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The higher organisms, eukaryotes, are diploid and most of their genes have two ho-
mological copies (alleles). However, the number of alleles in a cell is not constant. In
the S phase of the cell cycle all the genome is duplicated and then in the G2 phase
and mitosis, which together last for several hours, most of the genes have four copies
instead of two. Cancer development is, in many cases, associated with a change in allele
number. Several genetic diseases are caused by haploinsufficiency: Lack of one of the
alleles or its improper functioning. In the paper we consider the stochastic expression
of a gene having a variable number of copies. We applied our previously developed
method in which the reaction channels are split into slow (connected with change of
gene state) and fast (connected with mRNA/protein synthesis/decay), the later being
approximated by deterministic reaction rate equations. As a result we represent gene ex-
pression as a piecewise deterministic time-continuous Markov process, which is further
related with a system of partial differential hyperbolic equations for probability density
functions (pdfs) of protein distribution. The stationary pdfs are calculated analytically
for haploidal gene or numerically for diploidal and tetraploidal ones. We distinguished
nine classes of simultaneous activation of haploid, diploid and tetraploid genes. This
allows for analysis of potential consequences of gene duplication or allele loss. We
show that when gene activity is autoregulated by a positive feedback, the change in
number of gene alleles may have dramatic consequences for its regulation and may not
be compensated by the change of efficiency of mRNA synthesis per allele.
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1. INTRODUCTION

Stochasticity in gene expression arises from fluctuation in gene activity, (12) mRNA
transcription, protein translation and oligomerization (Refs. 16,11,28,29, recently
reviewed in Refs. 9 and 17). Figure 1 illustrates the main steps in gene expression.
Control of gene activity is mediated by transcription factors which may bind a
specific promoter regions and switch the allele on or off. When the gene is active,
RNA polymerase may bind the gene promoter and initiate mRNA transcription.
Next, mRNA becomes edited and exported from the nucleus to the cytoplasm,
where the protein translation occurs. Accordingly, a single event of allele activation
results (if the activation period is sufficiently long), in a burst of mRNA molecules,
which is then translated into an even larger burst of proteins. (12,31,2) Stochasticity
in gene expression causes the population of cells to exhibit a large cell-to-cell
variability as observed for example by Takasuka et al. (27) and Stirland et al. (24)

for mammalian cells, Raser and O’Shea(22) for budding yeast (Saccharomyces
cerevisiae) or Elowitz et al. (7) for bacteria (Escherichia coli).

Prokaryotes are haploid, i.e., most of their genes have only one copy. The
higher organisms eukaryotes are diploid, most of their genes have two homologous
copies (alleles), which can be independently activated and inactivated. However,
the number of gene copies is not constant in cell evolution. In the S phase of cell
cycle whole genome is duplicated and then in the G2 phase and mitosis, which
together last for several hours, most genes have four copies instead of two. On
the contrary, in meiosis 4 daughter haploid cells (gametes) are produced (in two
subsequent divisions) out of one diploid cell. The genetic defect of loss of one
allele or its transcriptional inactivity can result in haploinsufficiency, which is a
hallmark of some diseases. Cancer cells may have gene or chromosomal dupli-
cations resulting in a larger number of alleles which may substantially alter cell
function and make the disease more aggressive. Transfected cells used in various
experiments may have arbitrary and difficult to control number of homologous

Fig. 1. Simplified schematic diagram of gene expression.
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gene copies. In order to deduce the behavior of “normal” (wild-type) cells from
experiments performed on transfected cells, one needs to consider N-allelic gene
regulation.

The aim of the current study is to analyze how expression of a single gene
depends on the number of its alleles. It is obvious that the number of alleles influ-
ences the averaged protein level as well as the variance of the protein distribution.
As we will see, when the gene is not regulated by the feedback, both average
and variance of the protein distribution are proportional to the number of alleles.
However, in the case of feedback there is no general rule relating magnitude and
expression noise to the allele number. In many cases, lack of one copy or genome
duplication does not influence the health of the organism but, as we will show,
there are cases in which allele loss may substantially alter gene expression, and
similarly, there are cases in which duplication of a gene may lead to complete
deregulation of its expression.

The paper is structured as follows: First, in Sec. 2, we consider single gene
regulation without feedback from its own transcriptional activity. The lack of feed-
back will allow us to take into account three main sources of stochasticity, gene
activity, mRNA transcription/decay and protein translation/decay. In this case, we
can calculate the mean and variance of the mRNA and protein distribution for ar-
bitrary number of alleles. In Sec. 2.1 we introduce the continuous approximation,
in which stochasticity is due solely to flipping of the gene status, (14,15) whereas
the stochastic effects associated with mRNA and protein synthesis and decay
are neglected. This approximation is used in Sec. 3, where the main results are
presented. First we derive an analytical protein distribution in the case of autoreg-
ulation of a monoallelic gene (Sec. 3.1) and then the numerical solution for the
system of a N-allelic gene (Sec. 3.2). We calculate numerically the mean and the
variance of protein distribution in the case of a single gene (with one, two or four
homologous copies) regulated by its own protein in negative and positive feedback
loop. In the case of positive feedback we discuss three different scenarios of gene
activation with respect to the number of alleles. We will show that in the case of
diploid gene, allele loss or gene duplication may totally alter gene regulation and
the loss of allele may not be fully compensated by the increase of the efficiency
of mRNA synthesis of the remaining allele. In Conclusions we discuss potential
consequences of our results.

