rate effects

are negligible [16]. It is obvious that these two work-type quantities cannot depend on the

manner the external shape of the material element is described. Thus, each term of the dif-

ferential form (11) is regarded as the prototype of an invariant:

p1dq1 ¼ p dq; dp/ð1Þðq1;HÞ ¼ dp/ðq;HÞ: ð32:1; 2Þ

By combining Eqs. (28.1) and (32.1) one obtains the transformation rule for work-conjugate

stresses [6]:

p1 ¼
�p1

.R

1

¼ Q�1p ¼ Q�1 �p

.R
: ð33Þ

The transformation rule for dq is the contravariant of the p-rule. Since p ¼ 0 implies p1 ¼ 0,

the notion of a stress cycle that starts and terminates at stress-free state is the invariant concept.

We have (cf. Eq. (14)) dp/ ¼ dp/e þ dp/sðHÞ and the question arises whether each term of

this additive decomposition is individually invariant. To show that it is the case, fix ðq;HÞ and
dH, and consider the strain cycle A� B� C� A1 along the route A� A� � B� C� C� � A1 as

illustrated in Fig. 3. The result is

�dp/eðq;HÞ ¼
I

p¼0

p dq�
I
q

p dq: ð34Þ

It holds for all ðq;HÞ in the elastic domain and on its border (yield surface). The symbols

q ¼ q�ðHÞ and q�ðH þ dHÞ occurring in Fig. 3 denote the permanent strains in stress-free states

ðp ¼ 0;HÞ and ðp ¼ 0;H þ dHÞ, respectively. They are roots of algebraic equations

@/ðq;HÞ=@q ¼ 0 and @/ðq;H þ dHÞ=@q ¼ 0. Thus, as expected, the invariance of incremental

total work (32.1) implies the invariance of the plastic increment of elastic strain energy dp/e.

Our additional requirement mentioned above is equivalent to the statement that the incre-

mental change dp/sðHÞ ¼ d/s of the stored free energy is also invariant. This equivalence can

be expressed still in different way. Denote by dusðHÞ the incremental change of the stored
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internal energy effected by a stress-cycle initiated from a stress-free state at reference temper-

ature # ¼ #0. From the first law of thermodynamics it follows that

dusðHÞ ¼ usðH þ dHÞ � usðHÞ ¼
I

p¼0

p dq� DQ; ð35Þ

where DQ is the incremental heat transferred to surrounding. Both sides of Eq. (35) are in-

variants since DQ cannot depend on a manner of the description of the material element shape.

Denote ssðHÞ the so-called ‘‘configurational entropy’’, i.e., the difference between the values

of entropy in a stress-free state and in the thermodynamical reference state. Since

d/s ¼ dus � #0dssðHÞ; ð36Þ

our additional requirement mentioned above is equivalent to the statement that both dusðHÞ
and dssðHÞ are invariants. Accordingly the corresponding free energy functions and elastic

strain energy functions are interrelated by

/ð1Þ½q1ðqÞ;H� ¼ /ðq;HÞ; /ð1Þe ½q1ðqÞ;H� ¼ /eðq;HÞ; ð37Þ

provided that both observers adopt the same stress-free thermodynamic reference state.

Remark. Hill [6] presented the following work interpretation for dp/. Calculate the total

mechanical work in the course of an arbitrary strain cycle, such as A� B� C� A1 shown in

Fig. 3:

I
q

p dq ¼ ½/ðq;H þ dHÞ � /ðq;HÞ�A þ
ZC

B

ðp dq� d/Þ ð38Þ

and choose d/ ¼ p dq along BC (the segment of a route on the yield surface where the change

of internal state occurs) to get (Eq. (2.33) in Hill [6])I
q

p dq ¼ dp/ðq;HÞ: ð39Þ

We accept neither this interpretation nor some of the conclusions following from it (e.g.

concerning the Iliuszyn postulate) discussed in Hill [6]. In the case of metallic solids the con-

figurational entropy ssðHÞ is usually regarded as negligible (cf., e.g., [15]) so that dus ’ d/s,

and dus can be measured using Eq. (35). According to the experimental evidence (cf., e.g., [12]

and [13]) dus � d/s is a small fraction of
H

p¼0 p dq. Indeed from the combination of Eqs. (34)

and (39) one gets

dp/� dp/e ¼ dp/s ¼ /sðH þ dHÞ � /sðHÞ ¼
I

p¼0

p dq: ð40Þ

The whole net work done in a stress cycle is accumulated in the bar in the form of the stored

energy. In fact, by adopting d/ ¼ p dq, Hill [6] neglects the incremental energy dissipated

along B� C.

