
DOI: 10.2478/s11534-007-0016-7
Research article

CEJP 5(3) 2007 293–312

Computational studies of steady-state sound field
and reverberant sound decay in a system of two
coupled rooms

Miros�law Meissner∗

Institute of Fundamental Technological Research,
Polish Academy of Sciences,
PL-00–049 Warsaw, Poland

Received 16 November 2006; accepted 7 March 2007

Abstract: The acoustical properties of an irregularly shaped room consisting of two
connected rectangular subrooms were studied. An eigenmode method supported by a numerical
implementation has been used to predict acoustic characteristics of the coupled system, such as the
distribution of the sound pressure in steady-state and the reverberation time. In the theoretical
model a low-frequency limit was considered. In this case the eigenmodes are lightly damped, thus
they were approximated by normal acoustic modes of a hard-walled room. The eigenfunctions and
eigenfrequencies were computed numerically via application of a forced oscillator method with a
finite difference algorithm. The influence of coupling between subrooms on acoustic parameters of
the enclosure was demonstrated in numerical simulations where different distributions of absorbing
materials on the walls of the subrooms and various positions of the sound source were assumed.
Calculation results have shown that for large differences in the absorption coefficient in the
subrooms the effect of modal localization contributes to peaks of RMS pressure in steady-state
and a large increase in the reverberation time.
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1 Introduction

Room acoustics is the study of the transient and steady-state behaviour of sound waves

in enclosures. Various theories exist for predicting the acoustic parameters of rooms:
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geometrical theory [1], wave theory [2], ray-tracing techniques, and statistical or power

flow methods [3]. Geometrical room acoustics at best applies to highly reverberant rooms

whose characteristic dimensions are large compared to the wavelength. This theory passes

over diffraction phenomena since propagation in straight lines is its main postulate. Like-

wise, interference of sound waves is not considered.

Wave theory is the most reliable and appropriate from the physical point of view

and is therefore essential for the understanding of sound propagation in enclosures. An

immediate practical application of wave theory is limited to low frequencies in which the

room dimensions are usually comparable with the sound wavelength. In this theory the

response of a room can be understood in terms of its normal modes and the associated

decay constant of each of these modes [4]. As was shown by Dowell [5], for weakly

damped rooms the coupling between modes may be neglected and the distribution of

mode amplitudes can be well described by eigenfunctions for rigid room walls. Closed

form solutions of the wave equation can only be obtained for the simplest room shapes

such rectangular, triangular and cylindrical ones. An application of the wave theory

to complex enclosure geometries such as coupled rooms was possible through numerical

methods. Examples of coupled enclosures are theatres with boxes which communicate

with a main room through small apertures only, or churches with several naves and

chapels.

The acoustic properties of coupled rooms have been investigated intensively in the

past. Acoustic coupling between two rooms has been studied both theoretically and

experimentally by Eyring [6]. Harris and Feshbach [7] have applied wave theory to the

problem of acoustically coupled rooms and found explanations of some discrepancies

noted by earlier researchers between an experiment and predictions from geometrical

acoustics. The energy flux between two rooms has been investigated in detail by Cremer

and Müller [8] for cases in which the rooms are coupled to an open area and when they are

coupled through a door or window. They found that the strongest coupling occurs when

one of the two rooms contains a large amount of acoustic absorption and the second

room is more reverberant. Thomson [9] examined the acoustic wave propagation in

coupled spaces and obtained an approximate solution for the pressure using the method

of matched asymptotic expansions. Weaver and Lobkis [10] have showed theoretically

and experimentally that the energy flow in weakly coupled reverberant systems can be

Anderson localized. The acoustics of large buildings divided by arches and columns into

coupled rooms has been examined by Anderson et al. [11, 12] to predict the decay of

the sound energy density and the reverberation time. They reported a non-exponential

decay of sound in different locations of coupled room systems such as St Paul’s Cathedral

in London [12] and investigated in particular the early decay of a sound that contributes

mostly to its subjective perception. The effect of three architectural parameters: the

ratio of the volume between the main and secondary rooms, the ratio between the rooms’

absorption, and the size of a coupling aperture on the non-exponential decay of sound

in a system of two connected rooms has been studied by Bradley and Wang [13]. They

proposed a new objective method of quantifying the double-sloped effect (DSE) and
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carried out tests to determine the subjective response to the DSE. In recent works several

numerical methods such as ray-tracing techniques [14], statistical methods [15], and a

method based on a diffusion model [16] were used to predict the decay of sound in systems

of coupled rooms.
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Fig. 1 Analysed room consisting of two connected rectangular subrooms denoted by A

and B.

