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Abstract The familiar small strain thermodynamic 3D theory of isotropic pseudoelasticity proposed by Ranie-
cki and Lexcellent is generalized to account for geometrical effects. The Mandel concept of mobile isoclinic,
natural reference configurations is used in order to accomplish multiplicative decomposition of total deforma-
tion gradient into elastic and phase transformation (p.t.) parts, and resulting from it the additive decomposition
of Eulerian strain rate tensor. The hypoelastic rate relations of elasticity involving elastic strain rate de are
derived consistent with hyperelastic relations resulting from free energy potential. It is shown that use of Jau-
mann corotational rate of stress tensor in rate constitutive equations formulation proves to be convenient. The
formal equation for p.t. strain rate din, describing p.t. deformation effects is proposed, based on experimental
evidence. Phase transformation kinetics relations are presented in objective form. The field, coupled problem
of thermomechanics is specified in rate weak form (rate principle of virtual work, and rate principle of heat
transport). It is shown how information on the material behavior and motion inseparably enters the rate virtual
work principle through the familiar bridging equation involving Eulerian rate of nominal stress tensor.

Keywords Shape memory alloys · NiTi · Pseudoelasticity · Thermoelastic martensitic transformation ·
Thermodynamic SMA constitutive model · Finite deformations · Hyperelastic–hypoelastic equivalence ·
Bridging equation · Coupled thermomechanics
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Abbreviations
p.t. phase transition
SMA shape memory alloys
i.n.s. instantaneous natural state

Notations

A B = Ai jkl Bklei ⊗ e j , A B = Ai j B jkei ⊗ ek, 1 = δi j ei ⊗ e j ,

I4s = 1
2 (δikδ jl + δilδ jk)ei ⊗ e j ⊗ ek ⊗ el , tr(A) = Aii , A · B = tr

(
A BT

)
= Ai j Bi j

1 Introduction

Special properties of so-called shape memory alloys (SMA) have resulted in a constantly growing number
of structures and devices exploiting them; see Otsuka and Kakeshita [15] for a recent survey of application
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areas. Devices containing elements made of SMA typically undergo moderate deformations not exceeding
several percent during nominal operation; also typically they can undergo large rotations. These engineering
conditions call for development of the SMA constitutive model, taking into account geometrical effects.

Extensive literature on constitutive modeling of SMA exists at present. The constitutive models of SMA
available in the literature evolved from the prevailing one-dimensional models of the ealy 1990s to the three-
dimensional thermodynamic models dominating at the turn of the century. The majority of the current 3D
macroscopic constitutive models of SMA embrace the pseudoelastic range of SMA alloy behaviors and are
usually written in small deformations formalism. A schematic map of the range of parameters in which various
shape memory effects dominate is drawn in Fig. 1.

The interested reader can obtain information on different macroscopic models of polycrystalline SMA
materials and their approaches, as well as advantages and drawbacks, from a very recent, broad, review paper
by Lagoudas et al. [8]. Here in the context of taking into account geometrical effects, we shall mention the
model of Auricchio and Taylor [1], as apparently it is the first macroscopic constitutive model of SMA written
consistently in large deformations formalism. Closer analysis of mathematical expressions of the Auricchio
and Taylor’s model indicates that in the limit of small strains theory and disregarding the influence of the first
stress invariant (pressure) on pseudoelastic flow criterion, the model constitutes a purely thermo-mechanical,
special case of Raniecki and Lexcellent [20] in their model formulation from 1994. Taking into account pres-
sure effects seems not to be of primary importance in view of experimental information available in literature
that dilatational effects resulting from thermoelastic martensitic transformation responsible for shape memory
effects are usually limited to 0.2%, see, e.g., Otsuka and Ren [16]. Besides formal mathematical identity of
Auricchio, Taylor and the special case of Raniecki, Lexcellent models, the former one possesses essential
deficiencies when aimed at modeling SMA materials behavior, resulting from generic origins of the concepts
used in this model—namely generalized plasticity theory. The generalized plasticity theory aims at describing
macroscopically physical mechanism of plastic slip—which involves microscopic scale of observation dis-
continuous displacement field. In contrast, the shape memory effects exhibited by SMA materials rely on the
underlying physical mechanism of twinning, which involves a continuous microscopic displacement field. One
of the consequences of this difference is that on the macroscopic scale of observation, microscopic coherency
of the displacement field requires, in general, the presence of some energy term in macroscopic free energy
potential—the so-called coherency energy. Without having some idea on how to explicitly describe coherency
energy, it is impossible to evaluate reasonably in modeling terms thermal effects connected with martensitic
transformation, for example to separate latent heat of martensitic transformation from dissipation of work.
Auricchio and Taylor in their model from 1997 do not deliver any information on thermal effects, and in the
present author opinion generalized plasticity concepts cannot help in view of the argumentation presented
above. Concepts of non-equilibrium thermodynamics of phase transitions are necessary. Apparently the first
complete, 3D phenomenological, thermodynamic, macroscopic theory of pseudoelasticity—model RL was
developed by Raniecki et al. [19]. Complete in the sense that it contained all elements enabling description
of the most important effects connected with the phenomenon of pseudoelasticity, i.e., explicit form of free
energy function, criteria determining when active forward or reverse phase transformation can take place,
equations of phase transformation (p.t.) kinetics embracing description of internal hysteresis loops formation,
evolution relations of p.t. strains enabling description of strain effects resulting from formation and reorienta-
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tion of martensitic phase. The model was subsequently extended in the years 1994 [20] (to cover the case when
austenitic and martensitic phase have different thermoelastic properties) and in 1998 [21] (to enable description
of strength differential effect (SD) exhibited by SMA materials) i.e., the phenomenon of critical pseudoelastic
flow stress dependence on the direction of stress tensor. Müller and Bruhns undertook very recently an effort
to extend the 1992 version of the model RL to take into account geometrical effects, cf. paper [12] from 2006.
For that purpose they postulate additive decomposition of the Eulerian strain rate tensor into elastic and phase
transformation part, but not multiplicative decomposition of deformation gradient, clearly trying to avoid
explicit specification of evolution rule for inelastic spin. As a result these authors finally reach a very special
rate constitutive equation of elasticity involving elastic stretching rate and corotational logarithmic derivative

of Kirchoff stress—
o log
τ = C0 [ de − α0Ṫ ], cf. (88) in [12]. The rate relation effectively leads implicitly to a

very special dependence of instantaneous elastic properties of SMA material on inelastic deformation state,
connected with phase transition. This conclusion can be reached when one observes that logarithmic spin
depends on the state of inelastic deformation—total principal stretches λi embrace p.t. principal stretches λin

i ,
cf. (A1), (A3). The above is inconsistent with the non-rate constitutive relation of elasticity (57), postulated
in [12] (identical with relation (24) of the present paper upon substitution L = C0 = const), where elastic
properties do not depend on inelastic deformation state.

In the present work enhanced by Raniecki and Lexcellent, a version of model RL [20,21] is extended
into the large deformations regime, allowing one to model the SD effect in a large deformation regime. For
that purpose the concept of multiplicative decomposition of the total deformation gradient is used together
with the concept of a family of virtual, isoclinic, unloaded elastically configurations serving as reference
configurations for description of elastic deformation—Mandel formalism1 [10]. The Lagrangian logarithmic
elastic strain tensor, temperature and mass fraction of martensitic phase { Ee, T, z} are used as a set of state
parameters entering macroscopic free energy function describing two-phase states of SMA macroelement in
mobile Lagrangian description. The set { ee, T, z} of state parameters in Eulerian description corresponds to
the set { Ee, T, z}, where ee denotes spatial logarithmic (Hencky) elastic strain. The state equations of thermo-
elasticity are obtained by formal differentiation of free energy potential in accordance with the formalism of
thermodynamics. In order to describe deformation effects connected with martensitic phase transition or/and
martensitic phase reorientation, the equation of pseudoelastic flow law for Eulerian inelastic strain rate din is
proposed. The formal equations of p.t. kinetics and criteria for active forward and reverse transformation are
specified in the objective form, i.e., invariant with respect to rigid body rotations when expressed on actual
configuration. Rate constitutive relations of elasticity are formulated in Eulerian description using Zaremba–
Jaumann elastic corotational rate of Kirchoff stress in view of favorable properties of this particular rate.
Selection of family of unloaded elastically reference isoclinic configurations by accepting assumption that
inelastic Eulerian spin ωin is identically equal to zero leads to considerable simplification of mathematical
formulation of the proposed SMA materials model. It is shown how information on the material behavior and
motion inseparably enters a global weak form of rate mechanical balance equation through a familiar bridging
equation involving the Eulerian rate of the nominal stress tensor.