The acceptable counterparts of Eqs. (39) and (40) satisfying the requirement of second law of

thermodynamics areI
q

p dq � dp/ðq;HÞ , dp/s ¼ /sðH þ dHÞ � /sðHÞ �
I
q

p dq� dp/eðq;HÞ ¼
I

p¼0

p dq;

ð41Þ
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where the equality holds when dH ¼ 0. In the course of the real processes the energy stored

due to the cold work cannot exceed the plastic work done. This is a known implication of

the second law of thermodynamics concerning an elastic-plastic continuum. The implication

is independent of the choice of strain measure and/or reference configuration.

b. Transformation rules for other quantities

i) The transformation rules for all others thermostatic quantities occurring in Eqs. (19) and

(20) can be found by direct differentiation of Eq. (37). In particular, the partial differentiation

of Eq. (32.2) with respect to q1 at constant H shows that the plastic increment dpp of the

conjugate stress transforms like p:

dpp1 ¼ Q�1dpp: ð42Þ

Hence, using Eqs. (19), (20), (24) and (28) we have

dqdpp ¼ �dpdpq ¼ dqdp� dpdq; dqdpp ¼ ðdpp� dpÞdpq; ð43:1; 2Þ

which are 1D examples of Hill’s bilinear differential invariants. The work-interpretation of the

invariant (43.1) follows from Eqs. (34) and (22.1). Since

d
I

p¼0

p dq

0
B@

1
CA ¼ 0;

the application of the d-differential to Eq. (34) gives

d
I
q

p dq

0
@

1
A ¼ d½dp/eðq;HÞ� ¼ dðdp/Þ ¼ dqdpp: ð44Þ

Note that to provide this interpretation we did not use the controversial equality (38), contrary

to Hill [6].

The transformation rule for the tangent elastic modulus and its inverse follows from the

calculation of the second derivative of Eq. (37) with respect to q1, and use of Eq. (28),

L1

.R

1

¼ Q�2 L

.R
� pC

� �
; .R

1M1 ¼ Q2.RMð1� .RMpCÞ�1; ð45:1; 2Þ

where

C ¼ Q�1dQ

dq
¼ dQ

dq1
: ð46Þ

When the group of admissible q is restricted to Eq. (27) the strain function C becomes

C ¼ 2ðn1 � nÞ
1þ 2nq

; ð47Þ

such that C ¼ 0 for n1 ¼ n. In general, C ¼ 0 (Q ¼ const:) provided that f1 ¼ f and

f 0ðUÞ � df=dU is a homogeneous function. This property does not hold in a 3D situation

(except for n ¼ �1 in the family (2)).

Furthermore, the combination of the identity (24) (applied to both ðp1; q1Þ and ðp; qÞ) with
use of Eqs. (42) and (45.1) results in the transformation rule for the plastic increment of strain

dpq1 ¼ Q dpqð1� .RMpCÞ�1: ð48Þ
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Finally, calculate the d- and d- differential of Eq. (33) to see that the rules for the stress

increments are

dp1 ¼ Q�1ðdp� Cp dqÞ; dp1 ¼ Q�1ðdp� CpdqÞ: ð49:1; 2Þ

The first relation could also be obtained by combining Eq. (42) with the state equations (19) and

use of (45)–(48), whereas the relation (49.2) follows also from themultiplication ofEq. (45) by dq1.

Remark. All transformation rules presented in this Subsection are 1D counterparts of 3D for-

mulas derived by Hill (e.g. [6] and [8]). Hill aims at generality and displays the importance of the

formulas (49) ½ðp dq � invariantÞ ) ð33Þ ) ð49Þ� also in the situation when the potential / does

not exist. In fact, from Eqs. (49) (that hold for any set of independent differentials) one can

derive remaining transformation rules. We have here took for granted that Eq. (32.2) is also the

prototype of the invariant and have emphasized the invariance of the elastic strain energy

function and the stored free energy. This is necessary for a meaningful discussion concerning the

definition of the invariant plastic work (Sect. 2.3). The invariance of the free energy (37) is also

utilized in Sect. 3 to show the correlation between the theoretical framework of Sect. 2.1.b and

other common approaches where the mobile stress-free configuration is regarded as the refer-

ence one. This is merely a small supplement to the outstanding constribution of Hill in this field.

ii) Let us briefly recall some conclusions following from the presented transformation rules.

In general Q is not constant ðC 6¼ 0Þ, therefore dp1 6¼ Q�1dp on account of Eq. (49). Hence, a

closed infinitesimal cycle in p ðdp ¼ 0Þ does not necessarily close the infinitesimal cycle in p1

(i.e., in general dp ¼ 0 does not imply dp1 ¼ 0) until it starts at a stress-free state. In this sense

we can say that the notion of an infinitesimal cycle in work-conjugate stress is not the invariant

concept under the change of strain measure and reference configuration [6]. The same variance

property concerns also the stress rate.