The present paper has been dedicated to computational studies of the steady-state

and reverberant sound fields in a room consisting of two connected rectangular sub-

rooms (Fig. 1). The room dimensions were assumed to be comparable with the sound

wavelength, therefore a combination of a classical modal analysis with a numerical imple-

mentation was used in predicting the distribution of sound pressure inside the room and

the pressure level decay curves. The room was considered as a weakly damped system

so coupling terms in the solution of the wave equation were neglected and the pressure

variable was expanded in normal modes for which the boundary conditions are rigid walls.

To obtain better understanding of the acoustics in coupled spaces the steady-state and

reverberant behaviour of the sound field were investigated for different distributions of

absorbing materials under the condition that the total room absorption remained con-

stant. Calculation results have shown that for large differences of sound damping in

the subrooms the acoustic pressure distribution and the reverberation time are strongly

influenced by the phenomenon of eigenmode localization.
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2 Theory

In the low frequency limit a theoretical description of the acoustic field inside an irreg-

ularly shaped room is based on a solution of the wave equation with specified initial

and boundary conditions [4]. From this point of view the room may be treated as a

resonator with characteristic acoustic normal modes determined by the eigenfunctions

Φmn(r), r = (x, y, z), and the eigenfrequencies ωmn, m = 0, 1, 2... and n = 0, 1, 2..., which

depend on the boundary conditions and the room geometry. The functions Φmn are mu-

tually orthogonal and it is assumed that they are normalized in the volume V of the

room. In this case the formula for the acoustic pressure p has the form

p(r, t) =
√

V

∞∑

m=0

∞∑

n=0

Pmn(t)Φmn(r), (1)

where the functions Pmn determine the steady-state behavior of the pressure of a room

in time when it is excited by a sound source, or describe the process of acoustic pressure

decay when the source is switched off. The eigenfunctions Φmn are mutually coupled

through the impedance condition on absorptive walls

∂p

∂n
= − ρ

Z

∂p

∂t
, (2)

where ∂/∂n is a derivative taken in a direction normal to the surface S of the room’s

walls. However, in the range of low frequencies, where typical materials are characterized

by a low absorption: �e(Z/ρc) � 1, where Z is the wall impedance, ρ is the density of

air and c is the sound speed, it is possible to assume that the distribution of the mode

amplitudes is well approximated by uncoupled eigenfunctions computed for perfectly rigid

room walls [5]. For the enclosure shown in Fig. 1 the normalized eigenfunctions can be

determined by

Φmn(x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

1/
√

V , m = 0, n = 0,

Ψn(x, y)/
√

h, m = 0, n > 0,
√

2/h cos(mπz/h)Ψn(x, y), m > 0, n > 0,

(3)

where h is the room height and the eigenfunctions Ψn are normalized over a horizontal

cross-section of the room. In this case the eigenfrequencies are given by

ωmn =

√(mπc

h

)2

+ ω2
n, (4)

where the frequencies ωn satisfy the following two-dimensional eigenvalue equation

∇2Ψn +
(ωn

c

)2

Ψn = 0. (5)

Analytic forms of the eigenfunctions Ψn have been known for rooms with the simplest

geometry only, like a rectangular prism or a cylinder. For irregularly shaped enclosures
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finite element methods [17, 18], boundary element methods [19], and a variety of nu-

merical implementations such as the forced oscillator method [20], a method based on

the correspondence between the wave equation and the diffusion equation [21, 22] and a

method of point-matching [23] have been applied to find the forms of eigenfunctions.

Assume that a source term in the wave equation has the form −Q(r)cos(ωt), where

Q(r) and ω are the volume source distribution and the sound frequency, and the acoustic

pressure p(r, t) satisfies homogeneous initial conditions and the boundary condition (2).