The proposed 3D phenomenological macroscopic model of SMA allows in a comprehensive way for
quantitative description of their pseudoelastic behavior, taking into account geometrical effects resulting from
finite deformations. As the model is developed within non-equilibrium thermodynamics formalism in a natural
manner, it allows for prediction of coupled mechanical-thermal and phase transformation progress effects. The
presently developed model upon its implementation into finite element code is very well suited for performing
engineering design computations of structures containing elements made of SMA in analyzing situations when
large rotations of structural elements appear during nominal operating conditions, or in analyzing emergency
situations when also large strains may appear.

2 Kinematics relations at finite deformations

Consider a polycrystalline body B made of shape memory alloy occupying at a certain time instant t0 confi-
guration 0 B, see Fig. 2.

The body B undergoes motion x(X, t) due to applied thermo-mechanical loads, and it takes at the generic
time instant t of a process actual, deformed configuration t B. For the purposes of building macroscopic

1 The term Mandel formalism (description) is used interchangeably with the term mobile Lagrangian description, and they are
synonymous here.
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Fig. 2 Schematic illustration of configurations involved in the concept of multiplicative decomposition of total deformation
gradient

constitutive model of SMA, it is assumed that in the neighborhood of an arbitrary material point remaining at
initial position X in initial configuration 0 B there can be distinguished a macroelement, so-called representative
volume element (RVE). The RVE must be large enough to grasp essential microstructural features of the
investigated material and small enough in comparison to the characteristic dimension of the engineering
structure for description of which the present model is to be employed, that fields in RVE volume could be
treated as homogeneous. The macroelement at location X in initially undeformed configuration is symbolically
represented with hexahedron in Fig. 2. The macroelement undergoes deformation as a result of applied external
loadings and at instant t takes the location x(X, t). In the sequel, the deformation gradient F = ∂x/∂X is
taken as homogeneous within the volume of RVE at all time instants of deformation process. More precise
definition and discussion of the RVE concept can be found in the book by Nemat–Naser and Hori [13].
It is known that shape memory alloys, when loaded thermomechanically, can undergo forward or reverse
martensitic p.t., which results in two-phase SMA macroelement microstructure. The inelastic deformation
effects are connected with martensitic phase transition and with macroelement microstructure evolution, e.g.,
reorientation of martensitic variants. In the macroscopic model of SMA developed in the present work inelastic,
“phase” deformation effects are described with the aid of two macroscopic parameters z—volume fraction
of martensitic phase, and κ—isotropic tensor function of a certain number of scalar internal parameters Hi
characterizing microstructure of the macroelement. Parameter z characterizes advancement of phase transition,
while parameter κ called macroscopic tensor of phase eigenstrains characterizes phase transition deformation
effects. Similarly like in the case of model RL it is adopted conjecture that SMA macroelement always tends
to reach thermodynamic microstructural equilibrium, i.e., its microstructure “exhibits tendency to adapt to
changing external loading”. In the case of small deformations Raniecki and Lexcellent [20,21] formally showed
that in states of thermodynamic microstructural equilibrium Hi = H eq

i , the free energy reaches minimum with
respect to internal state parameters Hi . As a consequence requirement of “optimal adaptation of microstructure”
led these authors to the conclusion that tensor κ(Hi ) in states of microstructural equilibrium (Hi = H eq

i ) must
be certain function of macroscopic state parameters—κ(H eq

i ) = κeq(H eq
i (σ , T )) = κeq(σ , T ). In the present

work, accepting similar argumentation as in small deformations theory, without formal proof, it is adopted
that tensor κ is a function of external state parameters (σ , T ) through equilibrium values of internal state
parameters Hi = H eq

i . Hence, it is assumed that also in the case of finite deformations microstructure of SMA
macroelement optimally adapts to the external thermo-mechanical loading. It is also assumed, like in small
deformations theory, that there exists inelastic potential gph(σ , T ), which generates tensor κ .

In order to properly describe inelastic deformation effects connected with phase transition, it is convenient to
introduce known concept of virtual, unloaded elastically, instantaneous, “natural” reference configurations. The
instantaneous, natural configuration is the kind of configuration that would be attained by SMA macroelement
(a material point neighborhood) at particular time instant t , had the surface tractions tn been momentarily redu-
ced to zero (σ = 0) and temperature had been brought to temperature T = T0, where T0 denotes certain fixed
reference temperature—while keeping the internal microstructure of the macroelement fixed, “frozen”, i.e., va-
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lues of set of internal parameters characterizing microstructure would be kept constant during elastic unloading
process z = const, (Hi = const) ⇔ (κ = const). The natural configuration at time t is symbolically marked
t N∗ in Fig. 2. State of macroelement (RVE) remaining in described above virtual, unloaded elastically configura-
tion would be called instantaneous, natural state, where (σ = 0, T = T0, z = const, Hi = const). The concept
of natural states is useful when building a macroscopic model of shape memory alloys valid at finite strains.
It allows one to conveniently uncouple effects of elastic deformation from inelastic one—here connected with
martensitic p.t. or possible evolution of two-phase, martensitic microstructure. The modeling approach is that
instead of investigating the real deformation process of SMA macroelement when simultaneously elastic and in-
elastic deformations take place, there is investigated virtual pure inelastic deformation process from initial confi-
guration to instantaneous natural configuration 0N →t N∗—described by deformation gradient Fin, and next
virtual pure elastic deformation from natural configuration to actual configuration t N∗ →t N—described with
deformation gradient Fe. Effectively in this way deformation is obtained from initial configuration to actual one
0N∗ →t N—described by actual deformation gradient F. This construction leads to the known concept of mul-
tiplicative decomposition of total deformation gradient

F = FeFin. (1)

Variables in time configurations t N∗ constitute convenient reference configurations for operational definition
of elastic deformation. Even when configuration t N∗ is already fixed still, there remains freedom in selection of
particular measure of elastic deformation. Knowledge of elastic deformation gradient allows for determination
of the value of elastic strain tensor—the state parameter appearing in free energy thermodynamic potential—
and hence providing a convenient description of elastic branch of material behavior. In accordance with its
definition, any natural configuration t N∗ defining tensor Fe must be a stress-free configuration which imposes
constraints on its selection but still orientation of the configuration t N∗ with respect to the fixed laboratory
coordinates frame can be selected at free will. Freedom in selection of orientation of natural configurations
t N∗ finds its reflection in non-uniqueness of multiplicative decomposition of deformation gradient into elastic
and inelastic part. Premises of the physical nature may predetermine selection of specific orientation of natural
configuration with respect to laboratory coordinates frame, like it is in the case of crystallographic theory of
plasticity. Then such orientation is an element of constitutive model. Alternatively, if premises of physical
nature for selection of natural configuration orientation are non-existent, as in the case of a macroscopic
isotropic model of material behavior, then specific selection of orientation is dictated by the strive to obtain
mathematical simplicity in material behavior description. The constraint equation determining uniquely family
of natural configurations for developed here model of SMA materials is delivered in Sect. 4.2. The multiplicative
decomposition of total deformation gradient (1) leads to the following known kinematical relations:

L = ∂v/∂x = Ḟ
−1
F = Le + Lin, Le = Ḟ

e−1
Fe, Lin = FeL∗−1

Fe, L∗ = Ḟ
in

−1

Fin, (2)

d = 1
2

[
L + T

L

]
= de + din, de = 1

2

[
Le +

T
Le

]
, din = 1

2

[
Lin +

T

Lin

]
, D∗ = 1

2

[
L∗ +

T
L∗

]
, (3)

ω = 1
2

[
L − T

L

]
= ωe + ωin, ωe = 1

2

[
Le −

T
Le

]
, ωin = 1

2

[
Lin −

T

Lin

]
, �∗ = 1

2

[
L∗ −

T
L∗

]
,

(4)

where L denotes velocity gradient tensor, d is Eulerian strain rate tensor and ω is material spin (vorticity)
tensor. Superscripts denote objects connected with respective type of deformation—“e” purely elastic, “in”
elastic–inelastic, “*” purely inelastic (here phase transformation/martensitic phase reorientation).

