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Summary. Presuming that the incremental free energy is invariant under a change of the Lagrangean finite

strain measure and/or the reference configuration Hill’s transformation rules for the basic quantities occurring in

mechanics of elastic–plastic solids are recasted in general 3D situation. On this background the invariant

incremental plastic work is defined. The basic connections between Hill–Rice theoretical framework and

Eckart–Mandel approach, involving the mobile stress-free configuration, are discussed both in generalized

coordinates and in the tensorial notation. To this end the selected fundamentals of solid mechanics including the

work-conjugacy are recalled. The structure of the updated Lagrangean plastic increment of the total strain is

exhibited accounting for the deformation and stress effects due to possible damage and pressure sensitivity of a

solid. Special simple approximate relations are derived for the situations when non-dilatational elastic strains are

small. The merits of using the logarithmic elastic strain as a state variable are also discussed.

1 Notations

1$ dKL; ðIÞKLMN
¼ 0:5ðdKMdLN þ dKNdLMÞ

ðA
T

Þ
KL
¼ ALK or ðA

T

Þ
KLMN
¼ AMNKL � transpose of A

A
�1

inverse of A ðA
�1

KLALM ¼ dKM or AKLMN A
�1

MNPQ ¼ IKLPQÞ; A
�T

¼ ðA
�1

Þ
T

¼ ðA
T

Þ
�1

AB! AKLBLM or AKLMNBMNPQ; A�B! AK BL

A �B! AKBK or AKLBKL ¼ tr ðA B
T

Þ
ð!KÞ ! no summation over index K

A½jB;Cj� ! AKLMNPQ BMN CPQ

A½j:;Cj� ! AKLMNPQ CPQ
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A½jC; :j� ! AKLMNPQ CMN

Two special isotropic fourth-order tensor functions P(A) and HðXÞ of a second-order argument A

and X (non-singular), respectively, are used throughout the paper:

2PKLMNðAÞ ¼ AKMdLN þ AKNdLM þ ALMdKN þ ALNdKM ; ð1Þ
2HKLMNðXÞ ¼ ðXKMXLN þ XKNXLMÞ: ð2Þ

Let B be the arbitrary symmetric tensor. The basic properties of the operators P and H are

PðAÞB ¼ ABþ B A
T

; HðXÞB ¼ XBXT; ð3:1; 2Þ

P
T

ðAÞB ¼ PðA
T

ÞB ¼ A
T

Bþ BA; Pð1Þ ¼ 2I; ð3:3; 4Þ

H
T

ðXÞ ¼ HðX
T

Þ; H
�1

ðXÞ ¼ HðX
�1

Þ; Hð1Þ ¼ I; ð3:5� 7Þ
HðXYÞ ¼ HðXÞHðYÞ; ð3:8Þ

HðXÞPðXÞ ¼ PðXÞHðXÞ; HðX
�1

ÞPðXÞ ¼ PðXÞHðX
�1

Þ ¼ PðX
�1

Þ; ð3:9; 10Þ

HðXÞ
_

HðX
�1

Þ
zfflffl}|fflffl{

¼ PðX
_
X
�1

Þ ¼ �Pð _X X
�1

Þ: ð3:11Þ

2 Introduction

Suppose that two observers adopt different Lagrangean strain measure and/or different reference

configuration to describe the elastic–plastic behavior of the same real material. The mathematical

form of the obtained constitutive equations will be in general different, and the natural question

arises: what are the transformation rules linking the particular constitutive objects and what

quantities and concepts are invariants. The foundations for systematic analysis of this type of

invariance in Lagrangean solid mechanics has been developed by Hill in [1] and later extended to

thermoelasticity in [2]. The brief discussion of the invariance of thermal effects in thermoplasticity

can also be found in [3] including the partially integrated thermodynamic potentials. The present

paper is the companion to [4] where the basic aspects of invariance are discussed on the example of

simple tension. Here a similar analysis is performed in 3D situation including the original elements:

definition of invariant plastic work within Hill–Rice (H–R) theoretical framework, general

transformation formulas from H–R to Eckart–Mandel (E–M) approach involving concept of stress-

free configuration and accounting for deformation effects due to the possible damage and pressure-

sensitivity. To exhibit the structure of updated plastic increment of the total strain in the actual

configuration special attention is drawn to the most frequent situation encountered in practice – i.e.,

small elastic distortions.