Denote by Le�p the tangent modulus measured during active plastic yielding,

dp ¼ 1

.R
Le�pdq, dpp ¼ � 1

.R
ðL� Le�pÞdq: ð50:1; 2Þ

According to Eq. (49) the transformation rule for Le�p is the same as for L (cf. Eq. (45)). The

vanishing of L
e�p

1 for a particular choice of the work-conjugate couple ðq1;p1 6¼ 0Þ does not

imply vanishing of the modulus Le�p for other choice, say ðq;pÞ

L
e�p

1 ¼ 0) 1

.R
Le�p ¼ pC: ð51Þ

In a 3D situation the states of a material where strain can change while stress is stationary are

termed by Hill [8] the intrinsic eigenstates (cf. Fig. 2). If .R

1dp1=dq1 ¼ L
e�p

1 ¼ 0 for the expo-

nent n1 in the family (27) then this intrinsic eigenstate will manifest itself at a point of the p� q

curve where (cf. (47))

dp

dq
¼ 1

.R
Le�p ¼ 2ðn1 � nÞ

1þ 2nq
p

dp

dq
> 0 if n1 > n

� �
: ð52Þ

In particular, in the 1D case when n1 ¼ 1=2 the intrinsic eigenstate corresponds to a point of

maximum force (cf. Fig. 2).

Since according to Eq. (48) dpq does not transform like dq, the change in the length of a bar

corresponding to dpq depends on the choice of the strain measure. Hence, the additive parti-

tioning of incremental strain (cf. (19.2)) into elastic and plastic parts is also not an invariant

concept [8]. The other consequence of Eq. (48) is discussed in Sect. 2.5.
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The application of Eq. (42) to Eq. (50.2) shows that the relative modulus L� Le�p has the

quite pleasant (different from L) transformation rule

1

.R

1

ðL1 � L
e�p

1 Þ ¼ 1

.R
Q�2ðL� Le�pÞ: ð53Þ

In this sense the notion of a ‘‘relative tangent modulus’’ is the invariant concept [6], [8] (L and

Le�p link two independent pairs of differentials).

The immediate consequence of Eqs. (33) and (48) is that the work p expended on the plastic

part of an incremental strain

ðdWÞp ¼ p dpq ð54Þ

is not invariant, i.e., ðdWÞp 6¼ p1 dpq1 ¼ ðdWÞ1p. The resulting transformation rule is

ðdWÞ1p ¼ 1� .RMpC½ ��1ðdWÞp: ð55Þ

2.3 Invariant incremental plastic work

Return to the strain cycle A� B� C� A1 shown in Fig. 3. When ðq;HÞ is on the yield surface

(points A and B in Fig. 3 coincide) the second term occurring on the right-hand side of Eq. (34)

vanishes to first order, and within this accurary one gets

�dp/eðq;HÞ ¼
I

p¼0

p dq: ð56Þ

The exact relation between dp/e and the right-hand side of Eq. (56) one obtains by considering

the stress-cycle A� � B� C� C� (Fig. 3) that starts at a natural state A� ðp ¼ 0;HÞ and ends at

a neighboring natural state C� ðp ¼ 0;H þ dHÞ. Since

ZB

A�

p dq ¼ /½qðBÞ;H� � /sðHÞ ¼ /e½qðBÞ;H�;

ZC

B

p dq ¼ /e½qðCÞ;H þ dH� � /e½qðBÞ;H� �
ZC

B

dp/e;

ZC�

C

p dq ¼ �/e½qðCÞ;H þ dH�;

the net total work done in such a cycle can be identified with an actual invariant plastic work

W ¼ WpðC�;A�Þ ¼
I

p¼0

p dq ¼ �
Z C

B

dp/e: ð57Þ

The interpretation (57) enables to define the invariant incremental plastic work (incremental

irreversible mechanical work) dWp as

dWp ¼ �dp/eðq;HÞ ¼ �
@/e

@H
dH ¼ p dq� � dpweðp;HÞ ð58Þ

on account of Eq. (23.2).
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It concerns all those materials (rate-dependent or rate-independent) that behave elastically

in a vicinity of every natural state, and for which it is possible to construct a strain energy

function /e. From Eq. (22.1) it follows that the invariant incremental plastic work dWp when

taken with reverse sign plays a role of the potential for dpp.