3 Elastically isotropic SMA alloys

3.1 State variables

It is assumed here that two-phase macroelement (RVE) of shape memory alloy is a thermodynamic system
remaining in constrained thermodynamic equilibrium at any two-phase stage of deformation process similarly



384 A. Ziólkowski

like in the case of small deformations theory, cf. [21]. The experimental evidence shows that polycrystalline
shape memory alloys with good accuracy can be treated as elastically isotropic, i.e., their elastic properties do
not depend on orientation in space—cf., e.g., Chap. 5 in [27]. As a consequence it is adopted here that free
energy potential φ for these materials is a scalar function isotropic with respect to its canonic arguments—
parameters of state. The elastic logarithmic strain Ee, temperature T and volume fraction of martensitic phase
z are adopted as variables characterizing thermodynamic state of SMA macroelement—{ Ee, T, z}. In mobile
Lagrangian description elastic logarithmic strain is expressible with tensor Ue, while in Eulerian description,
it is expressible with tensor Ve, as follows:

Ee = ln(Ue) =
∑

Ee
i Ne

i ⊗ Ne
i , ee = ln(Ve) =

∑
ee

i ne
i ⊗ ne

i , ee
i = ln(λe

i ) = Ee
i , (5)

ee = ReEe(Re)T ,

E
e = ∑

Ēe
i Ne

i ⊗ Ne
i = Ee − 1

3 tr(Ee)I, tr(Ee) = ln(J e), J e ≡ det(Fe) = ρ∗/ρ = λe
1λ

e
2λ

e
3,

where the positive definite, symmetric tensors Ue, Ve are right and left elastic stretch tensors, respectively
(Fe = ReUe = VeRe). The scalars λe

i are common for them principal elastic stretches, Ne
i and ne

i are
Lagrangian (material) and Eulerian (spatial) principal directions of elastic stretch tensors Ue and Ve. The
symbol E

e
denotes a deviator of logarithmic elastic strain (Ēe

1 + Ēe
2 + Ēe

3 = 0), ρ denotes density in the
actual configuration and ρ∗ density in stress free, natural configuration. Principal directions vectors Ne

i can
be rotated to principal directions ne

i with the aid of the rotation tensor Re(ne
i = Re Ne

i , Re = ne
i ⊗ Ne

i ). The
logarithmic elastic strain measure Ee was selected as a state variable in view of its known, valuable property
(among others) that of having a spherical part that describes the purely dilatational deformation of a material
element, while its deviatoric part describes the purely non-dilatational deformation at large deformations.

In the course of elastic deformation of macroelement the power of elastic work per unit of mass of the
deforming material ẇe can be expressed as follows (regardless of any symmetry of a material constitutive rule)

ρ0ẇe = tr(τ de), τ ≡ Jσ , τ = �τi j ne
i ⊗ ne

j , de = �de
i j n

e
i ⊗ ne

j , J ≡ det(F) = ρ0/ρ, (6)

where τ denotes classical Kirchoff stress, σ is Cauchy stress, de is elastic part of stretching—cf. (3)2, ρ
0

denotes density in initial configuration. It is straightforward to show that the following relation is valid

ρ0ẇe = tr
(
τ de) = tr

(
T

ReτRe
T

RedeRe

)
= tr

(
TReDe) , (7)

TRe ≡
T

ReτRe, TRe = T Re
i j Ne

i ⊗ Ne
j , De ≡

T
RedeRe, De = � De

i j Ne
i ⊗ Ne

j ,

where TRe denotes “rotated” elastically Kirchoff stress tensor, and De is rotated elastically Eulerian elastic
strain rate.

Hill [6], using total Lagrangian description, introduced the concept of stress measures T(n) work conjugate
to a class of Lagrangian total strain measures E(n)—defined on total stretch tensor U(F = RU). In this he
relied on the presumption that the power of total work in the deformation process cannot depend on the way of
its description—remains invariant under change of the strain measure. Adopting the presumption that also the
power of elastic work in the deformation process cannot depend on the way of its description, it is used here
the concept of stress measure Te elastic work conjugate to Lagrangian logarithmic elastic strain Ee, according
to the definition

ρ0ẇe = tr
(

Te Ė
e
)

, Te = T e
i j N

e
i ⊗ Ne

j , (8)

here Ė
e

denotes the usual material derivative of Lagrangian logarithmic elastic strain—cf. (5)1, and Te is the
stress measure elastic work conjugate to Ee.

When material is isotropic elastically, i.e., its elastic properties do not depend on orientation in space,
then constitutive relation in Lagrangian description linking tensors Te and Ee, and corresponding relation in
Eulerian description linking tensors τ and ee must be isotropic tensor functions.2 Hence, then tensor Te must

2 Isotropic tensor function χ (T) of tensorial argument T by definition fulfills the relation χ (QT
T
Q) = Qχ (T)

T
Q for all proper

orthogonal tensors Q.
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have principal directions Ne
i and it commutes with tensor Ue, while the Kirchoff stress τ (Cauchy stress σ )

must have principal directions ne
i , and it commutes with tensor Ve

Te = �T e
i Ne

i ⊗ Ne
i , TeUe = UeTe, TeEe = EeTe, (9)

τ = �τi ne
i ⊗ ne

i , τVe = Veτ , τee = eeτ .

Formal proof of these statements can be found in many manuals, see, e.g., monograph by Ogden [14]. It was
shown by Raniecki and Nguyen [18] that for isotropic elastically materials, the stress tensor Te elastic work
conjugate to the elastic logarithmic strain Ee is simply equal to “rotated” elastically Kirchoff stress tensor TRe

Te = TRe, TRe = T Re
i Ne

i ⊗ Ne
i , T Re

i = τi , TReUe = UeTRe. (10)

3.2 Equations of state

Let us assume that free energy potential of isotropic elastically SMA alloy is known—not specifying it explicitly
at present. Then φ must be isotropic scalar function with respect to each of its canonic arguments, i.e., state
parameters { Ee, T, z} in mobile Lagrangian description or equivalently { ee, T, z} in Eulerian description. The
Gibbs fundamental equation of state—delivering operational definition of entropy, expressing total differential
of free energy potential φ(Ee, T, z) takes the following form:

φ̇ = −s Ṫ + ẇ0, (11)

ẇ0 = tr
(

TReĖ
e
)

/ρ0 − π1 ż, ẇ0 = tr
(
τ ėe) /ρ0 − π1 ż, ẇ0 = tr

(
τ ḋ

e
)

/ρ0 − π1 ż [J/kg],
where s denotes specific entropy per unit of mass, π1 is the thermodynamic driving force of martensitic p.t.
at a stress-free state, ẇ0 is specific power of work per unit of mass, which would have to be performed over
macroelement in thermodynamically reversible process equivalent to the real one. Formula (11)2 expresses
power of reversible work ẇ0 in Mandel description (mobile, natural, reference configuration), while formula
(11)3 expresses ẇ0 in Eulerian description (actual configuration), the (11)4 results from (11)2 and (7), (8).

The following equations of state for a macroelement made of isotropic elastically SMA material are obtained
in states of constrained thermodynamic equilibrium in mobile Lagrangian description

TRe = ρ0 ∂φ(Ee, T, z)

∂Ee , s = −∂φ(Ee, T, z)

∂T
, π1 = −∂φ(Ee, T, z)

∂z
, (12)

φ̇ = (∂φ/∂Ee)Ė
e + (∂φ/∂T )Ṫ + (∂φ/∂z)ż.

The function φ is isotropic by assumption; hence its mathematical form does not change after expressing it in
variables {ee, T, z}, as tensors Ee and ee differ only by rotation—cf. (5)4. Due to this property counterpart of
(12) in the Eulerian description for SMA alloy isotropic, with respect to elastic properties, can be immediately
obtained

τ ≡ ρ0 ∂φ(ee, T, z)

∂ee , s ≡ −∂φ(ee, T, z)

∂T
, π1 ≡ −∂φ(ee, T, z)

∂z
. (13)

The collinearity of respective pairs of tensors τ , ee and TRe, Ee—cf. (9), (10), lead to the conclusion that func-
tional relations τ = τ ( ee), TRe = TRe(Ee) must be isotropic tensor valued functions of tensorial argument.
The known property3 of such functions leads to the following formulae if conditions of their differentiability
are fulfilled

(∂τ/∂ee) [ee ωQ − ωQ ee] = [τ ωQ − ωQ τ ], (14)

(∂TRe/∂Ee) [Ee ωQ − ωQ Ee] = [TRe ωQ − ωQ TRe]
for any spin tensor ωQ .