2. PRELIMINARIES

First let us consider a single haploid gene without feedback regulation on
its own transcriptional activity. Considered model involves three classes of pro-
cesses: Gene activation/inactivation, mRNA transcription/decay and protein trans-
lation/decay (Fig. 1). It is assumed that the gene can switch to the active state
(denoted by A) with a constant propensity c = c0, and return to the inactive state
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(denoted by I ) with a constant propensity b = b0, due to binding or dissociation of
regulatory factors, which are assumed to be present at constant concentrations in
cell nucleus. We further assume that mRNA transcript molecules are synthesized
at the rate G(t)H , where G is a binary variable describing the state of a gene:
G(A) = 1 and G(I ) = 0. (12,10,20,15) Protein translation proceeds at a rate K x(t),
where x(t) is the number of mRNA molecules. In addition, mRNA and protein
molecules are degraded at rates r1 and r2, respectively. The reactions described
can be summarized as follows:

I
c−→ A, I

b←− A, (1)

A
GH−→ mRNA

r1−→ φ, (2)

mRNA
K−→ protein

r2−→ φ, (3)

where symbol φ denotes degradation of gene products. Six parameters
c, b, K , H, r1 and r2 can vary several orders of magnitude between particular
genes and species, which leads to plethora of possible scenarios. There is an upper
physiological bound on transcription (H � 0.1/s) and translation (K � 0.5/s)
rates, reached by genes whose products are needed in large quantities within short
time. For example, about 100000 particles of an inhibitory protein termed IκBα

must be degraded and then resynthesized in about 1/2 h in order to properly
control the early phase of immune response (see Refs. 13, 14, 4 for quantitative
discussion of parameters). However, there is a large number of genes, whose
products are needed in small quantities, of the order of a few molecules per
cell, and it is possible these genes are expressed at much lower rates or their
expression is very intermittent. The gene switching propensities c, b are larger
for prokaryotes (of order 1/s) for which binding of regulatory factors is typ-
ically unstable. On the contrary, in higher organisms (eukaryotes) these rates
are expected to be much lower and as a result one may expect that gene acti-
vation results in burst of mRNA molecules, translated to even larger burst of
proteins. Typically, proteins are more stable than mRNA molecules (r1 > r2), but
again in both cases the degradation half time may vary from minutes to days.
In prokaryotes mRNAs are typically unstable with half time of the order of one
minute.

The state of the system is decribed by a triple of variables (x(t), y(t), G(t)),
where y(t) is the number of protein molecules. Their joint discrete distribution
can be represented as a pair of the probability mass functions

fxy := P[# mRNA = x, # protein = y, G = 0], (4)

gxy := P[# mRNA = x, # protein = y, G = 1], (5)

i.e., probabilities that the number of mRNA molecules (of considered species) is
x and the number of protein molecules is y, x ∈ N, y ∈ N, in a cell being in the
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inactive (G = 0) or active (G = 1) state, respectively. The marginal distribution
ρxy := fxy + gxy describes the mRNA and protein levels regardless of the gene
status.

The time evolution of probabilities (4)–(5) is given by the following system
of chemical master equations or Chapman-Kolgomorov equations (30,10)

d fxy

dt
= bgxy − c fxy + G(I )H fx−1,y + r1(x + 1) fx+1,y − (G(I )H + r1x) fxy

+ K x fx,y−1 + r2(y + 1) fx,y+1 − (K x + r2 y) fxy, (6)

dgxy

dt
= −bgxy + c fxy + G(A)Hgx−1,y + r1(x + 1)gx+1,y

− (G(A)H + r1x)gxy + K xgx,y−1 + r2(y + 1)gx,y+1

− (K x + r2 y)gxy . (7)

The above system involves an infinite set of equations. The first two right-hand
side terms in Eqs. (6)–(7) correspond to the probability flow due to the regula-
tion of gene activity, further three terms describe the flow of probability due to
the synthesis and degradation of mRNA molecules, while the last three terms
stand for the synthesis and degradation of protein molecules. Note that, since
G(I ) = 0, the mRNA synthesis terms are absent in Eq. (6). The master equa-
tions (6)–(7) provide the time-dependent distribution of the underlying stochastic
process and thus their solution is of primary interest. Although these equations
(to our knowledge) can not be solved analytically even for d fxy

dt = dgxy

dt = 0, they
can be used to calculate the moments of distributions fxy , gxy or ρxy . This is
accomplished by using the probability generating functions (PGF’s) defined as
follows:

F(z, s) =
∑

x,y

zx s y fxy, (8)

G(z, s) =
∑

x,y

zx s y gxy . (9)

We transform Eqs. (6)–(7) into partial differential equations for the PGF’s and use
the fact that the factorial moments of the two distributions are equal to the partial
derivatives of F(z, s) and G(z, s) calculated at z = s = 1. The details of this
calculation are found in Ref. 19. The mean E[y] and variance V ar [y] = E[y2] −
(E[y])2 of the stationary marginal distribution of the protein ρy = ∑

x ρxy are
equal to

E[y] = cK H

r1r2(c + b)
, (10)
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V ar [y] = br1r2(r1 + r2 + c + b)

c(r1 + r2)(r1 + c + b)(r2 + c + b)
(E[y])2

+ K

(r1 + r2)
E[y] + E[y]. (11)