In this case the function describing time behaviour of the first mode (m, n = 0), the

so-called Helmholtz mode that has an eigenfrequency equal to zero, is described by [24]

P00(t) =
Q00 exp(−2r00t)

ω2 + 4r2
00

+
Q00 cos(ωt− γ00)

ω
√

ω2 + 4r2
00

, (6)

where Q00 = c2

V

∫
V

Q(r)dv is a factor determining a source strength for the Helmholtz

mode, r00 = ρc2

2V

∫
S

Z−1 ds is a damping coefficient and γ00 = − tan−1(2r00/ω). As may be

seen, the time component of the pressure for the Helmholtz mode consists of two parts:

a transient term which disappears time increases and a steady-state harmonic term with

a frequency ω equal to that of the sound source. The sum of these terms describes a

process of a sound build-up in a room. For all other modes the formula for functions Pmn

is given by [24]

Pmn(t) = −Qmn exp(−rmnt)ωmn cos(Ωmnt − βmn)

Ωmn

√
(ω2

mn − ω2)2 + 4r2
mnω

2
+

Qmn cos(ωt − γmn)√
(ω2

mn − ω2)2 + 4r2
mnω

2
, (7)

where Qmn = c2√
V

∫
V

Q(r)Φmn(r)dv is a factor determining the source strength for the

mode (m, n) and rmn = ρc2

2

∫
S
Φ2

mn(r)/Z ds is a the modal damping coefficient. In Eq. (7)

the quantity Ωmn =
√

ω2
mn − r2

mn is the eigenfrequency for oscillations with damping,

sometimes called the damped eigenfrequency [25], and βmn and γmn are phase shifts

given by

βmn = tan−1

[
rmn(ω2

mn + ω2)

Ωmn(ω2
mn − ω2)

]
, γmn = tan−1

[
2rmnω

ω2
mn − ω2

]
. (8a,b)

As follows from Eq. (7), for modes (m, n) with non-zero eigenfrequencies the time com-

ponent of the pressure includes a transient harmonic term having the frequency Ωm.

Inserting Eqs. (6) and (7) into Eq. (1) enables prediction of the transient acoustic re-

sponse of a room subjected to a harmonic source and more importantly, the acoustic

pressure in steady-state. After simple transformations one may obtain a formula for the

root mean square value of this pressure and the result is

P (r) =

√√√√V

2

∞∑

m=0

∞∑

n=0

Q2
mnΦ

2
mn(r)

(ω2
mn − ω2)2 + 4r2

mnω
2
, (9)

showing that for a given room geometry the spatial distribution of RMS pressure depends

on the driving frequency ω and, through the parameters Qmn, on the volume source

distribution Q(r).
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When a signal driving a room is switched off, the acoustic energy accumulated inside

the room is dissipated on the walls and a reverberation, due to the common decay of

eigenmodes, occurs. The time components of the pressure describing a process of sound

decay in a room are determined by [26]

P00(t) = −Q00 exp(−2r00t)

ω2 + 4r2
00

, Pmn(t) =
Qmn exp(−rmnt)ωmn cos(Ωmnt − βmn)

Ωmn

√
(ω2

mn − ω2)2 + 4r2
mnω

2
,

(10a,b)

and as may be seen, the components P00 and Pmn in the case of a sound decay and

the transient terms in Eqs. (6) and (7) taken with opposite sign are identical. Inserting

expressions (10a,b) into Eq. (1) leads to a formula for a reverberant sound field.

3 Analysis

3.1 Modal response

In a computational study the following room dimensions were assumed (in meters): l1 =

5, l2 = 1, l3 = 4, d1 = 8, d2 = 3.2, d3 = 2.2, d4 = 6, h = 3 (Fig. 1), which seem to be typical

dimensions for small flats. For this room configuration the unknown eigenfunctions Ψn

and eigenfrequencies ωn in Eqs. (3) and (4) were calculated numerically by the use of the

program EIGEN, which was written in the Pascal language. In this program the forced

oscillator method [20] with a finite difference algorithm was applied.

The forced oscillator method is based on the principle that a response of linear system

to a periodic excitation is large when the driving frequency is close to the frequency of an

eigenmode. In this method the eigenvalue problem is solved with the use of the analytical

solution of the inhomogeneous wave equation in two space dimensions

c2∇2f − ∂2f

∂t2
= −q(x, y) cos(ωt), (11)

where q(x, y) determines the source distribution, which satisfies the Neumann boundary

condition and the homogeneous initial conditions

f(x, y, t = 0) = (∂f/∂t)t=0 = 0. (12)

A numerical form of this solution is the following

f(i, j, kτ) =

∞∑

n=0

QnΨn(i, j)[cos(ωnkτ) − cos(ωkτ)]

ω2 − ω2
n

, (13)

where (i, j) is a grid point, τ is the time step, k = 1, 2, 3, ..., K, and

Qn =

∫

σ

q(x, y)Ψn(x, y)dxdy, (14)
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where σ is a surface of the room’s horizontal cross-section. Now, if the driving frequency

ω is close to the eigenfrequency ωn, then for sufficiently large time T = τK only the term

connected with the mode number n contributes to the sum in Eq. (13), so one can write

f(i, j, T ) ≈ aΨn(i, j), (15)

where a is a constant. The spatial distribution of Ψn can be determined after a normal-

ization procedure which results in the elimination of the constant. Finally, use of the

formula

ωn = c

√

−
∫

σ

Ψn∇2Ψn didj (16)

found directly from Eq. (5) enables calculation of the eigenfrequency ωn.