3 For any isotropic tensor function of tensorial argument it is
•

Qχ (T)QT =
•

χ(QTQT ). Hence Q[χ̇ + χ ωQ − ωQ χ]QT =
Q(∂χ/∂T)QT Q[Ṫ + T ωQ − ωQ T]QT . This relation is valid for any spin ωQ = Q̇QT , where Q is proper orthogonal tensor

(Q · QT = I, det(Q) = 1) and for any rate Ṫ. Substituting Ṫ = 0, the properties (14) can be obtained.
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3.3 Rate equations of state

Rate equations of state of SMA macroelement in Eulerian description can be obtained by calculating any
corotational4 derivative of (13). However, due to reasons elucidated in this section below we use for this purpose
elastic Zaremba–Jaumann corotational derivative. Then, rate constitutive relations in Eulerian description take
the form

o Je
τ = JL

o
e Je

e − JB Ṫ − ρ0(∂π1/∂ee)ż, (15)

T ṡ = T (B/ρ)

o
e Je

e + cε Ṫ + T (∂π1/∂T )ż,

π̇1 = ∂π1

∂ee

o
e Je

e + ∂s

∂z
Ṫ + ∂π1

∂z
ż,

where L is isotropic tensor of elastic stiffness moduli, B = L α0 is tensor of elastic thermal stresses, α0 = α0I
is isotropic tensor of thermal expansion ((α0)i j = α0δi j ), cε ≡ T (∂s/∂T ) denotes specific heat capacity per
unit of mass at constant strain. In order to obtain relations (15), the property (14)1 was used upon substitution

of elastic spin ωe = Ṙ
e T
Re and using definition of L—(16)1. Knowledge of the explicit form of free energy

potential φ allows for determination of instantaneous values of L, B and ∂π1/∂ee with the aid of the following
formula:

JL ≡ ρ0 ∂2φ

∂ee∂ee = ∂τ

∂ee , J B ≡ −ρ0 ∂2φ

∂T ∂ee = ∂τ

∂T
, (16)

ρ0 ∂π1

∂ee ≡ −ρ0 ∂2φ

∂z∂ee = −∂τ

∂z
.

It seems that for the first time Raniecki and Nguyen [18] delivered the exact, explicit mathematical formula

between elastic Zaremba–Jaumann derivative of elastic logarithmic strain
o

e Je
e ≡ ėe + eeωe − ωeee and

Eulerian elastic strain rate de. It is recalled here in more convenient form [24]:
o

e Je
e = [I(4) + Ede(Ve)] de,

o
e Je

e = �
Je
ee

i j n
e
i ⊗ ne

j , (17)

Ede
i jkld

e
kl =

Je
ee

i j − de
i j =

⎧⎨
⎩

0, i = j[
(λe

i /λ
e
j )

2+1

(λe
i /λ

e
j )

2−1
ln
(
λe

i

/
λe

j

)
− 1

]
de

i j , i �= j ,

where I(4) denotes unit tensor of the fourth order. The components of the fourth-order tensor Ede depend only
on the state of elastic deformation of the material but not on the components of de. The tensor Ede has at
most three independent components Ede

1212, Ede
1313, Ede

2323 different from zero. It is easy to show that tensor Ede

possesses interesting properties in the case of materials exhibiting isotropy of elastic properties. In such a case
it commutes with tensor of elastic moduli L(L Ede = Ede L), and Ede s = 0 for any second-order tensor s
collinear with tensor Ve(s Ve = Ve s), e.g., Ede τ = Ede σ = Ede ee = 0. Substituting relation (17)–(15), one
obtains the following

o Je
τ = JLJede − JL α0Ṫ − ρ0 ∂π1

∂ee ż, LJe ≡ L
(

I(4) + Ede (Ve)) , (18)

ṡ = (LJe/ρ)α0 de + (cε/T )Ṫ + (∂π1/∂T )ż, ṡ = α0 ·
o Je
τ + (cp/T )Ṫ + (∂π1/∂T )ż,

π̇1 = ∂π1

∂ee

[
I(4) + Ede (Ve)] de + ∂s

∂z
Ṫ + ∂π1

∂z
ż,

where JLJe is the current (instantaneous) elastic Zaremba–Jaumann tangent.

4 Corotational derivative of any second-order tensor T is defined as follows,
o Q

T ≡ Q D
Dt (

T QT Q)T Q = Ṫ + T ωQ − ωQ T
where ωQ is a spin generating particular corotational derivative. After substituting respective spins various corotational derivatives

can be obtained, e.g., Zaremba–Jaumann—
o J
τ = τ̇ + τω − ωτ = J [σ̇ + σω − ωσ + σ tr(d)]—the last equality is obtained

upon use of local mass balance, elastic Zaremba–Jaumann—
o Je
τ = J [σ̇ + σωe − ωeσ + σ tr(d)], Green–Naghdi, etc.
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Relation (17) is of the utmost importance for modeling constitutive behavior of metallic materials at
large deformations. Experimental investigations show that all metallic materials undergo only small elastic
non-dilatational deformations at arbitrary multiaxial loadings, while at the same time they can undergo large
dilatational elastic deformations, e.g., at impact loadings. This special physical property of metallic materials

leads to the known estimation—cf. [18], that if elastic principal stretches fulfill condition 5
6 ≤ λe

i

/
λe

j ≤
7
6

(
ee
(

λe
i

λe
j

= 0.85

)
= −0.16

)
then the component wise difference between components of elastic Zaremba–

Jaumann derivative of logarithmic strain and components of elastic stretching tensor expressed on Eulerian

principal axes fulfill the condition | Je
ee

i j − de
i j | ≤ 1.1%. The stress corresponding to 16% elastic strain upon

assumption of linear elastic behavior is σ = 2µ · (−0.16) = −0.32µ, where µ denotes shear modulus. The
symbol | | denotes here differences between individual components of the tensors. In majority of cases of shape
memory alloys elastic strains do not exceed 1%, as at larger strains the material starts to flow pseudoelastically
due to the initiation and progress of p.t. At this level of elastic strain, the following inequality is valid:

(
ee

eq = 0.01
)

⇒
(

|
Je
ee

i j − de
i j | ≤ 3 · 10−5 = 0.003%

)
. (19)

The above estimate indicates that in engineering design computations involving SMA, it can be accepted with
perfect accuracy that—cf. (17), (18)2

o
e Je

e = de, LJe = L. (20)

The (20) points out elastic Zaremba–Jaumann derivative to be especially useful in the task of formulating rate
constitutive relations of elasticity, as in majority of practical cases the same instantaneous tensor of moduli
of elasticity which are present in non-rate equations of state, e.g., L = const, can be immediately used in
corresponding rate equations of state expressed with the use of elastic stretching de. This allows for large
computational savings.

It is worth noting that (18)1 constitutes exact mathematical transition from mechanical equations of
hyperelasticity—(13)1, to fully equivalent equations of hypoelasticity—(18)1. In particular, taking the special
case of isothermal elasticity (Ṫ = 0, ż = 0) the exact mathematically counterpart of possibly non-linear

hyperelasticity law τ = ρ0 ∂φ/∂ee is the hypoelastic law
o Je
τ = JLJede. The approximation (20) is used with

success in computational mechanics of elastic–plastic materials for many years now basing on the estimates
delivered by Hill and Rice [7]. Hill and Rise did not elucidate explicit, exact equivalence (13)1 ↔ (18)1.

3.4 Work dissipation

Specific power of total work ẇ per unit of mass, done over the SMA macroelement, can be expressed with the
following formula in Eulerian description:

ẇ = tr(τ d)/ρ0[J/kg]. (21)

According to the concepts of non-equilibrium thermodynamics, in homogeneous processes the specific power
of work dissipation ẇDisp is a difference between specific power of total work ẇ and reversible work ẇ0—cf.
(11)4

ẇDisp ≡ ẇ − ẇ0 = tr(τ din)/ρ0 + π1 ż ≥ 0. (22)

In accordance with the second law of thermodynamics, mechanical work dissipation in any thermodynamic
process must be greater or equal to zero. The relations between respective thermodynamic forces and fluxes
determine its magnitude τ ↔ din, π1 ↔ ż. At the same time the same principle indicates that such relations
must exist. It should be pointed out that second law of thermodynamics does not impose any limitations on
inelastic spin ωin—cf. (4)3.
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4 Special elastically linear model of pseudoelasticity of shape memory alloys

In the previous section, a very general thermodynamic framework was presented enabling formulation of
phenomenological, macroscopic model of SMA alloys behavior taking into account, e.g., different elastic
properties of austenitic and martensitic phase or material damaging effects. In the present section the specific,
complete, 3D SMA materials constitutive model of pseudoelasticity is specified linear elastic in logarithmic
strain measure. The following elements of the model are proposed in explicit form:
– Free energy potential—φ(ee, T, z),
– Eulerian representation of inelastic spin—ωin

– Pseudoelastic flow equation—din(tr(din) = 0)
– Formal p.t. kinetics relations written in objective form proper in finite deformation formalism—ż
The model constitutes extension of model RL proposed by Raniecki and Lexcellent in 1998 into finite defor-
mations regime.

4.1 Free energy function

The specific free energy potential of a two-phase shape memory alloy macroelement (RVE) remaining in state
of “constrained phase equilibrium” and undergoing finite deformations is conjectured in mobile Lagrangian
description in the following form:

φ(Ee, T, z) = φ0(T ) + φtm(Ee, T ) + φint(T, z), (23)

φ0(T ) = u∗(1)
0 − T s∗(1)

0 − zπ f
0 (T ) + cε [(T − T0) − T ln(T/T0)],

ρ0φtm(Ee, T ) = Ee · (JL) Ee/2 − (T − T0)α0 · (JL) Ee,

φint(T, z) = φi t (T )(1 − z) z,

φi t (T ) = ū0 − T s̄0, π
f

0 (T ) = �u∗ − T �s∗, �u∗ = u∗(1)
0 − u∗(2)

0 , �s∗ = s∗(1)
0 − s∗(2)

0 .