The above result, obtained for a haploid gene, can be generalized for a gene having
an arbitrary number of copies. Let us mark the mRNAs and proteins resulting from
different alleles by different “colors.” If the coefficients c and b do not depend on
x or y (i.e., there is no feedback) the distributions of differently colored proteins
are independent. As a result, the marginal protein distribution is a convolution of
these “colored” distributions, the mean of the protein is the sum of means and the
variance is the sum of the variances. Thus, for the gene having N alleles we have

EN [y] = N E[y], (12)

V arN [y] = N V ar [y]. (13)

As a result of the above, the Fano Factor defined as F F[y] = V ar [y]/E[y] does
not depend on the number of gene alleles, while the noise defined as η = √

V ar/E
is inversely proportional to

√
N . As for the system without feedback, the mean

and the variance calculated per allele are independent of the number of alleles. We
will use these measures, viz., E0 = EN /N and V ar0 = V arN /N , in the analysis
of systems with feedback. As we will see, in this case there is no general rule
relating the magnitudes of variance and averages to the number of alleles.

2.1. Continuous Approximation

The aim of this work is to consider feedback systems. Obviously, the feedback
causes that the distributions of “colored” proteins (associated with different alleles)
are not independent, which makes the analysis more difficult. In order to simplify
the problem, we introduce an approximation, well justified for eukaryotes, in
which stochasticity related to the synthesis/degradation of mRNA and proteins
is neglected (see Refs. 14, 15, 19 for discussion of this approximation). Is short,
the approximation is based on the fact that typical numbers of mRNAs (x) and
proteins (y) are much larger than the number of gene copies. As a result the
fluctuations in gene state give much larger contribution to the protein variance than
the mRNA/protein synthesis and degradation processes. Neglecting stochasticity
of the mRNA and protein synthesis and degradation we treat x and y as continuous
variables and replace relations (2)–(3) by deterministic reaction-rate equations. For
monoallelic gene without feedback (i.e., with constant transition coefficients c and
b), we obtain the following system

I
c→ A, I

b← A, (14)
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dx

dt
= H G(t) − r1x, (15)

dy

dt
= K x − r2 y. (16)

Since G(t) is a binary random variable, equations (15)–(16) generate stochastic
trajectories, which can be described as piecewise deterministic time-continuous
Markov process. Such processes have been intensively studied in physics. For
example, the motion of a charged particle in an electric or magnetic field, randomly
changing between two states, can also be considered as a piecewise deterministic
time-continuous Markov process. The main difference is that in most physical
applications, these transition rates are constant, while here the most interesting
case (considered later for auto-regulatory genes) is when the transition coefficients
depend on continuous variables x(t) and y(t). A system analogous to our system
(15)–(16) in which the transition intensities of the random forcing process G(t)
depend on state variables x(t) and y(t) was considered by Basak et al. (1)

At each time t, the realizations of mRNA and protein levels x(t) and y(t), and
the state of the transcription switch G(t), form a triple of random variables, first two
of which are continuous and the third is binary. Therefore, their joint distribution
can be described by a pair of probability density functions (pdf) f (x, y, t) and
g(x, y, t). The interpretation is that for given time t

P[x(t) ∈ (x, x + �x), y(t) ∈ (y, y + �y), G(t) = 0] = f (x, y, t)�x�y,

P[x(t) ∈ (x, x + �x), y(t) ∈ (y, y + �y), G(t) = 1] = g(x, y, t)�x�y.

Now it is possible to write the continuity equations for f (x, y, t) and g(x, y, t)
with source terms following from change of gene status (transformation between
f and g), Eq. (14):

∂ f

∂t
+ div

[(
dx

dt
,

dy

dt

)
f

]

|G=0

= bg − c f, (17)

∂g

∂t
+ div

[(
dx

dt
,

dy

dt

)
g

]

|G=1

= −bg + c f. (18)

Velocity fields ( dx
dt ,

dy
dt )|G=0 and ( dx

dt ,
dy
dt )|G=1, transforming f and g respectively,

are given by equations (15)–(16). Thus, we have

∂ f

∂t
− ∂

∂x
(r1x f ) + ∂

∂y
[(K x − r2 y) f ] = bg − c f, (19)

∂g

∂t
+ ∂

∂x
[(H − r1x)g] + ∂

∂y
[(K x − r2 y)g] = −bg + c f. (20)
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Alternatively, the above two equations may be derived from Chapman-
Kologomorov equations (6)–(7) via Kramers-Moyal expansion. (30) The first order
expansion leads to Eqs. (19)–(20), while the second order expansion results in
so the called Fokker-Planck equations with additional diffusion terms. The main
advantage of our derivation is that the approximation is made at the level of single
cell description, so its accuracy can be validated by comparing simulation of Eqs.
(1)–(3) using the Gillespie algorithm to the solutions of (14)–(16). (14) The mathe-
matical analysis of the system (19)–(20) in the case when b = b(x, y), c = c(x, y)
was provided recently by Bobrowski. (3)

Similarly as in the discrete case, we define the moment generating functions
(MGFs)

F(z, s) =
∫ ∫

ezx+sy f (x, y) dxdy, (21)