Using the above method the eigenfunctions Ψn were calculated in a two-dimensional

grid with 80 × 100 elements. Examples of computed shapes of Ψn are plotted in Fig. 2

in the form of filled contour maps which are a two-dimensional representation of three-

dimensional data. In these plots contours define lines of constant value of Ψn. The

computed eigenfunctions Ψn represent the numerical solution of the wave equation in a

two-dimensional area in the shape of the room’s horizontal cross-section satisfying the

Neumann boundary condition. The results depicted in Fig. 2 imply that for some eigen-

modes the acoustic energy can be concentrated inside the one of subrooms (Figs. 2a,d).

This effect, often called mode localization, is characteristic for fractal structures [27] and

enclosures having an irregular geometry [28].

3.2 Steady-state sound pressure

In steady-state the spatial distribution of the RMS pressure P inside a room can be

predicted from Eq. (9) using the computed eigenfunctions Ψn and eigenfrequencies ωn.

Calculations of P were carried out in the observation plane z = 1.8 and a sound source

placed in two points: x0 = 2, y0 = 5, z0 = 1 and x0 = 8, y0 = 5, z0 = 1 (all dimensions

in meters). The first point is located in the subroom A whereas the second one in the

subroom B. In a numerical simulation the first 140 eigenmodes, having eigenfrequencies

from the range 0–170 Hz, were used. For a sake of model simplicity the wall impedance

was assumed to be purely real, i.e. the mass and stiffness of the absorbing material are

neglected. This corresponds to the damping of a sound wave on the wall with no phase

change upon reflection.

In order to examine the influence of sound absorption on the distribution of the

pressure P , it was assumed that the values of the random incidence absorption coefficient†

of the walls in subrooms A and B were selected in such a way that the average absorption

coefficient α in a room remains constant, thus

α =
αaSa + αbSb + αabSab

S
= const., (17)

† Also known as random-absorption coefficient [26] or statistical absorption coefficient [29].
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Fig. 2 Shapes of functions Ψn for mode numbers: a) n = 5, b) n = 10, c) n = 15, d)

n = 20.

where αa and Sa are the absorption coefficient and the surface area of the walls in the

subroom A, αb and Sb are the absorption coefficient and the surface area of the walls in

the subroom B, αab and Sab are the absorption coefficient and the surface area of the walls

in the part of the room connecting subrooms A and B, respectively, and S = Sa +Sab +Sb.

For a given value of the coefficient α, the surface impedances on room walls were found

from the well-known relationship between the random incidence absorption coefficient α

and the impedance ratio ξ [25]

α =
8

ξ

[
1 +

1

1 + ξ
− 2

ξ
ln(1 + ξ)

]
, ξ = Z/ρc. (18)

In the calculation procedure it was assumed that α = αab = 0.15, thus the coefficients αa

and αb in subrooms A and B were changing quantities. It is important to note that the

assumed value of the coefficient α is close to the average absorption coefficients of slightly

vibrating walls (a suspended ceiling for example) or moderately absorbing surfaces (a

painted concrete block) in the octave band with a centre frequency of 125 Hz (usually,

the lowest octave band in tables of material absorption coefficients) [1].