By combining Eq. (58) with the total differential of (15) one arrives at the following invariant

decomposition of incremental total work:

dW ¼ p dq ¼ dWe þ dWp; dWe ¼ d/e; dWp ¼ �dp/eðq;HÞ: ð59:1–3Þ

Accordingly the invariant increment of elastic work is equal to the total differential of

/e ¼ D/� /s.

From Eq. (58) it follows that incremental irreversible mechanical work dWp differs from the

work of p expended in the incremental permanent strain, i.e., dWp 6¼ p dq� independently of

the range of plastic deformations. It also does not coincide with the work, say ðdWÞp, of p done

on the plastic part of an increment of total strain (cf. (54)). The connections between ðdWÞp and

dWp are

dWp ¼ ðdWÞp � dpwe þ p
@ðdpweÞ
@p

ð60Þ

on account of Eqs. (22.2) and (58).

In the thermodynamics of elastic-plastic materials, the plastic part of the increment of free

energy function when taken with reverse sign represents the incremental energy dissipation dD,

i.e., dD ¼ �dp/, provided that the total strain q is regarded as state variable. Combination of

the plastic part of Eq. (14) with (58) shows that it is equal to the difference between the

invariant incremental plastic work and the increment of the stored free energy

dD ¼ dWp � d/sðHÞ: ð61Þ

This relationship is valid for all elastic-plastic materials, including those whose elastic prop-

erties depend on prior plastic straining.

Remark. As an elementary example consider elastic-plastic damaging materials. Suppose that

for some choice of reference configuration and strain measure the elastic strain energy takes the

form

.R/eðq;HÞ ¼
1

2
½q� q�ðHÞ�LðHÞ½q� q�ðHÞ�; �p � .Rp ¼ LðHÞ½q� q�ðHÞ�; ð62Þ

what implies the following form of the elastic complementary energy:

.Rwe ¼ �
1

2
MðHÞ�p2 , we ¼ �

1

2
.RMp2; q ¼ q� þMðHÞ�p ð63Þ

on account of Eqs. (16) and (17). Here M ¼ L�1, and the set of internal variables H contains the

damage parameter that describes the gradual degradation of elastic properties of a material (cf.

the illustration shown in Fig. 4).

Application of the formula (63) to Eqs. (22.2) and (58) gives

dpq ¼ dq� þ �pdMðHÞ;

.RdWp ¼ �pdq�ðHÞ þ
�p2

2
dMðHÞ:

ð64Þ
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Hence the product pdpq ¼ ðdWÞp overestimates the actual invariant incremental plastic

work dWp,

.RdWp ¼ .RðdWÞp �
�p2

2
dMðHÞ; ð65Þ

since as a rule dMðHÞ > 0 in the course of damage.

2.4 Elastic-plastic materials with intrinsic master elasticity

From Eq. (60) it follows that ðdWÞp coincides with the invariant incremental plastic work dWp

whenever dpwe is a homogeneous function of degree one with respect to p:

p
@

@p
ðdpweÞ ¼ dpwe:

However, no such function satisfies the conditions (17.2). Therefore, coincidence may happen

only if we is independent of H or equivalently if /e depends on H only through dependence of

q� q�ðHÞ on H, i.e., /e ¼ /e½q� q�ðHÞ�. This should be read in proper context. Neither ðdWÞp
nor we are invariant under the change of strain measure or/and reference configuration.

Therefore, for a given material ðdWÞp may be equal to dWp for one choice of q and be different

from dWp for the other choice.

Let us distinguish the class of materials for which there exists such q, say �q, that /e when

expressed in terms of �q has the special form

/e ¼ /e½�q� �q�ðHÞ�: ð66Þ

Since /e depends on H only through dependence of �q� �q�ðHÞ on H, the elastic behavior of the

material is described by a single ‘‘master’’ constitutive law, provided it is expressed in terms of

quantities work-conjugate to �q. The material can be said to exhibit master elasticity that is

independent of the prior loading history. For such a material the elastic complementary energy

expressed in terms of �p conjugate to �q is independent of H:

we ¼ weð�pÞ ð67Þ

(cf. Eqs. (16) and (17)).

p

q

q  (H)*

L(H).

.
..

..
Fig. 4. Degradation of elastic properties
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The following corollaries are immediate consequences of Eqs. (22.2) and (58):

i) For every elastic-plastic material with master elasticity there exists the conjugate couple ð�p; �qÞ
for which

dp�q ¼ d�q�ðHÞ; dWp ¼ �pdp�q ¼ �pd�q�ðHÞ: ð68:1; 2Þ

ii) Conversely, if for a given material there exists the conjugate couple ð�p; �qÞ such that either

Eq. (68.1) or (68.2) holds, then the behavior of the material is characterized by intrinsic master

elasticity, so that /e and we when expressed in terms of ð�p; �qÞ have the special form (66) and

(67).