Terms φ0(T ) and φtm(Ee, T ) denote the thermal and thermoelastic part of SMA macroelement free energy,
while φint(T, z) denotes the so-called internal interactions energy, u∗(α)

0 , s∗(α)
0 are specific internal energies

and entropies of austenitic (α = 1) and martensitic (α = 2) phase formation at thermodynamic reference
state, i.e., in stress free state (σ = 0), and at thermodynamic reference temperature T = T0, z is mass
fraction of martensitic phase, the term π

f
0 (T ) is so-called “chemical thermodynamic driving force of p.t.”,

cε = const is heat capacity at fixed strain, JL is isotropic tensor of elastic moduli assumed to be constant
(JL i jkl = [µ(δikδ jl + δilδ jk) + λ δi jδkl ] = const, λ = (K − 2µ/3)), ū0, s̄0 are material constants.

The above explicit form of free energy potential corresponds to the one postulated by Raniecki and Lex-
cellent for small deformations in 3D case [20,21] and Müller and Xu in 1D case [11]. The difference between
specification of free energy potential given here and that given by Raniecki and Lexcellent is that here elastic
strain is used directly as a state variable, while the previous authors expressed this potential with the aid of
total and phase transition strains tensors. After using additive decomposition of total strain tensor into elastic
and inelastic part, valid in small deformations theory, Raniecki and Lexcellent’s potential takes the formal ma-
thematical form identical with that specified here by formulae (23). In order to obtain the free energy potential
in Eulerian description, it is sufficient to replace Lagrangian logarithmic strain Ee with Eulerian logarithmic
strain ee, in view of elastic isotropy. The inverted strain–stress constitutive relations corresponding to stress–
strain relations originating from free-energy potential can be easily obtained by formal differentiation of Gibbs
potential. The Gibbs potentials on actual configurations can be constructed in a classical way with the aid of
Legendre transformation g(τ , T, z) ≡ φ − (1/ρ0)τ · ee[J/kg].

In accordance with the formalism of thermodynamics, the equations of state in Eulerian description resulting
from potential φ defined with (23) take the following (they constitute explicit specification of relations (13))
form:

σ = J−1τ = L [ee − α0(T − T0)], (24)

s = cv ln(T/T0) + s∗(1)
0 − z� s∗ + s̄0(1 − z)z + α0 · L ee/ρ,

π1 = π
f

0 (T ) − (1 − 2z)φi t (T ).
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4.2 Inelastic spin tensor ωin

The selection of the evolution rule for the Eulerian inelastic spin ωin leads effectively to the selection of specific
family of isoclinic configurations and, at the same time, removes ambiguity in multiplicative decomposition
of total deformation gradient into elastic and inelastic parts—cf. (1). The concept of isoclinic configurations,
except for uncoupling elastic and inelastic behavior of the material, allows for the harmonious and efficient
introduction the elements of description of microscopic behavior of the material, such as evolution of texture or
effect of large inelastic deformation-induced anisotropy into a macroscopic model. Such elements can also be
introduced to further enhance the developed-here model of shape memory alloys, when such a need arises, but
first of all when credible experimental data regarding, e.g., influence of evolution of microstructure on material
properties, are available. Analysis of such data must lead to formulation of physically supported evolution rule
of ωin.

In the current case of the developed isotropic elastically SMA alloys model, there is no premises indicating
that selection of some specific family of isoclinic, natural, reference configurations would be more advantageous
from the physical point of view. However, the selection of particular family of isoclinic configurations is
important from a pragmatic point of view. Its “proper” selection leads to the simplicity of mathematical formulas
and consequently to better numerical effectiveness of the model with the same quality of modeling predictions.
It is accepted here that Eulerian inelastic spin ωin is identically equal to zero during any deformation process

ωin = 0, (25)

(
ωin = 0

) ⇐⇒
(

ωe = ω,

o Je
τ =

o J
τ

)
.

Then elastic Zaremba–Jaumann derivative defined with spin ωe becomes identically equal to Zaremba–
Jaumann derivative defined with spin ω—cf. (4)1. The condition (25) makes it unnecessary to continuously
track the evolution of spin ωin, in order to be able to determine elastic spin ωe = ω − ωin. It was shown in
[27] that condition (25) determines isoclinic family of natural configurations—cf. Appendix 7.4.

4.3 Tensor of phase eigenstrain rate in Eulerian description din

Results of isothermal tests of polycrystalline NiTi alloy submitted to stress controlled multiaxial proportional
loading paths presented and discussed in [27]—cf. also [22] show that with good approximation ratios of
velocities of components of macroscopic p.t. strain tensor remained constant, in response to keeping constant
ratios of velocities of components of inducing stress tensor—cf. Figures 5.4, 5.10 in [27]. Hence, it can be
indirectly presumed that principal axes of macroscopic phase transformation strain tensor remained constant
when principal axes of inducing phase transition stress tensor remained constant. Experimental works done
on CuZnAl alloy by Rogueda [25], on CuAlBe alloy by Bouvet et al.—cf. Figure 17, 18, 19 in [3], see also
Bouvet et al. [4], on NiTi alloy by Helm and Haupt—cf. Figure 7, 8 in [5], for non-proportional loading paths
indicate that ratios of increments of components of macroscopic phase transformation strain tensor followed
after ratios of increments of components of inducing stress tensor. The above-listed experimental evidence
constitutes, partly quantitative, partly qualitative support for the theoretical concept put forward by Raniecki and
Lexcellent of “optimal adaptation of the SMA alloy microstructure to changing external loadings”. They deliver
also an important premise indicating that it is well acceptable to express macroscopic phase transformation
strain tensor, describing inelastic deformation effects connected with phase transition with the aid of tensor
function isotropic with respect to macroscopic stress tensor. The concept of “optimal adaptation of the SMA
alloy microstructure” together with investigations regarding conditions for microstructural thermodynamic
equilibrium led Raniecki and Lexcellent to the supposition that macroscopic phase eigenstrains tensor κ
admits the existence of generating it potential gph(σ , T ). Thermodynamic considerations show that it can be
conveniently postulated as homogeneous function of the first order with respect to stress tensor—cf. formulae
(11)–(13) in [21]. Further, yet unpublished theoretical analyses (B. Raniecki private communication, 2006)
indicated that phase strain energy potential gph plays an essential role not only in modeling discussed here
of the pseudoelastic behavior of shape memory alloys but also in the case of one-way memory effect, as it
constitutes energetic measure of phases microstructural interactions.

Due to the recalled premises of experimental and theoretical nature, the concept of “optimal adaptation
of the SMA alloy microstructure” together with all resulting from it consequences is accepted as valid when
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building model of SMA behavior valid for finite deformations. In particular hereby, the conjecture is adop-
ted that there exists phase strain potential gph being isotropic function with respect to Cauchy (Kirchoff)
stress, homogeneous of the first order. Its explicit form proposed here is identical with that proposed in
model RL

ρ0 gph(τ ) = κ · τ = η f (y) τ ′, ρ gph(σ ) = ρ0 gph(τ )|τ ′=σ ′ = κ · σ = η f (y) σ ′, (26)

where σ ′ = (σ̄ · σ̄ )1/2, τ ′ = (τ̄ · τ̄ )1/2, σ̄ = dev(σ ), τ̄ = dev(τ ), τe f =
√

3
/

2 τ ′.
The phase strain energy potential (26) generates phase eigenstrain tensor κ

κ ≡ ρ0 ∂gph(τ )/∂τ = ρ ∂gph(σ )/∂σ = κ̄ + ¯̄κ, (27)

κ̄ = η f (y)nσ , ¯̄κ = η τ ′ d f (y)

dy

∂y

∂τ
= 3 η

d f (y)

dy

[√
6(n2

σ − (1/3)1) − ynσ

]
,

where η denotes pseudoelastic flow amplitude treated as material constant, nσ denotes versor of “direction”
of the Cauchy (Kirchoff) stress tensor

nσ ≡ σ̄/σ ′ = τ̄/τ ′ = nτ , nσ · nσ = 1. (28)

The postulate (26) leads to the relation J p = ρ0/ρ∗ = 1(J = ρ0/ρ = J e J p = J e), i.e., assumption that
thermoelastic martensitic transformation itself does not lead to volumetric changes. Function f (y) defines
shape of pseudoelastic flow surface in space of stress tensor deviators σ̄ . It is called “shape” function and is
defined operationally as follows:

f (y) ≡ σ AM (0, T )/σ AM (y, T ), f (y = 0) = 1, (29)

where σ AM (0, T ) denotes the critical effective stress at which forward (A→M) martensitic transformation
starts during pure shear, while σ AM (y, T ) denotes the critical effective stress at which martensitic transforma-
tion starts when stress tensor has the “direction” y. Function f (y) constitutes the input parameter of the model
and must be identified for each shape memory alloy from the experimental data. The following three-parameter
form of shape function was proposed in [23] for investigated NiTi alloy:

f (y) = a1 − a2 · exp[−a3 · (y + 1)]. (30)

Parameter y, argument of shape function, determining direction of stress tensor in space of stress deviators is
defined as follows:

y ≡ √
6 tr(n3

σ ), −1 ≤ y ≤ 1, y (σ̄ ) ≡ 3
√

6 J ′
3

(J ′
2)

3/2 , J
′
3 = tr(σ̄ 3)/3, J ′

2 ≡ tr(σ̄ 2). (31)

For example value y = −1 corresponds to compression, y = 1 corresponds to tension, y = 0 corresponds to
torsion.