The plots in Fig. 3 depict examples of the calculated RMS pressure P obtained for

two distributions of absorbing material on the room walls and different frequencies and

locations of the sound source. These data imply that for a large difference between
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a) b)

c) d)

Fig. 3 Distributions of RMS pressure for two configurations of absorbing material and

different frequencies and positions of sound source: (a,b) αa = 0.015, αb = 0.35, 21.7 Hz

and 64.7 Hz, source in subroom A, (c,d) αa = 0.24, αb = 0.016, 29.1 Hz and 90.5 Hz,

source in subroom B.

absorption coefficients αa and αb at some frequencies there is a substantial difference

between the values of the pressure P in both subrooms. In order to investigate this effect

in more detail, from the distribution of P in an observation plane the average value P

in subrooms A and B was computed for an assumed driving frequency f and a location

of the sound source. A frequency dependence of P calculated for various values of the

absorption coefficients αa and αb are shown in Fig. 4. The data presented in Figs. 4a,b,c

were obtained for αa ≤ αb and the sound source located in the subroom A. As may

be seen, for subroom walls covered by the same absorbing material (αa = αb) there are

very small differences of P inside subrooms A and B (Fig. 4c). Although the total room

absorption was assumed to be a constant parameter, a decrease in the ratio αa/αb results

in a very interesting behaviour of the frequency dependence of P , namely: very small

changes in P in subroom B (solid lines) are accompanied with a substantial increase

in P in subroom A for some sound frequencies (dashed lines), and moreover, when the

ratio αa/αb decreases the peaks of P in the subroom A are visibly higher (Figs. 4a,b).

A very similar phenomenon is observed if αa ≥ αb and a sound source is located in the

subroom B (Figs. 4d,e,f). However in this case one can notice an influence of a relation

between the absorption coefficients αa and αb on the sound pressure inside the subroom B.

Furthermore, contrary to the situation shown in Figs. 4a,b distinct peaks in the frequency

dependence of P appear when the sound absorption in subroom B is much smaller than

in subroom A (Fig. 4d). Also, the total amount of peaks in the assumed range of f and
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Fig. 4 Frequency dependence of average value of the RMS pressure in subroom A (dashed

lines) and subroom B (solid lines) for a sound source located in subroom A (a,b,c) and

subroom B (d,e,f) for different distributions of absorbing material on room walls: (a) αa

= 0.015, αb = 0.35, (b) αa = 0.05, αb = 0.3, (c,f) αa = αb = 0.15, (d) αa = 0.24, αb =

0.016, (e) αa = 0.21, αb = 0.06.

their frequencies is different in both cases.

The appearance of narrow peaks in the frequency dependence of P occurring for

large differences between coefficients αa and αb indicates that the pressure distribution

inside the room is influenced by mode localization and it can be explained as follows.

Suppose that the sound frequency is close to an eigenfrequency of the mode (m, n) which

is localized in the subroom A, for instance. This means that the acoustic energy associated

with this mode is concentrated in the subroom A, so in consequence the highest values

of the eigenfunction Ψn squared occur in this subroom and values of Ψ 2
n are very small

in the remaining part of the room (Figs. 2a,d). Because of this property a sound emitted

by a harmonic source having a frequency of this eigenmode is mainly absorbed in this

subroom and weakly damped in the subroom B. Thus, it is clear that in this case the
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pressure P in the subroom A peaks strongly when the condition αa � αb is satisfied.

The frequencies of localized modes can be found from the distribution of eigenfunctions

Ψn in (x, y) plane. Since they are normalized over a room’s horizontal cross-section, the

integral
∫

σ
Ψ 2

n dxdy equals unity then to characterize mathematically the localization or

the confinement of eigenmodes one should compute two non-dimensional parameters

υa
n =

∫

σa

Ψ 2
n dxdy, υb

n =

∫

σb

Ψ 2
n dxdy, (19a,b)

where σa and σb are surfaces of horizontal cross-sections of subrooms A and B. Thus, an

eigenmode is localized in subroom A when the parameter υa
n is very close to unity or a

value of υb
n is very small. Dependencies of the parameters υa

n (circles) and υb
n (triangles)

on the sound frequency f are depicted in Fig. 5. Calculation results indicate that for some

20 40 60 80 100 120 140 160

f (Hz)

0.0001

0.001

0.01

0.1

1

n
,

n
A

B

Fig. 5 Non-dimensional parameters υa
n (circles) and υb

n (triangles) versus sound frequency.

modes, which can be termed as strongly localized modes, the parameters υa
n and υb

n have

values smaller than 0.01. The frequencies of these modes are presented in Table 1, where

in the main and bottom parts are collected eigenmodes localized in subrooms A and B,

respectively. As follows from a comparison between Fig. 4a,d and the data in the second

column of Table 1, frequencies of the strongly localized modes correspond to frequencies

at which the average value of RMS pressure inside the subrooms A and B peaks. To

recognize the cause of mode localization, the eigenfrequencies fκν of a rectangle

fκν =
c

2π

√(κπ

d

)2

+
(νπ

l

)2

(20)

with dimensions d and l corresponding to the dimensions of cross-sectional areas of the

subrooms were computed, where κ, ν = 0, 1, 2... and d = d1, l = l1 for subroom A and d

= d4, l = l3 for subroom B (Fig. 1). In Table 1 some frequencies fκν are listed, together

with the corresponding combinations of subscripts κ and ν. These data indicate that the

effect of mode localization in the room consisting of two connected rectangular subrooms
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is caused by a generation of eigenmodes having approximately the same frequency as

eigenmodes in rectangular enclosures with the same dimensions as the subrooms.