The decision whether the actual material can be categorized as exhibiting master elasticity

must rest upon careful theoretical analysis of experimental data. For example, the unloading

curves in simple tension when traced in the nominal stress-engineering strain plane may have

different slopes for different prestrains, whereas when they are drawn in the Kirchhoff true

stress-logarithmic strain plane they may be formed from a single ‘‘master curve’’. In the latter

case the logarithmic strain is the example of �q.

2.5 Special case: updated Lagrangian formalism

We shall now briefly discuss the situation when at the generic instant t of a process of defor-

mation the reference configuration of the bar is assumed to coincide with its actual configu-

ration (updated Lagrangian description). From Eqs. (1)–(3) it readily follows that in the limit

lR ! lðtÞ; .R ¼! .ðtÞ;AR ! AðtÞ;U ! 1 ðf ðUÞ ! 0; f 0ðUÞ ! 1Þ we have

q! 0 and dq! dlðtÞ=lðtÞ ð69Þ

for all measures. That is, when the current configuration is regarded as common reference

configuration, all strain measures vanish, whereas their increments coincide (to the first order)

and are equal to the increment of the logarithmic strain deL ¼ dlðtÞ=lðtÞ. In the uniaxial case

deL ¼ D11dt, where D11 is the axial component of the usual Eulerian strain-rate. Thus, in 1D

updated Lagrangian description all strain rates dq=dt coincide with D11. By calculating the

limits in Eq. (5) it is found that

pðtÞ ¼ sðtÞ and �pðtÞ ¼ .p ¼ r: ð70Þ

In the considered situation all specific and standard work-conjugate stresses are equal to the

Kirchhoff’s and Cauchy’s stress, respectively. Moreover, the limiting values of Eq. (7) are

.ds ¼ dr� rðd.=.Þ; dp ¼ ds� 2msdeL;

d�p ¼ .dp ¼ dr� 2mrdeL � rðd.=.Þ; 2m � d2f

dz2

����
z¼1

þ1:
ð71:1–4Þ

Equation (71.2), when written in the rate form, illustrates the 1D axial component of Hill’s

family of objective stress-rates r
ðmÞ

11dt ¼ d�p

r
ðmÞ

11 ¼ _r� 2mrD11 � rð _.=.Þ; _r � drðtÞ
dt

: ð72Þ

The parameter m represents the selected strain measure (m ¼ 0 for the logarithmic measure).

Let LðmÞ be the limit of instantaneous tangent moduli L. In the elastic domain we have

r
ðmÞ

11 ¼ LðmÞD11. Since D11 is the common limit of rate of all strains we also have

r
ðm1Þ

11 ¼ Lðm1ÞD11 for another choice of strain measure represented by the parameter m1.
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Elimination of D11 between these two equations (with account of Eqs. (72)) gives the trans-

formation rule for the tangent elastic modulus and its inverseM¼ L�1,

Lðm1Þ ¼ LðmÞ � 2ðm1 �mÞr; Mðm1Þ ¼ MðmÞ½1� 2ðm1 �mÞMðmÞr��1: ð73Þ

This can be derived directly from Eq. (45) since the limit values of Q and C occurring in

Eqs. (28) and (46) are

Q ¼ 1; C ¼ 2ðm1 �mÞ: ð74Þ

Hence, the updated Lagrange form of the transformation rule (42) is

dpp1 ¼ dpp � rp
0

dt: ð75Þ

Similarly as strain-rates, the plastic parts of all work-conjugate stress-rates are independent

(to the first order) of the selected strain measure, provided that the current configuration is

taken as the common reference one. The updated Lagrangian rate-form of the transformation

rule (49) is

r
ðm1Þ

11 ¼ r
ðmÞ

11 � 2ðm1 �mÞrD11: ð76Þ

It can be also obtained directly from Eq. (72).

The additive partitioning of the strain increment (19.2) can now be presented as

r
ðmÞ
¼ LðmÞD11 þ rp

0

; D11 ¼MðmÞ r
ðmÞ
þ D

p

11ðmÞ; ð77Þ

where D
p

11ðmÞdt are the limits of dpq. Both De
11ðmÞ ¼ D11 � D

p

11ðmÞ and D
p

11ðmÞ depend on the

choice of strain measure characterized by the cooefficient m (cf. Eq. (71.2)), i.e., the additive

partitioning of D11 is not an invariant concept. The transformation rules for D
p

11 and ðdWÞp are

the updated counterparts of Eqs. (48) and (54)

D
p

11ðm1Þ ¼ ½1� 2rðm1 �mÞMðmÞ��1
D

p

11ðmÞ;

ðdWÞ1p ¼ ½1� 2rðm1 �mÞMðmÞ��1ðdWÞp:
ð78Þ

As expected, the relative difference

D
p

11ðmÞ
D

p

11ðm1Þ
� 1 ¼ 2rðm1 �mÞ

LðmÞ � 2rðm1 �mÞ � 2ðm1 �mÞ r
LðmÞ ð79Þ

is a small quantity for most metallic solids.