G(z, s) =
∫ ∫

ezx+sy g(x, y) dxdy. (22)

Partial derivatives of first order of F(z, s) and G(z, s) evaluated at z = s = 0 give
the corresponding moments of f (x, y, t) and g(x, y, t). This allows calculating
the mean EC [y] and variance V arC [y] of the protein marginal distribution ρy =∫

(g(x, y) + f (x, y)) dx . (19)

EC [y] = cK H

r1r2(c + b)
, (23)

V arC [y] = br1r2(r1 + r2 + c + b)

c(r1 + r2)(r1 + c + b)(r2 + c + b)
(EC [y])2. (24)

Let us note that we obtained the same mean as in discrete case (Eqs. (10)) and that
the variance differs only in linear terms in E[y]: The first missing term K

(r1+r2) E[y]
corresponds to the transcriptional noise, while the second one, E[y], corresponds
to the translational noise. Within frame of the continuous approximation we can
easily obtain the answer for a problem posed by Cook et al., (5) viz. how much the
variance of the protein distribution changes if one “big” allele is replaced by by two
“small” ones (having together the same protein production efficiency). Since the
“small” allele produces twice less protein on the average, than the “big” one, then,
according to Eq. (24), it has four times smaller protein variance. This implies that
the replacement of one “big” allele by two “small” ones would result in twofold
reduction of the protein variance. This simple result is due to the continuous
approximation, in which the linear terms in the variance (24) are neglected.

System (14)–(16) can be further simplified if we assume that the protein
degradation time is much larger than mRNA degradation time, i.e., that r1/r2 � 1.
In such case Eq. (15) is much faster than Eq. (16), which allows us to re-
place Eq. (15) by the equality x = G H/r1. As a result, the system (14)–(16)
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is transformed into

I
c−→ A, I

b←− A, (25)

dy

dt
= H K G

r1
− r2 y. (26)

The above approximation is equivalent to the assumption made by Kepler and
Elston, (10) that the protein is synthesized directly from a gene (K-E approximation).
Equations for the probability density functions f (y, t), g(y, t), corresponding to
the simplified system (25)–(26) read

∂ f

∂t
+ r2

∂

∂y
(−y f ) = bg − c f, (27)

∂g

∂t
+ ∂

∂y

((
H K

r1
− r2 y

)
g

)
= −bg + c f. (28)

In the same way, we can calculate the mean EK E [y] and variance V arK E [y] of
the stationary marginal distribution of protein ρ(y) = f (y) + g(y),

EK E [y] = cH K

r1r2(c + b)
, (29)

V arK E [y] = br2

c(r2 + c + b)
(EK E [y])2. (30)

Let us note that the mean is exactly the same as in previous case and that V arK E [y]
can be obtained from V arC [y] by assuming that r1/r2 � 1.

For ∂ f
∂t = ∂g

∂t = 0, system (27)–(28) can be solved anallytically (see the next
section)

f (y) = A y cr −1

(
H K

r1r2
− y

)br

,

g(y) = A y cr

(
H K

r1r2
− y

)br −1

for y ∈
(

0,
H K

r1r2

)
(31)

and

f (y) = g(y) = 0 for y /∈
[

0,
H K

r1r2

]
, (32)

where cr = c/r2, br = b/r2 and

A = �(cr )�(br )

�(cr + br )

( r1r2

H K

)cr +br

(33)
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is the constant introduced to normalize the marginal distribution ρ(y) := f (y) +
g(y),

∫ r1r2
H K

0 ρ(y) = 1,

ρ(y) = A y cr −1

(
H K

r1r2
− y

)br −1 H K

r1r2
. (34)

Having the distribution ρ(y) for a monoallelic gene, we can calculate distributions
for a gene with an arbitrary number of copies. We use the fact that, when transition
coefficients c and b do not depend on the amount of protein y, distributions
resulting from different alleles are independent. In such a case distribution of
protein ρN (y), resulting from N -allelic gene, is given by the Nth order convolution
of distributions ρ(y). For example, for diploid gene, we have

ρ2(y) =
∫ s2

s1

ρ(z) ρ(y − z) dz, (35)

where s1 = 0, s2 = y for 0 < y ≤ H K
r1r2

and s1 = y − H K
r1r2

, s2 = H K
r1r2

for H K
r1r2

< y <
2H K
r1r2

. The tetraploid gene distribution ρ4(y) can be obtained as a convolution of
two ρ2(y) distributions. Obviously the same formulas are valid for time dependent
distributions, however, it is more difficult to calculate analytically ρ(y, t) from the
system (27)–(28).

3. RESULTS

In this section we consider the gene regulation with feedback. For simplicity,
we restrict our considerations to a single gene with one, two or four alleles whose
activity is regulated by its synthesized protein. Accordingly, we assume that the
transition coefficients c and b depend on the amount of synthesized protein, i.e.,
c = c(y) and b = b(y). (10,14,15) We analyze this case within the framework of K-E
approximation.