The property of isotropy of the potential gph(τ ) with respect to stress tensor leads to collinearity (κ τ = τ κ)
of phase eigenstrain tensor κ and Kirchoff stress τ—cf. (27). The following equations are satisfied identically
for any spin tensor ωQ in view of the above

κ · [τ ωQ − ωQτ ] = 0, τ · [κ ωQ − ωQκ] = 0. (32)

The relation κ = κ(τ ) is tensor function isotropic with respect to its tensorial argument. Hence for any spin
ωQ(T ωQ = −ωQ) the following relation is valid—cf. (14):

(∂κ/∂τ )
[
τ ωQ − ωQ τ

]
=

[
κ ωQ − ωQ κ

]
. (33)

It is convenient to introduce the following denotation of the derivative ∂κ/∂τ

P ≡ ρ0 ∂2gph(τ )

∂τ ∂τ
= ∂κ

∂τ
, ρ

∂2gph(σ )

∂σ ∂σ
= ∂κ

∂σ
= J P. (34)
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The explicit form of the fourth-order tensor P in the case of phase strain potential gph(σ ) is given below:

P(τ ) = −2 η
d f (y)

dy

∂y

∂τ
⊗ nτ +

[
η f (y) − 3 η y

d f (y)

dy

]
∂nτ

∂τ

+
[
η τ ′ d2 f (y)

dy2

]
∂y

∂τ
⊗ ∂y

∂τ
+ 6

√
6 η

d f (y)

dy
nτ

∂nτ

∂τ
, (35)

∂y

∂τ
= 3

τ ′
[√

6(n2
τ − 1

3 1) − y nτ

]
= J−1 ∂y

∂σ
,

∂nτ

∂τ
= 1

τ ′

[
(1(4) − 1

3 1 ⊗ 1) − τ̄ ⊗ τ̄

(τ ′)2

]
= J−1 ∂nσ

∂σ
.

The postulated form of potential gph(τ ) is a function homogeneous of order one, with respect to τ (σ ). Hence
the functional relation κ(τ )—cf. (27), is an isotropic function, homogeneous of order zero with respect to
τ (σ ). As a consequence tensor P has the property

P τ = ∂κ

∂τ
τ = 0, J P σ = ∂κ

∂σ
σ = 0 (36)

which can be verified by direct calculation.
Taking advantage of the formula (33), one can express any corotational derivative of tensor κ with the aid

of corresponding to it corotational derivative of Kirchoff stress tensor as follows—using notation (34):

o Q
κ = κ̇ + κ ωQ − ωQ κ = P

o Q
τ ,

o Q
κ = (J P)

o Q
σ . (37)

In the case of proposed here the linear elastically model of SMA materials, thermodynamic force π1 does not
depend on ee—cf. (24)3. Hence it is

∂π1

∂ee = −∂σ

∂z
= 0. (38)

The rate mechanical equation of state (24)1—cf. also (18)1, simplifies to the form

o Je
τ = JLJe(d − din) − JL α0Ṫ , (39)

where it was used property LJeα0 = L α0 valid for material exhibiting isotropic thermal expansion α0 = α0I.
The above relation requires specification of tensor of inelastic strain rate din. The pseudoelastic flow rule
defining tensor din is hereby postulated in the following form:

din = z
o Je
κ = żκ + z

o Je
κ . (40)

The elastic Zaremba–Jaumann derivative of tensor κ can be expressed with the aid of elastic Zaremba–Jaumann
derivative of Kirchoff stress as follows—cf. (37):

o Je
κ = P

o Je
τ . (41)

Substituting in (39) relations (40) and (41), one obtains

o Je
τ = JLJe[ d − żκ − α0Ṫ ] − z JLJeP

o Je
τ , (42)

Grouping terms with corotational derivative of stress, one obtains the following:

o Je
τ = JLS_Je [d − żκ − α0Ṫ ], (43)

where

LS_Je ≡ [I(4) + z JLJeP]−1LJe, LS ≡ [I(4) + z JLP]−1L. (44)
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Taking advantage of the mathematical formula [A−1B]−1 = B−1A, one can see that

LS_Je = [ MJe + z JP]−1, LS = [M + z JP]−1, (45)

MJe = [LJe]−1, M = L−1.

Using property LS_Je α0 = LS α0 = L α0 and relation (25)1 one obtains the required rate form of mechanical
equations of state:

o J
τ =

o Je
τ = JLS_Je [d − żκ] − JL α0Ṫ . (46)

The rate equation of entropy change takes, in the case of proposed hereby SMA model, the following form—cf.
(18)4

ṡ = (cp/T )Ṫ + [−� s∗ + s̄0(1 − 2z)]ż + α0 · τ̇ /ρ0. (47)

4.4 Thermal effects and mechanical work dissipation

The following relation is obtained upon contracting (40) with τ and using property (36):

τ · din = ż τ · κ + z τ ·
o Je
κ = ż τ · κ + τ · P︸︷︷︸

=0

o Je
τ = żτ · κ . (48)

The expression for mechanical work dissipation, taking place during any deformation process of SMA
macroelement, can be obtained upon substituting in (22) expression (48) and using (24)3:

ẇDisp = ẇ − ẇ0 = π f ż ≥ 0, π f = π1 + κ · τ/ρ0 = π
f

0 (T ) − (1 − 2z)φi t (T ) +
=gph(τ )︷ ︸︸ ︷

τ · κ/ρ0. (49)

Eliminating u̇ from the relation resulting from the definition of free energy φ̇ = u̇ − s Ṫ − ṡ T and the
equation expressing the first law of thermodynamics written in the form u̇ = ẇ − q̇, and next substituting the
obtained expression for φ̇ into the fundamental Gibbs equation of state φ̇ = −s Ṫ + ẇ0—cf. (11), and using
the expression for work dissipation (49)1, one obtains the following relation:

q̇ = π f ż − ṡ T . (50)

After substituting (49)2 and (47) in the above formula, one obtains

q̇ = −cpṪ + [�u∗ − (1 − 2z)ū0 + gph(τ )]ż − T α0 · τ̇/ρ0. (51)

Let us denote by q̇tr specific power of heat sources (positive when removed to environment) connected with
all thermal effects taking place in the SMA macroelement except for heat capacity, cf. (26)1

q̇tr ≡ cpṪ + q̇ = [�u∗ − (1 − 2z)ū0 + η f (y)τ ′/ρ0]ż − T α0 · τ̇/ρ0. (52)

The first term on the right above in the combined way describes effects connected with the latent heat of p.t.
and the mechanical work dissipation; the second term describes piezocaloric effect. Please note that in the case
of isotropic thermal expansion, it is α0 · τ̇ = 3 τ̇mα0/ρ0 .
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Fig. 3 Schematic illustration of external and internal hysteresis loops formation at partial and complete phase transformations,
in accordance with phase transformation kinetics rules proposed by Raniecki and Lexcellent—RL kinetics [20]

4.5 Formal equation of martensitic phase transformation kinetics

The general formal thermoelastic martensitic p.t. kinetics relation fulfilling requirements imposed by the
second law of thermodynamics proposed in very comprehensive form by Raniecki and Lexcellent [20]—the
so-called RL kinetics relations, are adapted here for the purposes of finite deformations theory. The operation
of RL kinetics relations in the case of full and partial, forward and reverse phase transitions, upon inducing
them by temperature variation is illustrated schematically in Fig. 3a, while upon inducing them by stress
variation in Fig. 3b. With dropping temperatures, forward p.t. (austenite → martensite) starts after crossing the
line π f = 0, point 1. When temperature reduction is stopped in point 2 then p.t. also stops. With increasing
temperature reverse p.t. (martensite → austenite) starts after crossing line π f = 0, point 3. When temperature
increase is stopped in point 4, then reverse p.t. also stops (partial p.t.). When subsequently temperature again
is lowered then partial forward p.t. starts in point 5, after crossing line π f = 0. Such a scenario is realized in
the case of those SMA, which do not exhibit appearance of threshold values for phase transitions, i.e., those
for which there can be accepted with good approximation that threshold functions Yα(σ , T, z) ≡ 0(α = 1, 2)
identically equal to zero. SMA on the basis of iron instead of path 1-2-3-4-5 rather exhibit behavior consistent
with path 1-2′-3′-4′-5′—marked light gray in Fig. 3. Respective forward phase transitions start in the case of
such alloys after crossing line Y1 (hence the name threshold function), while respective reverse transitions start
after crossing line Y2.