Finally, let Le�pðmÞ be the tangent elastic-plastic modulus defined by the first-order updated

Lagrangian rate version of (50),

r
ðmÞ
¼ Le�pðmÞD11: ð80Þ

The transformation rules for Le�p and L are the same (cf. Eq. (73)). Hence, if the intrinsic

eigenstate associated with the m1-strain measure is defined by Le�pðm1Þ ¼ 0, it will manifest

itself at states where

Le�pðmÞ ¼ 2ðm1 �mÞr or r
ðmÞ
¼ 2ðm1 �mÞrD11: ð81Þ

In particular, for m1 ¼ 1=2 Eq. (81) becomes the engineering necking criterion (a state where

the applied force attains its maximum)

r
ðmÞ
¼ ð1� 2mÞrD11 , _r� rð _.=.Þ ¼ rD11: ð82:1; 2Þ
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Equations (81) and (82) are updated Lagrangian versions of Eqs. (52) and (8), respectively. To

get Eq. (82.2) use was made of Eq. (72).

3 Eckart-Mandel theoretical framework

i) There is a slightly different framework (cf., e.g., [1] and [11]) for the structure of elastic-plastic

constitutive laws where the changes in the current shape of a material element are described

treating the variable conceptual stress-free configuration as the reference one. The primary

kinematical quantities are elastic strain qe and incremental permanent strain e�. In the uniaxial

stress state they are defined as (cf. Fig. 1)

qe ¼ f ðUeÞ and de� ¼ dl�

l�
and Ue ¼

l

l�
; ð83Þ

respectively. The scale function f has the same mathematical properties as that occurring in

Eq. (1). In what follows, f will be assumed to be defined by Eq. (2) so that

qe ¼
U2n1

e � 1

2n1
; ð84Þ

where now the arbitrary scale exponent is denoted by n1. The increments of elastic strain dqe

and permanent strain de� together determine the current change in the length of a bar.

However, when n1 6¼ 0, their sum is not equal to an increment of any total strain.

In view of the relationship dl ¼ l�dUe þ lde� the incremental total work can now be ex-

pressed in the form

dW ¼ sde� þ pedqe; ð85Þ

where

pe ¼
Pl

m0
U�2n1

e ¼ ð1þ 2n1qeÞ�1s ð86Þ

is the elastic specific stress work-conjugate to qe in the course of elastic unloading processes

ðde� ¼ 0Þ. Note that pe is not equal to the stress p work-conjugate with the total strain (cf. (6)),

unless n1 ¼ n ¼ 0.

Within the Eckart–Mandel (E-M) theoretical framework the specific free energy / is assumed

to be a function of qe and H,

/ðqe;HÞ � /0 ¼ /eðqe;HÞ þ /sðHÞ; ð87Þ

so that

pe ¼
@/eðqe;HÞ

@qe

;
@/e

@qe

¼ /e ¼ 0; for qe ¼ 0: ð88:1; 2Þ

Here /e and /s are the elastic strain energy and the part of free energy that is independent of qe,

respectively. They have the same physical meaning as the quantities defined in Sect. 2.1.b.

However, the function /eðqe;HÞ is different from the function /eðq;HÞ. The dual potential has
also different physical meaning. It is defined by

wð1Þe ðpe;HÞ ¼ /e � peqe; wð1Þe ð0;HÞ ¼
@wð1Þe

@qe

�����
qe¼0

¼ 0 ð89:1; 2Þ

such that the inverse relation to Eq. (88) becomes
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qe ¼ �
@wð1Þe ðpe;HÞ

@pe

: ð90Þ

For materials with elastic properties insensitive to prior plastic straining the functions /e and

wð1Þe are independent of H. At the end of this Section it is shown that in a uniaxial situation

every such material exhibits master elasticity properties (cf. Sect. 2.4). However, not every

material possessing master elasticity has elastic properties insensitive to prior plastic straining.

ii) Introduce the notation

dhAðqe;HÞ ¼
@Aðqe;HÞ

@H
dH and dhAðpe;HÞ ¼

@Aðpe;HÞ
@H

dH

for the H-differential of any constitutive function Aðqe;HÞ or Aðpe;HÞ. By calculating