3.1. Autoregulation of a Haploid Gene: Analytical Solution

First, let us consider a monoallelic gene, which can be described by the
system (27)–(28), now with c = c(y) and b = b(y). For simplicity we rewrite
Eqs. (27)–(28) in a nondimensional form applying units in which H K = r2 = 1,

∂ f

∂t
− ∂

∂y
( f y) = b(y)g − c(y) f, (36)

∂g

∂t
+ ∂

∂y
((1 − y)g) = −b(y)g + c(y) f. (37)

The stationary solutions ∂ f
∂t = ∂g

∂t = 0 of the above system can be written in a
closed form for y ∈ [0, 1]. Adding equations (36)–(37) side by side, we obtain the
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first integral

d

dy
[−y f + (1 − y)g] = 0. (38)

This implies

−y f + (1 − y)g = − f (1) = g(0). (39)

Since f (·) and g(·) are, by definition, non-negative, the condition − f (1) = g(0)
implies that f (1) = g(0) = 0. Thus, from Eqs. (39), we have g = y f

(1−y) . Inserting
this to Eqs. (36) we obtain

yb(y)

(1 − y)
f − c(y) f = − d

dy
(y f ), (40)

or

f ′

f
= −b(y)

(1 − y)
+ c(y) − 1

y
. (41)

Hence

f (y) = exp

[∫ 1

0

( −b(y)

(1 − y)
+ c(y) − 1

y

)
dy

]
, g(y) = y f (y)

(1 − y)
. (42)

For c(y) = c0 + c1 y + c2 y2 and b(y) = b0 + b1 y + b2 y2 the solution can be writ-
ten explicitly

f (y) = A exp

[
y(b1 + b2 + c1) + 1

2
y2(b2 + c2)

]
y(c0−1) (1 − y)(b0+b1+b2),

(43)

g(y) = A exp

[
y(b1 + b2 + c1) + 1

2
y2(b2 + c2)

]
yc0 (1 − y)(b0+b1+b2−1), (44)

ρ(y) = f (y) + g(y) = A exp

[
y(b1 + b2 + c1) + 1

2
y2(b2 + c2)

]

× y(c0−1)(1 − y)(b0+b1+b2−1), (45)

where A is chosen so that
∫ 1

0 ρ(y) = 1. Let us note that the solution exists for all
c0 > 0, c1 ≥ 0, c2 ≥ 0, b0 ≥ 0, b1 ≥ 0, b2 ≥ 0, provided that b0+ b1+ b2 > 0.
Note that conditions c0 > 0 and b0+ b1+ b2 > 0 are needed to assure integrability
of f (y) and g(y). Physically, c0 = 0 would imply that the gene will switch off and
will never switch on again. Let us note also, that for c0 < 1, limy−>0+ f (y) =
∞ and for b0 + b1 + b2 < 1, limy−>1− g(y) = ∞, thus in this case formally we
should write that the solution exists on (0, 1) rather then on [0, 1] .
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3.2. Autoregulation of N-allelic Gene

An N -allelic gene can exist in one of N + 1 states. Discrete function G N (t) ∈
{0, 1, . . . , N }, where G N (t) = i corresponds to the state, in which i of N copies
are active. Let fi (y, t), i ∈ Z, denote probability density functions such that

P[y(t) ∈ (y, y + �y), Gn(t) = i] = fi (y, t)�y. (46)

Obviously fi (y, t) = 0 for i /∈ {0, 1, . . . , N }. Transition matrix TN between states
fi results from the transition rates for the single allele

I
c(y)−→ A, I

b(y)←− A, (47)

and reads

TN =
fi−1 fi fi+1

fi−1 (N + 1 − i)c(y) 0
fi ib(y) (N − i)c(y)
fi+1 0 (i + 1)b(y)

, i ∈ {0, 1, . . . , N }.

The time evolution of pdf’s fi is given by the system of N + 1 partial
differential equations

∂ fi

∂t
+ ∂

∂y
((i − y) fi ) = −ib(y) fi − (N − i)c(y) fi

+ (N + 1 − i)c(y) fi−1 + (i + 1)b(y) fi+1. (48)

The stationary distributions, ∂ fi

∂t = 0, are given by the system of linear ODEs

∂

∂y
((i − y) fi ) = −ib(y) fi − (N − i)c(y) fi

+ (N + 1 − i)c(y) fi−1 + (i + 1)b(y) fi+1. (49)

Although the system (49) is linear, for N > 1 it is not trivial to solve it analytically
and even numerically. The support of stationary distributions fi (y) is the interval
[0, N ]. The reason is that, except for very specific b(y) and c(y), all functions
fi (y) tend either to zero or to infinity at the ends of the interval [0, N ]. As a
result there is no point to start. The method applied in this work was introduced
previously. (15) In short, we replace system of N + 1 linear ODEs by the system
of M(N + 1) linear algebraic equations, where M is the size of the grid, chosen
to assure required accuracy. Functions fi (y) must be further normalized to assure
that the marginal distribution ρ(y) = ∑

i fi (y) satisfies condition
∫ N

0 ρ(y)dy = 1.
The algorithm was tested in the case N = 1 for which we have analytical solution
(42) and proved to be very accurate for M = 1000, for which all calculations take
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about 1s on an average PC. Having the marginal distribution ρ(y) for N = 2 and
N = 4 we calculate the corresponding mean and variance of the protein.