The actual “shape” of p.t. kinetics curves for various SMA alloys is described by so-called specific p.t.
kinetics rules—functions λσ

α . These functions 0 ≤ λσ
α(τ , T, z; mα, pα, rα) < ∞(α = 1, 2) depend on the

state of the material and also on a set of parameters. Proper identification of (mα, pα, rα) parameter values
allow for a description of kinetics of various SMA alloys. The general RL kinetics relations written in objective
form in Eulerian description are as follows:

ż = λσ
1 ·

oJe

π̃ f
τ if

{
π f ≥ Y1 and

oJe

π̃ f
τ > 0

}
(A → M p.t.), (53)

ż = λσ
2 ·

oJe

π̃ f
τ if

{
π f ≤ Y2 and

oJe

π̃ f
τ < 0

}
(M → A p.t.), ż = 0 in any other case,

where π f denotes thermodynamic driving force of phase transformation defined with the aid of formula (49)2.
The threshold value functions Y(α)(τ , T, z) ≥ 0, α = 1, 2, Y(1)

∣∣
z=0 = Y(2)

∣∣
z=1 = 0 denote thresholds upon

reaching which, active forward (reverse) phase transition can be initiated. These functions impose additional
restrictions to those imposed by the second law of thermodynamics. The physical reason for such restrictions
in p.t. progress is not known at present, however they are observed experimentally for some SMA alloys. For
example experimental data gathered by Pascal and Monasevich [17] for NiTi alloy indicate that it is reasonable
to take Y(1) = π(0, M0

s , z) and Y(2) = π(0, A0
s , z), while the tests performed at the Institute of Fundamental

Technological Research on NiTi alloy (unpublished) indicate that it is reasonable to take Y(α) = 0. Experimental
data of Müller and Xu [11] for CuZnAl alloy also suggest that it is reasonable to take Y(α) = 0 for investigated
by them alloy. The specific kinetics rules conjectured in [20] are defined with state functions of the form

λσ
1 = (m1/2) (1−z) Dm1−1

ū0 [p1(1−z)+r1]− m1(1−z) φi t (T ) Dm1−1 , λσ
2 = (m2/2) z (−D)m2−1

ū0 [p2 z+r2]− m2 z φi t (T ) (−D)m2−1 , (54)
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where D denotes “normalized” dimensionless thermodynamic driving force of phase transition

D ≡ π f /2 ū0 = DT · (M0
s − T ) + Dσ · f (y) · σe f + Dz · z, (55)

Dz ≡ [1 − M0
s s̄0/ū0], Dσ ≡ γ /(2 ū0ρ), DT ≡ [(�s∗ − s̄0(1 − 2z))/2 ū0].

Identification of p.t. kinetics constants m1, r1, p1, m2, r2, p2 present in (54) can be most conveniently done
using integrated form of (54) valid for piecewise continuous forward and reverse phase transition processes,
respectively, which take the form

Dm1 + r1 ln(1 − z) − p1 z = C (1)
0 (z∗) = const, (56)

Dm2 + r2 ln(z) − p2 (1 − z) = C (2)
0 (z∗) = const.

In the above z∗ denotes starting value of mass fraction of martensite at the beginning of continuous p.t. process.
Upon substituting of C (1)

0 (z∗ = 0) = 0 in (56)1 for forward p.t. curve and C (2)
0 (z∗ = 1) = 0 in (56)2 for

reverse p.t. curve the “outer” hysteresis loop is obtained.
The power of the thermodynamic driving force inducing the process of active p.t. forward (A→M) or

reverse (M→A) written in the objective form is

oJe

π̃ f
τ ≡ π f

τ · oJe
τ + π

f
T Ṫ , (57)

π f
τ ≡ ∂π f

∂τ
= κ/ρ0, π

f
T ≡ ∂π f

∂T
= −[�s∗ − s̄0(1 − 2z)].

The above form is inconvenient in numerical computations as it is expressed through τ̇ ( σ̇ ), i.e., quantity,
which is one of the output data from the material behavior procedure. In a general case, such a situation
requires application of some iteration scheme for checking whether criterion of active p.t. is fulfilled or not,
which increases cost of numerical computations. Hence, it is advisable to search the functional form of (57)1
that is expressed through input quantities to material behavior procedure, i.e., d and Ṫ . The searched relation
was derived in Appendix and has the form

oJe

π̃ f
τ = (κ/ρ) · LS d + π

f
T Ṫ

[1 + λσ
(α)(κ/ρ) · LSκ] . (58)

The above result is extremely advantageous from a numerical efficiency point of view as it allows one to
immediately find out whether in a particular time step active phase transition will or will not take place upon
prescribed d, Ṫ . The formal thermoelastic martensitic p.t. forward and reverse kinetic relations can conveniently
be written in a compact form—cf. (53)–(55) and (58)

ż = λσ
1 · H̄

(
π f − Y1

)
·
〈

oJe

π̃ f
τ

〉
− λσ

2 · H̄
(
−π f − Y2

)
·
〈
−

oJe

π̃ f
τ

〉
, (59)

where an advantage is taken of the functions H̄(x) and 〈x〉defined as follows: H̄(x)={1 if x ≥ 0; 0 if x < 0},
〈x〉 = {x if x ≥ 0; 0 if x < 0}.

The complete, specific, linear elastic in a logarithmic strain, macroscopic model of SMA alloys pseudoe-
lastic behavior undergoing finite deformations consists of the set of rate relations (46), (40), (59), (52). The
model input parameters are the velocity gradient L and the material derivative of temperature Ṫ . The model
predicts quantitatively the extent of mechanical, thermal, progress of thermoelastic phase transition effects—
σ̇ , din, ż, q̇tr. They are the output of the model. In the majority of the practical cases of problems involving
behavior of shape memory alloys with perfect approximation—cf. (18), it can be adopted that LS_Je = LS—cf.
(44).
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5 Field equations

The solution of any engineering design problem concerning a structure or device containing SMA materials
requires finding fields of stress σ (x, t), strain ε(x, t), temperature T (x, t), volume fraction of martensitic
phase z(x, t) satisfying mechanical and heat transfer balance equations constituting relevant initial-boundary
value problem. Due to the highly non-linear behavior of such materials, it is convenient to write balance
equations in their rate form in terms of the velocity field v and temperature rate Ṫ to obtain coupled problem
of thermomechanics. The current most common approach to solving such problems, i.e., the finite element
method is written in the Lagrangian description variational formulation of mechanical equilibrium equations,
also-called the “principle of virtual work” and variational formulation of heat transport equation, also-called
the “principle of virtual heat transport”.

A concise formulation of the rate principle of virtual work valid for any fixed reference configuration,
in which inertial effects are neglected, can be found in Hill [6]—cf. (3.21). The detailed derivation of the
rate principle of virtual work, including inertial effects, and its final form written with respect to current
configuration can be found in Lubarda [9]—cf. (3.11.8). Here the rate principle of virtual work is recalled in
modified form to that cited by Hill∫

V r

(Jr F−1
r 	P) · (∇r ⊗ δvr ) dV r −

∫

∂V r

nr (Jr F−1
r 	P) · δvr dSr −

∫

V r

ρr ḃ
r · δvr dV r = 0. (60)

The superscript “r” denotes that the relevant quantities are calculated with respect to some fixed reference
configuration, ∇r = ∂

∂ξi
ei is the gradient operator with respect to coordinates ξi in some reference configura-

tion, n denotes the normal to the boundary of reference configuration, ḃ is carried to the reference configuration
rate of change of mass specific body forces, δv denotes the virtual velocities field over the volume of reference
configuration. It should be noted that the virtual velocities field δv is not totally arbitrary but must fulfill
the so-called essential boundary conditions, i.e., it must be null on those parts of the boundary on which the
velocity boundary conditions are prescribed. The dV and d S denote elemental volume and elemental surface
enclosing reference configuration. The �P denotes the Eulerian rate of the nominal stress tensor. Elucidated
by Hill and called by him the “bridging equation”, the following relation is valid —cf. [6]

	P = σ̇ + σ tr(d) − Lσ , (61)