H-differentials of (89.1), (90) and (88.1) one gets the following identities:

dhwð1Þe ðpe;HÞ ¼ dh/eðqe;HÞ;

dhqe ¼ �
@

@pe

dhwð1Þe ðpe;HÞ
h i ð91:1; 2Þ

and

dhpe ¼
@dhwð1Þe ðqe;HÞ

@qe

¼ �L�

.0

dhqeðpe;HÞ ð92Þ

that hold for any dual couple ðqe;peÞ connected by Eq. (88.1). Here L� is the elastic tangent

modulus defined as

L�ðqe;HÞ � .0

@2/eðqe;HÞ
@q2

e

! M� ¼ L��1 ¼ �.0

@2wð1Þe ðpe;HÞ
@p2

e

ð93Þ

and .0 is the density in the thermodynamical reference state. The incremental elastic response of

a material is described by two equivalent equations

dqe ¼ .0M�dpe þ dhqeðpe;HÞ , dpe ¼
L�

.0

dqe þ dhpeðqe;HÞ: ð94Þ

The description of the total incremental deformation behavior consists of Eq. (94) and

appropriate equations for de� and dhqe (or dhpe). The latter requires knowledge of the evo-

lution equation for H.

In analogy to (59.2) the total differential of /e is indentified with the invariant incremental

elastic work

dWe ¼ d/e ¼ pedqe þ dh/eðqe;HÞ; ð95Þ

whereas the invariant incremental plastic work dWp is (cf. Eqs. (85) and (91.1))

dWp ¼ dW � dWe ¼ sde� � dh/eðqe;HÞ ¼ sde� � dhwð1Þe ðpe;HÞ: ð96Þ

It is seen that in the course of plastic flow ðdH 6¼ 0Þ the incremental elastic work is not equal to

pedqe unless the elastic properties of a material are not influenced by prior plastic straining.

As may be seen, there is a certain mathematical analogy between the equations presented

here and those discussed in Sect. 2.1. The basic difference is that now the specification of the free

energy function does not require knowledge of the detailed dependence of any plastic strain on H.

Instead, the additional constitutive equation for the increment of the permanent strain de� must

be established. From the thermodynamics point of view this fact follows from different choices
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of state variables and thermodynamical forces. In fact, the incremental energy dissipation dD is

dD ¼ �dp/ðq;HÞ, when a total strain is taken as state variable, and

dD ¼ dWp � d/sðHÞ ¼ sde� � dh/eðqe;HÞ � d/sðHÞ ð97Þ

when elastic strain is treated as external state parameter. Thus, now de� and dH appear as rates

of irreversible flows.

Within the E-M theoretical framework it is meaningful to investigate relativity and invari-

ance of constitutive objects under different choices of elastic strain measure. The transforma-

tion formulas will be identical to that presented in Sect. 2.2, provided q is replaced by qe and

lR=lR

1 is set to be unity. In particular, /e, /s, pedqe, dp/e, dWp, dhqedpe, dhpedqe are the

examples of basic invariants, under change of elastic strain measure.

iii) There is a definite connection between the Hill-Rice (H-R) framework and the E-M

framework. This is briefly discussed beneath.

When the description of material properties within the E-M theoretical framework is com-

pleted then the rate equations linking the increments of a total strain q and its work-conjugate

stress p can be derived with use of the appropriate kinematical relationships only. Under

uniaxial stress state this task is relatively simple.

Choose any reference configuration of a bar and denote by U its stretch U ¼ l=lR. It can be

multiplicatively decomposed as U ¼ UeUpðHÞ where Up ¼ l�ðHÞ=lR, so that e�ðHÞ ¼
ln Up ¼ lnðl�=lRÞ. Let q ¼ ðU2n � 1Þ=2n ¼ ðU2n

p U2n
e � 1Þ=2n be any total strain measure of the

family (2). Eliminating Ue between this equation and Eq. (84) leads to the definite relationship

between qe; q and UpðHÞ ¼ exp½e�ðHÞ�:

qe ¼ qeðq;HÞ ¼
1

2n1
ð1þ 2nqÞn1=nU�2n1

p ðHÞ � 1
h i

; ð98:1Þ

q ¼ qðqe;HÞ ¼
1

2n
ð1þ 2n1qeÞn=n1 U2n

p ðHÞ � 1
h i

: ð98:2Þ

This can be viewed as basic transformation formulas for the transition from the H-R

description to the E-M description. The important connection following from Eq. (98) is the

identity

sde� ¼ �ped
pqeðq;HÞ; dpqeðq;HÞ �

@qeðq;HÞ
@H

dH; ð99Þ

that can be verified using Eqs. (86) and (98.1). If one inserts (98.1) into /eðqe;HÞ then the result

is the function /eðq;HÞ occurring in Eq. (14) (it is invariant under the change of the reference

configuration and the total strain measure)