From now on we concentrate on regulation of a self activating gene. Namely,
we assume that the transition rates c and b are

c(y) = c0 + c2 y2, b(y) = b0. (50)

Coefficient c2 measures the strength of self-activation due to binding of protein
homodimers. This is a natural assumption since in many cases dimers are much
more active and stable than the monomers and the production of homodimers is
a quadratic function of the protein concentration. (10) Coefficient b0 stands for the
inactivation due to dissociation of homodimers from gene promoter. The strength
of external induction due to binding of some transcription factors is controlled
by coefficient c0. We will thus consider c2 and b0 parameters characterizing the
gene and for a given pair of coefficients c2 and b0 we will analyze the response
of the haploid, diploid and tetraploid systems to the varying external stimula-
tion c0. As we already said, the c0 = 0 leads to singularity in distribution func-
tion ρ(y). Numerically, very small c0 is also a challenge since the distribution
concentrates at y = 0. To avoid these numerical difficulties we will restrict our
numerical investigation to the case c0 ≥ 0.01. Biologically this is not a severe re-
striction since any spontaneous gene activation would assure some minimal value
of c0.

First, let us note that there are three distinctive patterns of N-allelic (N = 1,
2, 4) gene activation corresponding to different pairs of (c2, b0):

{A}-mode is the trivial mode in which the gene remains Active (i.e. E0(y) >

1/2) for c0 ∈ [0.01,∞). Biologically this implies that the gene can be activated
spontaneously and remains active (Fig. 2C).

{B}-mode, in which gene activates for some c0 ∈ [0.01,∞) and distribution
ρ(y) is transiently (i.e. for some c0) Bimodal (Fig. 2D).

{U}-mode, in which the gene activates for some c0 ∈ [0.01,∞) but its dis-
tribution ρ(y) remains Unimodal for all c0 ∈ [0.01,∞) (Fig. 2E).

In the {A}-mode the gene is constantly active, the mean per copy E0(y)(c0)
is close to 1 and it is not sensitive to the magnitude of external stimulation c0

(Fig. 2A). Variance V ar0(y)(c0) remains low (Fig. 2B). The {A}-mode is a “per-
fect choice” for genes whose product is needed in a constant amount. In the
{B}-mode the gene activates for relatively low c0 and the activation pattern is
quite interesting. For some c0 a second maximum (at higher y) appears in dis-
tribution ρ(y), (Fig. 2D) (green), then this maximum becomes higher than the
first one, Fig. 2D (brown), finally for larger c0 the distribution becomes unimodal.
This pattern of activation implies that in some range of activation parameter c0,
the population of cells splits into two subpopulations having smaller and larger
amount of protein. This pattern in some situations could be safer than the unimodal
activation {U} shown in Fig. 2E. If the signal is not strong enough only a part of
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Fig. 2. Color online: Three modes of diploid gene activation (positive regulation). Panel A: mean per
copy E0(y)(c0) and B: variance per copy V ar0(y)(c0); lines: red (dashed dotted), green (continuous)
and blue (dashed) correspond to the {A}, {B} and {U}-modes of activation calculated, respectively,
for points (10,3), (10,10) and (3,10) in (c2, b0) plane (see Fig. 3B). Panels C, D and E: the protein
distributions ρ(y) for the {A} {B} and {U} activation modes.

cells activates, while the rest waits for a “confirmation” by a stronger signal. The
{B}-mode of activation takes place for higher c2/b0 ratio and thus, the system acti-
vates (i.e. E0(y) > 1/2) for lower external stimulation c0 with much stepper profile
of activation (Fig. 2A). Bimodal activation is present also in the variance profile
V ar0(y)(c0), which has a sharp high maximum at c0 for which E0(y)(c0) ≈ 1/2
(Fig. 2B).

In Fig. 3B we show three regions in (c2, b0) plane corresponding to three
modes of activation of the diploid gene {A},{B},{U}. The pattern for haploid
gene is structurally similar to the diploid one (Fig. 3A), but the {A}-region is
much narrower, while the {U}-region is much broader than that for diploid gene.
In the case of tetraploid gene the {A}-region is the broadest while the {B} and
{U}-regions are relatively narrow (Fig. 3C). In Figs. 3A, 3B and 3C we may also
distinguish a small pie-like region for c2

2 + b2
0 ≤ 1. For very small c2, b0 and c0

distribution function ρ4(y), corresponding to tetraploid gene may have up to five
maxima at y = i , 0 ≤ i ≤ 4, each corresponding to the state in which i out of
4 copies are active. Since this multimodality (caused be very infrequent flipping
between gene states) has a different character to the bimodality we are interested
in, we will simply exclude region c2

2 + b2
0 ≤ 1 from further considerations.
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Fig. 3. Color online: Three regions in (c2, b0) plane corresponding to three modes of gene activation
{A},{B},{U}. Panel A: the haploid gene, Panel B: the diploid gene and Panel C: the tetraploid gene.

It is interesting that the pattern for diploid gene activation (Fig. 3B) is most
robust in the sense that {A}, {B} and {U} sectors are of similar width. The haploid
genes can be in the {A}-mode only for very small ratio b0/c2, while tetraploid
genes are mostly in the {A}-mode, what makes them insensitive to the magnitude
of the external signal c0.