Ṗr = Jr F−1
r 	P , Pr = Jr F−1

r σ ,

Pr denotes the non-symmetric tensor of nominal stress calculated with respect to the fixed reference configu-
ration (PT

r is corresponding first Piola–Kirchoff stress).
The rate form of principle of virtual heat transport valid for any fixed reference configuration takes the

form ∫

V r

1
ρr λ (∇r T )T (∇rδ T r ) dV r −

∫

∂V r

qr
s δ T r dSr +

∫

V r

(−q̇tr + cp
∂T
∂t

)
δ T r dV r = 0, (62)

where λ denotes the isotropic heat conduction coefficient, δ T denotes the virtual temperature field over the
volume of reference configuration. The δ T must fulfill so-called essential temperature boundary conditions,
i.e., it must be null on those parts of the boundary on which temperature boundary conditions are prescribed.
In the above Fourier law of heat conduction has been used qr = −λ∇r T (nr qr = qr

s ).
The classical total Lagrangian formulation can be recovered from (60) when reference configuration is

identified with initial one (then ∇r → ∇0 = ∂
∂ Xi

ei , F−1
r → F−1 Jr → J, Pr → P, δvr → δv0) and

the updated Lagrangian formulation is recovered when reference configuration is identified with current one
(then ∇r → ∇ = ∂

∂xi
ei , F−1

r → IJr → 1, Pr → 	P , δvr → δv). Beneath only the updated Lagrangian
formulation of the coupled problem of pseudoelasticity is explicitly specified∫

V t

	P · (∇ ⊗ δv) dV −
∫

∂V t

ṫs · δv dS −
∫

V t

ρ ḃ · δv dV = 0, n	P = ṫs, (63)

∫

V t

1
ρ

λ (∇ T )T · (∇δ T ) dV −
∫

∂V t

qs · δ T dS +
∫

V t

(−q̇tr + cp ∂T/∂t) · δ T dV = 0.
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In mathematical terms total Lagrangian and updated Lagrangian formulations are completely equivalent as can
be inferred from (60) and lead to the same mathematical solution. Though, one or the other formulations may
have merits in solving some specific problems. More extensive discussion on advantages and drawbacks of
both techniques can be found in Bathe [2]—cf. Sect. 6.2.3. The formula (60) also indicates that all the necessary
material behavior information is brought into global mechanical balance equation only through non-objective
tensor 	P . This information in the case of investigated here SMA materials model can be delivered to it by
elimination of σ̇ between (61)1 and (46) to obtain

	P = LS_Je [d − żκ] − L α0Ṫ − dσ − σω. (64)

The coupled set of thermo-mechanical equations (63) is usually solved by staggered solution algorithm. Upon
finding satisfying the equations, the fields of velocity v(x, t) and temperature rate Ṫ (x, t) all the relevant state
and kinematical variables can be updated by a time step dt .

6 Concluding remarks

In the present work, the very comprehensive general structure of the macroscopic thermodynamic theory of
pseudoelasticity of shape memory alloys was presented taking into account geometrical effects, allowing for
large rotations and large strains. Next a complete 3D macroscopic, phenomenological, thermodynamic model
of shape memory alloys pseudoelastic behavior was formulated. The model is linearly elastic in terms of elastic
logarithmic strain. Hypotheses on which the model is based are verified only partially at present, namely for
isothermal proportional loadings. The presently developed model can be relatively easily extended to the
range of impact loadings (high pressures), whenever there is known experimental characteristic pressure ↔
volumetric strain. As the model was developed in non-equilibrium thermodynamic formalism, its generalization
to the case when elastic moduli depend on state of the material, e.g., different elastic moduli of austenitic and
martensitic phases or to take into account some material damaging effects also does not present significant
difficulties upon condition that relevant experimental data are available. Finally, it is worth mentioning that
the model is very well suited for implementation into finite element code.

Appendix

Corotational elastic logarithmic derivative
oe_log

T

Xiao et al. in their work [26] searching for corotational derivative of logarithmic total strain tensor, which
would be equal to the tensor of total Eulerian strain rate d introduced the concept of logarithmic spin ωlog,
and next the concept of the corotational logarithmic derivative of any second-order tensor T as specified below

o log

T ≡ Ṫ + Tωlog − ωlogT. (A1)

The spin ωlog is such that the following relation is fulfilled identically

o log
e ≡ ė + e ωlog − ωlog e = d, e = ln(V). (A2)

Xiao et al. delivered explicit expressions for ωlog

ωlog = ω + Nlog, Nlog = � N log
i j ni ⊗ n j , (A3)

N log
i j = 0 i = j, N log

i j =
(

2

ln(χi/χ j )
+ 1 + (χi/χ j )

1 − (λi/χ j )

)
di j χi �= χ j and i �= j,

where ω is body spin, ni denote principal directions of left total stretch tensor V, and χi denote principal
values of V2.

In full analogy it is introduced the concept of elastic logarithmic corotational derivative and elastic
logarithmic spin as follows:
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o e_log

T ≡ Ṫ + Tωe_log − ωe_logT, (A4)

where the spin ωe_log by definition fulfills identically relation

o e_log
e ≡ ėe + ee ωe_log − ωe_log ee = de, ee = ln(Ve). (A5)

Upon comparing (A5) with (17)

o Je

ee − Ede(Ve) de ≡ ėe + ee (ωe + xe) − (ωe + xe) ee = de. (A6)

It is straightforward to find out that

ωe_ log = ωe + xe, xe = −(xe)T , xe = � xe
i j n

e
i ⊗ ne

j , (A7)

xe
i j = 0 i = j, xe

i j =
(

1

ln(λe
i /λ

e
j )

+ 1 + (λe
i /λ

e
j )

2

1 − (λe
i /λ

e
j )

2

)
de

i j λe
i �= λe

j and i �= j,

where xe is a spin tensor, ne
i denote principal directions of left elastic stretch tensor Ve, and λe

i denote principal
values of Ve. Whatever deformation in the form of dilatation does not change the value of tensor xe, while
for purely dilatational deformation λe

1 = λe
2 = λe

3 it is identically equal to zero xe ≡ 0. Please note that
o e_log

T �=
o log

T even when ωin = 0 (ωe = ω).
In order to obtain (58) let us calculate corotational elastic logarithmic derivative (A4) of both sides of

(24)1, and use property (A5)1. Substituting next (3)1 and (40), one can express the rate constitutive relation
of elasticity in the form

J−1
o e_log
τ = L

[
d − żκ − z

o Je
κ

]
− P α0Ṫ . (A8)

In view of property (37), it is

J−1
o e_log
τ = L

[
d − żκ − z P

o e_log
τ − α0Ṫ

]
− z L

[
κ
(
ωe − ωe_ log) − (

ωe − ωe_ log) κ
]
, (A9)

J−1
o e_log
τ = LS [

d − żκ − α0Ṫ
] − z LS [κ (

ωe − ωe_ log) − (
ωe − ωe_ log) κ

]
,

o e_log
τ = JLS [

d − żκ − α0Ṫ
] − z

[
τκ

(
ωe − ωe_ log) − (

ωe − ωe_ log) τκ
]
.

In the above definition (44)2 was used. In view of the isotropy of tensor LS—cf. (45) and (35), tensor τκ ≡
JLSκ is collinear with κ(τκκ = κτκ ) and LS[κ ωQ − ωQ κ] = τκ ωQ − ωQ τκ—cf. (33). Contracting
both sides of (A9)3 by (κ/ρ0) it is

(κ/ρ0) ·
o e_log
τ = (κ/ρ) · LS d − ż(κ/ρ) · LSκ, (A10)

as κ · [τκ (ωe − ωe_ log) − (ωe − ωe_ log)τκ ] = 0 and κ · LSα0Ṫ = 0.
In view of property (32)1, it is

κ ·
o Je
τ = κ ·

o e_log
τ = κ · τ̇ ,

o Je

π̃
f

τ =
o e_log

π̃
f

τ = ˙̃π f
τ . (A11)

Taking advantage of (A11)1 and adding π
f

T Ṫ on both sides of (A10) one obtains

[
(κ/ρ0) ·

o Je
τ + π

f
T Ṫ

]
+ ż(κ/ρ) · LSκ = (κ/ρ) · LS d + π

f
T Ṫ . (A12)
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When criteria for active p.t. are fulfilled then ż = λσ
(α) ·

o Je

π̃
f

τ —cf. (53). Substituting this relation in the above
equation, one obtains

[
1 + λσ

(α)(κ/ρ) · LSκ
] o Je

π̃
f

τ = (κ/ρ) · LS d + π
f

T Ṫ , (A13)

and finally

o Je

π̃
f

τ = (κ/ρ) · LS d + π
f

T Ṫ[
1 + λσ

(α)(κ/ρ) · LSκ
] = f (d, Ṫ ). (A14)
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