To make the paper self-contained we present in Sect. 3.1 our own synthesis of the kinematics

and work-conjugacy including a special class of confined deformations. This supports the

illustrative examples of transformation rules written in the tensorial notation in Sects. 3.5 and

4.2–4.4. The concise discussion of basic elements of H–R theoretical framework and the subtle

aspects of invariance, the definition of invariant incremental plastic work, as well as the

transformation of the incremental equations into the mobile Lagrangean stress free configuration

(E–M approach) are presented in terms of generalized coordinates in Sects. 3.2–3.4 and 4.1. The

structure of the rate form of the state equations in updated Lagrangean configuration is discussed

in Sect. 4.4.
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3 Selected aspects of Hill–Rice theoretical framework

3.1 Preliminaries

a. Strain measures. Selected aspects of kinematics

(i) The very concept of strain involves two arbitrary factors: the strain measure and the reference

configuration that can be chosen at will. We shall here restrict the attention to the popular class of

strain measures defined by

EðnÞ ¼ f ðUÞ ¼ 1

2n
ðU2n � 1Þ ¼

X
3

K¼1

�EKðnÞNK �NK ; �EKðnÞ ¼
ðk2n

K
� 1Þ

2n
; ð4:1; 2Þ

where NKðK ¼ 1; 2; 3Þ are unit vectors (Lagrangean triad) along principal directions of the right stretch

tensor U occurring in the polar decomposition F ¼ RU of the deformation tensor F (R is the polar

rotation, R R
T

¼ 1Þ: The symbols kK and �EKðnÞ ðK ¼ 1; 2; 3Þ denote principal stretches and principal

values of the strain tensor E(n). Henceforth, the over barred array symbols will denote the components

of any tensor on the principal triad NK : The parameter n occurring in the bracket of E(n) represents the

chosen strain measure f which is selected to be coaxial with U (n is a real number).

By substituting U ¼ J1=3 �U (where J ¼ detF) into (4.1) one arrives at the following well-known

dilatational-strain distortion decomposition of E(n) (cf., e.g., [5], [6]):

EðnÞ ¼ EvðnÞ þ J2n=3EDðnÞ;

EvðnÞ ¼
1

2n
ðJ2n=3 � 1Þ1 ; EDðnÞ ¼

1

2n
ðJ�2n=3U2n � 1Þ;

ð5Þ

where EDðnÞ is an appropriate measure of strain distortions. The knowledge of EDðnÞ alone suffices

to calculate the variation of angles between two material fibers in the course of straining. However, it

is not sufficient to determine the dilatational changes. The standard additive decomposition of E into

the spherical and deviatoric parts has a similar physical meaning only when the logarithmic strain

measure is employed (n ¼ 0),

lim
n!0

EvðnÞ � Evð0Þ ¼ ð1=3Þðln JÞ1; lim
n!0

J2n=3EDðnÞ � Edð0Þ ¼ devEð0Þ: ð6Þ

The ratios kL=kK are expressible in the elementary manner in terms of principal components �Ed
K
ð0Þ of

Edð0Þ; kL=kK ¼ exp½Ed
L
ð0Þ � Ed

K
ð0Þ�:

(ii) The incremental variation of strain is dEðnÞ ¼ _EðnÞdt; where _EðnÞ is the time derivative of

Lagrangean strain E(n) (direct strain flux [1]). Denote by DR the Lagrangean strain-rate induced

from the Eulerian strain-rate D (stretching) by the polar rotation R,

DR � HðR
T

ÞD; 2D ¼ Lþ L
T

; L ¼ _F F
�1

; ð7Þ

where H is defined in (2), and suppose that at the generic instant t of a process of deformation the

current shape of the material element (m.e.) is known (i.e., known is U or E(n)). The important

question arises: what is the kinematic relation between two different incremental variations of strains
_EðnÞdt and DRdt?