We can combine these three plots (from Fig. 3) into one (Fig. 4) showing nine
possible patterns for simultaneous activation of haploid, diploid and tetraploid
genes. This allows an analysis of consequences of haploinsufficiency or gene
duplication for diploid genes. According to our notation the sector denoted {ABU}
gives the range of parameters (c2, b0), for which a tetraploid gene is in the {A}-
mode, diploid in the {B}-mode and haploid in the {U}-mode. Thus for any pair (c2,
b0) from the {ABU}-sector the loss of one allele implies that diploid system would
activate in the {U}-mode instead of the {B}-mode, while the gene multiplication
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Fig. 4. Color online: Nine modes of synergistic gene activation; The notation is such that: {ABU}
denotes that the tetraploid gene is in the {A} mode, the diploid gene is in the {B} mode and the
haploid gene is in the {U} mode. The activation profiles for three marked points in (c2, b0) plane are
analyzed in Figs. 5, 6 and 7.

will set it in the {A}-mode. When the diploid system “works” in {AAB} or
{AAU} range, then the gene multiplication would not alter the activation mode,
but the allele loss would stop the persistent gene activity. Oppositely when the
diploid system is in the {AUU} range the loss of an allele would not result in
an alternation of the activation mode, but the gene duplication would set it to the
{A}-mode.

In Figs. 5, 6 and 7 we analyze three out of nine possible cases: {AAB},
{ABU}, {BUU}. The case {AAB} (Fig. 5) is the one, which resembles the classical
picture of haploinsufficiency, see Cook et al. (5) The diploid and tetraploid gene
remains active, while the haploid gene activates in a bimodal mode, so that its
variance profile V ar0(y)(c0) has a sharp, tall maximum (Figs. 5C and B). It is
commonly expected that the loss of one allele decreases the mean but, what is
more important, it increases the variability of the gene expression. In this case,
if the gene product is needed at a steady level, the loss of one allele may lead
to a disease. The case {ABU} (Fig. 6) is quite different; it is the diploid system
which transiently exhibits the broadest protein distribution (Fig. 6C). Contrary
to the common intuition the variance per copy V ar0(y)(c0) is in this case larger
for a diploid gene than for a haploid one (Fig. 6B). The activation of the haploid
gene is much more gradual with a relatively small variance. The tetraploid gene is
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Fig. 5. Color online: Mode {AAB}: c2 = 15, b0 = 4; Panels A: mean per copy E0(y)(c0) and B:
variance per copy V ar0(y)(c0). Panel C: protein distributions ρ(y) for the haploid, diploid, tetraploid
systems for c0 = 0.6 (at which haploid system has max[V ar0(y)(c0)]).

constantly active with a compact protein distribution. In the case {BUU} (Fig. 7)
all three genes activate as stimulation increases. The activation profile (Fig. 7A)
is steepest for the tetraploid gene and most gradual for the haploid one. Again,
in contrary to the intuition, the variance per copy V ar0(y)(c0) is the largest for a
tetraploid gene, due to its transiently bimodal distribution (Fig. 7B).

3.3. The Missing Allele may not be Compensated by the Doubled

Expression of the Remaining One

The loss of one allele can not be fully compensated by the doubled production
of the remaining one. In the case without autoregulation, based on the analysis
in Sec. 2, we may conclude that the haploid gene has the same mean E(y), but
twice larger variance V ar (y) than the diploid one. For the negative feedback the
mean E(y)(c0) is slightly higher for the diploid gene. The variance V ar (y)(c0) is
about twice higher for haploid gene, and the protein distribution profiles ρ(y) are
substantially different for haploid and diploid systems. The difference between
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Fig. 6. Color online: Mode {ABU}: c2 = 15, b0 = 15; Panel A: mean per copy E0(y)(c0) and B:
variance per copy V ar0(y)(c0). Panel C: protein distributions ρ(y) for haploid, diploid, tetraploid
systems respectively for c0 = 1.1 (at which diploid system has max[V ar0(y)(c0)]).

the haploid and diploid systems is even more pronounced in the case of positive
regulation. As shown in Fig. 8A, the mean E(y)(c0) is higher for the diploid gene,
(which activates at the value of coefficient c0 = 0.01) than for the haploid gene.
This is caused by the fact that the case of positive regulation activation of one
allele results in protein production which in turn activates the second allele. In the
case shown in Fig. 8 the corresponding protein distributions are bimodal when
both haploid and diploid genes activate. However, since the diploid gene activates
for 10 times lower c0, the variance of the protein distribution is transiently larger
for diploid system than for the haploid one (Fig. 8B). For larger c0, the haploid
system exhibits, as expected, much larger variance than the diploid one.

4. CONCLUSIONS

There are several processes which change the number of gene copies in cell
evolution. The most common is genome duplication in the cell cycle. In eukaryotes
cell cycle lasts for about 24 h and consists of four phases, G1 in which cell grows,
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Fig. 7. Color online: Mode {BUU}: c2 = 4, b0 = 15; Panels A: mean per copy E0(y)(c0) and B:
variance per copy V ar0(y)(c0). Panel C protein distributions ρ(y) for haploid, diploid, tetraploid
systems for c0 = 0.7 (at which tetraploid system has max[V ar0(y)(c0)]).

S phase in which the genome is duplicated, G2 in which cell gets ready for the
last phase mitosis. In mitosis the duplicated chromosomes are separated and pack
into two new nuclei and then cell divides. During the G2 phase and mitosis cell is
transiently tetraploid. In contrary in meiosis haploid cells are produced.