Table 1 Frequencies fn of eigenmodes strongly localized in subroom A (upper part of

table) and subroom B (bottom part of table) in comparison with frequencies fκν calculated

from Eq. (20).

n fn (Hz) κ ν fκν (Hz)

2 21.670 0 1 21.438
5 40.684 1 1 40.448
11 64.726 0 3 64.313
13 71.896 2 1 71.872
14 73.787 1 3 72.888
23 105.018 3 1 105.109
24 107.311 0 5 107.187
36 133.323 1 6 133.120

3 29.083 0 1 28.583
8 52.061 1 1 51.529
18 90.538 2 1 90.388

3.3 Reverberant sound decay

For given source parameters (the frequency, the distribution) and an assumed config-

uration of absorbing material on the subrooms’ walls a formula obtained by inserting

expressions (10a,b) into Eq. (1) makes it possible to predict the reverberation time at

each point of the room space from the calculated energy decay curves corresponding to

the time history of the sound pressure level

L = 20 log(|p |/p0), (21)

where p0 is a reference pressure. Since the functions Pmn in Eq. (10b) include harmonic

terms, from temporal changes in the pressure level L a time-average decay curve was

calculated using the method of a polynomial regression. A fitted curve obtained in such

a way describes the average long-time changes in the sound pressure level, thus it was

applied to determine the standard reverberation time T which is defined as the time for

the sound to die away to a level 60 decibels below its original level. Examples of pressure

level decay curves together with fitting curves calculated at two observation points for a

source located in subroom A and the sound frequency corresponding to an eigenfrequency

of a mode localized in subroom B are presented in Fig. 6. Plots in this figure exhibit

various slope characteristics of decay curves. In the first case, shown in Fig. 6a, the time-

average decay of pressure level is linearly dependent on the time, which means that that

sound pressure has an exponential decay. This situation occurs when the pressure level

decay is dominated by a decay of one eigenmode or by decays of eigenmodes having the

same or very similar damping coefficients. Plots presented in Fig. 6b depict a reverberant

process for a large difference between the absorption coefficients αa and αb.
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Fig. 6 Pressure level decay curves (gray lines) and fitting curves (solid black lines) ob-

tained using the method of polynomial regression for a frequency of 52.1 Hz corresponding

to an eigenfrequency of a mode localized in subroom B for two different distributions of

absorbing material on subrooms walls: (a) αa = αb = 0.15, observation point in subroom

A: x = 4 m, y = 2 m, z = 1.8 m, (b) αa = 0.24, αb = 0.016, observation point in subroom

B: x = 8 m, y = 2 m, z = 1.8 m. Sound source located in subroom A.

b)a)

Fig. 7 Distributions of the reverberation time for a frequency of 52.1 Hz corresponding to

an eigenfrequency of a mode localized in subroom B for two configurations of absorbing

material on subrooms walls: (a) αa = αb = 0.15, (b) αa = 0.24, αb = 0.016. Sound source

located in subroom A.

In this case the decay curve consists of two parts which refer to the rapid early decay

and the slow late decay, thus it can be well approximated by polynomial function of

higher degree (degree 8 in this case). In such a situation the time history of a pressure

level characterises a double-sloped effect (DSE), which happens when a dominant acoustic

mode is much more damped than neighbouring modes. In the case shown in Fig. 6b, a

rapid early sound decay may result in higher sound clarity, whereas a slow late decay
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leads to an increase in perceived reverberance. Thus, from a subjective viewpoint the

standard reverberation appears to be a somewhat misleading measure of DSE. In the past

different metrics were proposed to quantify DSE. Harrison and Madaras [30] characterized

a coupled rooms’ effect by the ratio T30/T15, referred to as the“coupling coefficient”, where

T30 is given as the decay time from −5 to −35 dB in the decay curve, multiplied by a

factor of 2, whereas T15 is defined as the decay time from −5 to −20 dB, multiplied by

a factor of 4. In a study of sound decay in coupled-volume concert halls Ermann and