The answer may be found in Hill [1] (see also [7, Chap. 2]):

�_EKLðnÞ ¼ �EðnÞ
KLMN

�DMN �
k2n

K
�DKK for K ¼ L; ð!KÞ

kKkLðk2n
K
� k2n

L
Þ

nðk2
K
� k2

L
Þ

�DKL for K 6¼ L; ð!K ;LÞ;

8

>
<

>
:

ð8Þ
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where
�_EKLðnÞ and �DKL are the components1 of _EðnÞ and DR on the Lagrangean triad NK : The array

�EðnÞ
KLMN

represents the components (on the principal triad) of the family (parameter n) of fourth-order

pairwise symmetric tensor functions EðnÞðUÞ defined by (8)

_EðnÞ ¼ EðnÞðUÞDR; DR ¼ EðnÞ
�1

_EðnÞ: ð9Þ

Equation (8) is valid also in the limit when two different principal stretches become equal. If

kK ! kL the limiting relation is

�_EKLðnÞ ¼ k2n
K

�DKL ð!KÞ:

It can readily be verified that Eð1=2Þ
�1

¼ 0:5 PðU
�1

Þ;E ð1Þ ¼ HðUÞ [cf. (1)–(3)] and Eð�1Þ ¼ HðU
�1

Þ;

Eð�1Þ
�1

¼ Eð1Þ: Hence, Eq. (8) includes the familiar index-free relations between DR and _EðnÞ for

n ¼ 1 (Green measure), n ¼ @1 (Almansi measure) and for the stretch strain measures n ¼ :1/2,

DR ¼ HðU
�1

Þ _Eð�1Þ ) D ¼ HðF
�T

Þ _Eð1Þ ¼ HðFÞ _Eð�1Þ; ð10:1Þ

2DR ¼ PðU
�1

Þ _Eð�1=2Þ: ð10:2Þ

To find the index-free form of the inverse of (10.2) denote by x ¼ 0:5ðL� L
T

Þ the usual Eulerian

body spin and by Dx ¼ HðR
T

ÞDxR the Lagrangean measure of the difference between the body spin

and the polar spin xR ¼ _RR
T

; DxR ¼ x� xR: It can be shown that Dx is the following singularity-

free function of U and DR:

Dx ¼ 1

det G
GðUÞ UDR

d �DR

dU
� �

GðUÞ; GðUÞ � ðtr UÞ1�U; ð11Þ

where DR

d ¼ devDR: It is the solution of the algebraic equation

DxU þUDx ¼ UDR

d �DR

dU: ð12Þ

The alternative mathematical forms of (11) can be found, e.g., in [8], [9]. Once Dx is a known

function of DR the strain rates _Eð�1=2Þ may be expressed in terms of DR by substituting (11) into

the following formula:

_Eð�1=2Þ ¼ PðU
�1

ÞDR � Dx U
�1

� U
�1

Dx

� �

: ð13Þ

When 2n is an integer (n = 0) the more complex index-free form of EðnÞ may be found by using

the relation _Eð1=2Þ ! _EðnÞ presented in [7, Chap. 3]. We shall not pursue this matter further here.

It is noted instead that the diagonal components of the tensor expressions EðnÞX� �X�EðnÞ on the

principal triad NK vanish for an arbitrary skew-symmetric tensor X�: Hence the normal components
�_EKKð1=2Þ ¼ �_UKK ðK !Þ on the principal triad NK are equal to _kK ;

�_UKK ¼ _kK ðK !Þ; and (13) implies
�DKK ¼ _kK=kK ðK !Þ that holds ‘‘regardless of rotational history’’ [1], [9]. The indicated property of the

above tensor expression enables also to present formally the kinematic relation (8) in the new form

_EðnÞ þEðnÞXðnÞ �XðnÞEðnÞ ¼ HðUnÞDR; tr _EðnÞ ¼ trðU2nDRÞ; ð14Þ

where XðnÞ is the skew-symmetric function of U and DR (linear in DRÞ: The non-zero components of

XðnÞ on principal triad NK are (K = L)

1 The arrays �EKL and �DKL are also the components of the Eulerian tensors eðnÞ ¼ HðRÞEðnÞ and D on the Eulerian

triad nK ¼ RNK representing the principal directions of the left stretch tensor V (F ¼ V R).
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�X
ðnÞ
LK
¼ �XLK �

2nkn
L
kn

K

ðk2n
K
� k2n

L
Þ
�DKL; �XLK �

2kLkK

ðk2
K
� k2

L
Þ
�DLK ð!K ;LÞ ð15Þ

such that Xð�1Þ ¼ 0 and limkK!kL
�X
ðnÞ
LK
¼ 0: The array �XLK represents the spin _NK �NK of the

Lagrangean triad, well determined provided that kK 6¼ kL [1].