Cancer development is in many cases connected with partial genome multi-
plication, which results in reprogramming of the cancer cells. For example HeLa
cells (human ovarian carcinoma) commonly used as a standard in many biological
experiments have about 3 times more DNA than normal healthy cells, what implies
that in average genes are hexaploid. Also in normal evolution particular genes may
be multiplicated in a response for environmental stress, when a given protein is
needed in larger quantity.

The aim of this paper was to analyze, via stochastic modeling of gene ex-
pression, the potential consequences of the change in gene copy number on its
expression. The analysis of this problem was initiated by the seminal work by Cook
et al., (5) on influence of the stochastic gene expression on the haploinsufficiency.
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Fig. 8. Color online: Regulation of haploid gene with the doubled production and the diploid one
(positive feedback); c2 = 8, b0 = 5. Panels A: mean E(y)(c0) and B: variance V ar (y)(c0); Panel C:
the protein distributions ρ(y) for haploid and diploid systems for c0 = 0.01 (at which diploid gene
activates).

The recent developments, (10,30,25,26,15) in modeling the stochastic gene expression
allowed us to apply a more rigorous treatment of this problem by means of protein
probability density functions. We considered expression of haploid, diploid and
tetraploid genes, first without any autoregulation, then with positive autoregula-
tion. In the case without the autoregulation the activity of each allele of an N -allelic
gene is independent and thus the mean and the variance of the protein distribution
are proportional to the number of gene copies provided that the expression from
single copy is the same. When protein expression per copy is adjusted, so that
the average expression of N -ploid gene equals to that of the haploid one, then (in
the continuous approximation in which transcriptional and translational noise is
neglected) the variance is inversely proportional to N . This explains the numerical
result of Cook et al. (5) who found, performing Monte Carlo simulations, that the
variance of the protein distribution decreases with the growth of the copy number
(provided that averaged expression is constant).
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The dependence of the gene expression on the number of alleles is much
more complex for systems with feedback. In this case neither the protein level nor
variance of protein distribution are proportional to the number of gene copies. In
this work we restricted ourself to autoregulatory genes, what surely leaves some
interesting phenomena unearthed, but also enables more detail analysis. Despite
their simplicity the autoregulatory elements have two features which make them
sensitive to the change in the gene copy number. Firstly, the higher protein level
implies the stronger feedback, secondly the higher copy number increases the
probability of gene activation.

We considered the external induction of haploid, diploid and tetraploid genes
with positive feedback to found that in each case there exist three characteristic
modes of gene activation; {A}-when gene activity is sustained without external
stimulation, {U}-when gene activates at some value of the external stimulation
with the unimodal profile of the protein distribution, and {B}-when gene activates
via the bimodal distribution. In both {U} and {B} modes gene acts as a switch, in
addition in the {B} mode the stochasticity split transiently the population of cells
into two subpopulations: one with high other with low protein expression. In some
cases this can be the safest strategy for a tissue or a colony of bacteria. Our analysis
(Fig. 3) shows that the diploid gene has the most robust pattern of activation in
the sense that the {A},{B},{U} sectors in the (c2, b0) parameter plane are of the
similar width.

The main result of this work is presented in Fig. 4: Considering the simul-
taneous activation of a haploid, diploid or tetraploid gene we found that there
exist nine modes of activation. The analysis of these modes shows the potential
consequences of allele loss or gene duplication. When the system is in one of
two modes, {AAU} or {AAB} then the allele loss would stop the persistent gene
activity and may lead to the disease if the constant level of product is required. As
shown in Fig. 6 in the case {AAB} result not only in lower level of protein, but
also in much higher variance what implies transient drops of protein level to the
very low value. In the case when the autoregulated gene is the transcription factor
regulating the transcription of other genes, the variability in its level would propa-
gate further down stream and may lead to a disease. Among over 500 transcription
factors encoded in the human genome there are more than 30 that can cause the
disease by haploinsufficiency. (23)

Our analysis shows that the gene duplication also may alter its functioning.
For example, when the system is in the {AUU} or the {ABU} mode, then the
duplication of a diploid gene into tetraploid one would result in a persistent activity.
Similarly, when the system is in the {AAB} or the {AAU} mode, duplication of
a haploid gene would also result in its persistent activity. In the case when the
haploid or diploid gene is “designated” to act as a switch its duplication can lead
to a disease. In fact the positive feedback regulation is a frequent element of
switch. Based on Fig. 4 we may expect that the temporal genome duplication in
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a S phase of cell cycle may result in setting genes regulated in positive feedback
into the active state. This implies the different gene expression in G1 (preceding
S) and G2 (following S) phases.

Finally, we showed that the loss of a gene copy may not be compensated by
higher expression of the remaining one. Even when the haploid gene has a twice
higher production per copy than the diploid one it still requires stronger signal
to activate. This has an important consequences for modelling: whenever we are
interested in the exact description of the diploid gene regulation we should take
into account the fact that both gene copies can be activated independently. In the
case shown in Fig. 8, a ten times stronger signal is needed to activate the haploid
than the diploid gene. Moreover, since activation of the diploid gene proceeds
through bimodal distribution it exhibits transiently higher variance. This result is
quite counterintuitive, since it is commonly expected that the increased number of
gene copies with proportional reduction of transcription rate per copy results in a
lower variability.
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