Johnson [31] used the ratio T/T15, referred to as the “coupling constant”, which is a slight

modification on the coupling coefficient. Both metrics are not unequivocal measures of

DSE, because different sound decay curves are capable of producing the same coupling

coefficient or coupling constant. In order to characterize different double-sloped profiles

accurately, Bradley and Wang [13] used two quantities: the decay ratio T2/T1 and the

parameter Δ, where T1 and T2 are the early and late reverberation times and Δ is found

from a linear approximation of the late decay curve. As was shown in the Appendix, in

the room under consideration participation of neighbouring eigenmodes in producing the

sound decay varies from point to point giving decay curves which can be described by

different values of T1, T2 and Δ. Thus, by use of these metrics it is difficult to quantify

a sound reverberation process in each of the subrooms. For this reason the standard

reverberation time T , treated more like a physical measure than a metric of DSE, will be

utilized to characterize a reverberation phenomenon in the room system being analyzed.

Figure 7 shows examples of distributions of the reverberation time T computed in an

observation plane for previously assumed source parameters and configurations of absorb-

ing material on room walls. As may be seen, for the uniform distribution of absorbing

material the reverberation time T varies very slightly (Fig. 7a). However, when the ab-

sorption coefficient αb is much smaller than αa large values of the reverberation time T

in the subroom B are observed for a sound frequency equal to an eigenfrequency of a

mode strongly localized in the subroom B (Fig. 7b). In order to investigate this effect in

the whole frequency range, from the distribution of T in an observation plane the aver-

age value T of the reverberation time in subrooms A and B was computed. Frequency

dependencies of T for assumed source locations and different distributions of absorbing

material on the subrooms’ walls are shown in Fig. 8.

The graphs presented are of great importance from a practical viewpoint because they

show how the distribution of absorbing material on room walls can strongly influence the

decay of the sound pressure inside the subrooms. As follows from Fig. 8, if a difference

between the absorption coefficients in the subrooms is sufficiently high a great increase

in the average reverberation time T is observed for some sound frequencies. A detailed

analysis of the calculation data has proved that local maxima of the time T occur for

frequencies of modes which are localized in such a subroom where a sound damping

is smaller. It is important to note that this effect is the direct result of an irregular

geometry of lateral walls in the room under consideration because in a rectangular room

all eigenmodes are delocalized [27].
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Fig. 8 Frequency dependence of the average value of the reverberation time in subroom

A (dashed lines) and subroom B (solid lines) for a sound source located in subroom A

(a,c) and subroom B (b,d) for two distributions of absorbing material on room walls:

(a,b) αa = 0.015, αb = 0.35, (c,d) αa = 0.24, αb = 0.016.

As may be seen in Fig. 8, the frequency dependence of the reverberation time is

also influenced by the position of the source. When it is located in a subroom whose

walls are covered by a material with a large absorption, sharp high-valued peaks of the

reverberation time T are only observed in the coupled subroom because of the small

damping of acoustic energy for localized eigenmodes (Fig. 8b,c). On the other hand,

if the sound source position is in a subroom with small sound damping, typical narrow

peaks of reverberation time occur in the second subroom as before (Fig. 8a,d), however

in the frequency dependence of T in the first subroom the reverberation time is high but

there are not sharp peaks. This may be explained by the fact that a mode localized in

this subroom has a high amplitude in a steady-state (Fig. 4a,d), thus it dominates the

reverberant energy decay in a wide frequency range.
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4 Conclusions

In the low frequency range a method of eigenmodes has been used for studying the acoustic

parameters of a lightly damped, irregularly shaped room consisting of two connected

rectangular subrooms. The effects of acoustical coupling between the subrooms on steady-

state and reverberant sound fields have been investigated for different distributions of

absorbing materials on the subrooms’ walls under the assumption that the total room

absorption was constant.

Results of a numerical simulation have shown that the location of absorbing material

and the position of the sound source have a great influence on the distribution of the

sound pressure and the reverberation time inside the subrooms. It was found that this is

the result of the modal localization which appears in enclosures of irregular geometry such

as the system of coupled subrooms that was analyzed. For a large difference between the

absorption properties of the subrooms this effect entails an unwanted, substantial increase

in the sound pressure and the reverberation time for frequencies of strongly localized

eigenmodes. A detailed analysis of the numerical data has shown that in the room under

consideration the effect of mode localization is caused by the generation of eigenmodes

having approximately the same frequency as eigenmodes in rectangular enclosures with

the same dimensions as the subrooms.