/e½qeðq;HÞ;H� ¼ /eðq;HÞ: ð100Þ

By calculating the partial derivative of this equation with respect to q one finds the relation

between the stresses pe and p (cf. Eqs. (15) and (88)):

p ¼ Q�pe; pe ¼ Q�
�1

p;

Q�
�1

¼ @qðqe;HÞ
@qe

¼ 1þ 2nq

1þ 2n1qe

; Q� ¼ @qe

@q
¼ 1þ 2n1qe

1þ 2nq
:

ð101Þ

From Eq. (100) it follows also that the definitions (58) and ð96Þ of the incremental plastic

work are equivalent: dWp ¼ �dp/eðq;HÞ ¼ �ped
pqe � dh/eðqe;HÞ ¼ sde� � dh/eðqe;HÞ, on
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account of (99). Likewise the additive decompositions of dW presented in Eqs. (59.1) and

(95)–(96) are equivalent.

There are a number of identities following from Eq. (100). Use of them enables to show full

equivalence between the incremental relation (94) and (19). This matter, however, will not be

pursued further here.

iv) Substitute n ¼ 0 into Eq. (98) (logarithmic total strain measure is adopted in the H-R

description) to find

qe ¼
1

2n1
fexp½2n1ðq� e�Þ� � 1g: ð102Þ

If /e ¼ /eðqeÞ then /eðq;HÞ ¼ /eðq� e�Þ, where q and e� are total and permanent logarithmic

strains, respectively. Thus, the function /eðq;HÞ has the property (66), and the material with

elastic properties insensitive to prior plastic straining belongs to the class of materials exhibiting

master elasticity (cf. Sect. 2.4). The converse of this statement is not valid. To see it substitute,

for example, n ¼ 1=2 into Eq. (98.2) (engineering total strain) and find

q� q�ðHÞ ¼ ðUe � 1ÞUpðHÞ ¼ ½ð1þ 2n1qeÞ
1

2n1 � 1�UpðHÞ; ð103Þ

where q�ðHÞ ¼ UpðHÞ � 1. Hence /eðq� q�Þ does not imply /e ¼ /eðqeÞ because Up depends

on H.

4 Concluding remarks

The instructive presentation of the subtle aspects of invariances (under the change of strain

measure and/or reference configuration) in solid mechanics is not an easy task even in the case

of simple tension (extension). Presuming that the incremental free energy of a specimen is the

basic invariant, we have derived Hill’s transformation formula for the number of fundamental

quantities in a manner different from that of Hill. The following quantities are shown to be

invariant in the sense that their transformation rules are linear and homogeneous:

	 The incremental strain dq and the work-conjugate stress p

	 The plastic increment of work conjugate stress dpp

	 The incremental irreversible mechanical work dWp ¼ �dp/e (identified here as an invariant

incremental plastic work) which plays the role of a potential for dpp–these properties seem to

have been not demonstrated so far in the literature.

The other quantities (such as tangent elastic modulus L, total increment of work-conjugate

stress dp, plastic increment of total strain dpq, work of work-conjugate stress done on dpq,

i.e., ðdWÞp ¼ pdpq) were shown to have more complex transformation rules. Their

knowledge helps to judge whether the mathematically distinct constitutive descriptions

employing different strain measures concern the same physical material. Moreover, they

help to distinguish the universal concepts (e.g., notion of incremental strain cycle) from

others that are not invariant (e.g., notion of incremental stress cycle, linearity, positive semi-

definiteness of tangent moduli).

We found some difficulties to give the rigorous mathematical description of the statement

‘‘elastic properties are not influenced by prior plastic deformation’’ in the situation when total

strain is regarded as state parameter (H-R formalism). To this end in this paper we decided to

distinguish the class of materials with ‘‘intrinsic master plasticity’’ (Sect. 2.4).
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This problem does not occur when the E-M theoretical framework is applied, since then /e

does not depend on H. It has been shown that if (in the uniaxial situation) the total logarithmic

strain is used and /e ¼ /e½q� q�ðHÞ� then the materials with intrinsic master plasticity have the

elastic properties insensitive to prior plastic straining.

In uniaxial case the basic interrelations between the two theoretical frameworks are expressed

in terms of the connections (98). In that sense it is shown here that they are equivalent.

However, use of the mobile Lagrangian description (E-M theoretical framework) brings (on

phenomenological ground) an extra information upon the structure of the incremental energy

dissipation.
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