It was found that for a large difference between the absorption properties of subrooms

the time history of the sound pressure exhibits an interaction of modes in producing a

decay curve from which the reverberation time is evaluated. In such a situation there

is a possibility for an interesting effect to occur, namely reverberant curves that exhibit

double-sloped decay. In this case the pressure level change is rapid initially and much

slower during the late stage of the sound decay. This is result of different damping

coefficients for eigenmodes having comparable eigenfrequencies and it appears when a

dominant mode is much more damped than neighbouring modes.

Appendix

Characteristics of double-sloped decay

According to a general classification of different shapes of non-exponential sound decay

[32], the decay curve shown in Fig. 6b exhibits a “sagging” appearance with a clearly

visible rapid initial decay and a shallow late decay slope. To quantify the sag of the

double-sloped decay the initial and late damping factors can be found via approximating

the decay curve by a function including a combination of two exponential decays

F (t) = 20 log

[
1

1 + A

(
e−r1t + Ae−r2t

)]
, (A1)

which satisfies the condition F (0) = 1, where r1 and r2 are the damping factors for initial

and late portions of sound decay, respectively, and A is the ratio between the amplitudes
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of the late and the initial decays. A comparison between the decay curve (solid line) and

the fitting curve (dashed line) is depicted in Fig. 9a.
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Fig. 9 Approximation of the decay curve from Fig. 6b (solid line) by: (a) function (A1)

including the sum of two exponential decays (dashed line), (b) modal decay equations

(A3) for T1 = 0.958 s, T2 = 7.063 s and Δ = 37.2 dB (dashed lines).

The best approximation was obtained for the following parameters: r1 = 7.21 s−1, r2

= 0.978 s−1 and A = 1.402 · 10−2. Now, using the estimated damping factors and the

formula for the modal reverberation time [26]

Tm = 3 ln(10)/r, (A2)

it is easy to compute the reverberation times T1 and T2 for early and late sound decays,

respectively. However, these times are insufficient metrics to definitively identify a double-

sloped decay because the sag of this decay can be different for the same times T1 and

T2. Thus, as was shown by Bradley and Wang [13] a third parameter — Δ — should be

defined to characterize a double-sloped profile of sound decay. This parameter is present

in the modal decay equations

L1(t) = −
(

60

T1

)
t, L2(t) = −

(
60

T2

)
t − Δ, (A3)

approximating the decays of pressure level in the early and the late stages of a reverberant

process by straight lines (Fig. 9b). The use of the second equation together with a

calculated value of the reverberation time T2 enables the best estimate of Δ to be found.

Figure 9b indicates that for initial and late decays of the pressure level that may be well

approximated by the modal decay equations (A3), the quantities T1, T2 and Δ seem to

be the appropriate characteristics of a double-sloped decay.

In the case of the room that was analyzed participation of neighbouring eigenmodes

in producing the sound decay varies from point to point, giving decay profiles which can

be characterized by different values of the parameters T1, T2 and Δ. It is particularly
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visible for large differences between the absorption coefficients αa and αb and for a sound

frequency equal to an eigenfrequency of a strongly localized mode. Examples of decay

curves obtained in this case are shown in Fig. 10.
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Fig. 10 Calculated sound decay curves in points 1, 2 and 3 in the observation plane z

= 1.8 m (black points in room horizontal-cross section) for absorption coefficients αa =

0.24, αb = 0.016 and sound frequency of 52.1 Hz. Sound source located in subroom A.

As may be seen, at some observation points the early decay is very short and a

reverberation process is dominated by the late decay with a shallow slope (curves 1

and 3 in Fig. 10a, curves 2 and 3 in Fig. 10b). This leads to a high value of standard

reverberation time and corresponds to a small value of the parameter Δ. The remaining

two decay curves (curve 2 in Fig. 10a, curve 1 in Fig. 10b) prove, however, that this

parameter may change very rapidly from point to point. For all curves in Fig. 10 and

curves 2 and 3 in Fig. 10b the late portion of the sound decay may by approximated by

straight lines with similar slopes giving comparable values of the late reverberation time

T2 (curve 1 in Fig. 10b characterizes an evidently various late decay slope). However,

this property is not observed in the initial portion of decay curves showing that in these

cases the early reverberation time T1 is somewhat different.
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