The Eulerian counterpart of (14) is

_eðnÞ þ eðnÞxðnÞ � xðnÞeðnÞ ¼ HðVnÞD; ð16Þ

where the new family of ‘‘n-strain spins’’ xðnÞ is defined by

xðnÞ ¼ xþHðRÞ½XðnÞ � Dx� ð17Þ

and the components on the principal triad of Dx [cf. (11)] are D�xLK ¼ ðkL � kKÞ �DLK=ðkL þ kKÞ:
Since the components of XðnÞ and xðnÞ depend only on ratios of principal stretches the skew-

symmetric tensors XðnÞ and xðnÞ are unaffected by the dilatational part of the deformation. Because

of Xð�1Þ ¼ 0 the combination of the Eulerian counterpart of (11) with (16) leads to the index-free

form of the relations between D and the Zaremba–Jaumann derivatives of e(:1). They will not be

presented here. In the limit n ? 0 one arrives at the Lagrangean Xð0Þ and Eulerian xð0Þ

‘‘logarithmic’’ spins. The components of Xð0Þ on NK are (L = K)

�Xð0Þ
LK
¼ 2kLkK

k2
K
� k2

L

� 1

lnðkK=kLÞ

" #

�DKL ð!K ;LÞ; ð18Þ

and the components of xð0Þ can be found from (17),

�xð0Þ
LK
¼ �xLK þ

k2
K
þ k2

L

k2
K
� k2

L

� 1

lnðkK=kLÞ

" #

�DLK ð!K ;LÞ; ð19Þ

where �xLK are the components of the body spin x on the Eulerian triad nK :

The flux of any symmetric Eulerian tensor X defined by

DlogX

Dt
� _X þXxð0Þ � xð0ÞX ð20Þ

is called ‘‘logarithmic corotational rate’’. It is the linear function of D, which in general depends on

the selected reference configuration, except for X ¼ e(0) since Dlogeð0Þ=Dt ¼ D: This notion

together with the notion of logarithmic spin xð0Þ were introduced (by using different mathematical

routes) and advanced in numerous papers by Xiao et al. [10]–[12] (see also [13]).

When the principal components �Ed
K
ð0Þ of Ed (0) are small we have the following approximations

of kL=kK and the function g(x) occurring in (18):

kL

kK

� 1 ¼ �E
d

L
ð0Þ � �E

d

K
ð0Þ þ � � � ;

gðxÞ ¼ 2x

1� x2
þ 1

ln x
¼ 1

6
ðx� 1Þ þ � � � ;

ð21Þ

where x @ 1 represents the expression ðkL=kKÞ � 1: The expansion of �X
ð0Þ
LK

and �xð0ÞLK of such type

leads to the following approximate index-free forms of the expressions defining the logarithmic spins

Xð0Þ ¼ 1

6
Edð0ÞDR

d �DR

dEdð0Þ
� �

þO ½Edð0Þ�2
� 	

DR

d;

x� xð0Þ ¼ 1

3
edð0ÞDd �Ddedð0Þ
� �

þO ½edð0Þ�2
� 	

Dd;

ð22Þ

where Dd ¼ dev D.
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Hence

_Eð0Þ ¼ DR þOð½Edð0Þ�2ÞDR

d; ð23:1Þ
Deð0Þ
Dt

¼ _eð0Þ þ eð0Þx� x eð0Þ ¼ DþO ½edð0Þ�2
� 	

DR ð23:2Þ

on account of (14) and (16) specified for n ¼ 0. HereO is the usual order symbol, and the Zaremba–

Jaumann derivative is denoted by D=Dt: The approximation of _Eð0Þ by DR; and Deð0Þ=Dt by D is

close even for the moderate strain distortions [1].

(iii) Let us also recall two basic issues of the kinematics of embedded basis [14], [1]. Having known

all components (contravariant, covariant and mixed) of any tensor K on the deformed embedded

basis one can define four Lagrangean tensors by combining those components with the Lagrangean

reference basis [1]. The two induced by deformation tensors KðIÞ ¼ HðF
�1

ÞK and KðIIÞ ¼ HðF
T

ÞK are

symmetric2 and their rates define the contravariant dcK/dt and covariant dcK/dt time derivatives of the

Eulerian tensor K,

HðFÞ _K
ðIÞ ¼ HðFÞ

_

HðF
�1

ÞK
zfflfflfflffl}|fflfflfflffl{

¼ dc
K

dt
¼ _K � LK �KðL

T

Þ;

HðF
�T

Þ _KðIIÞ ¼ HðF
�T

Þ
_

HðF
T

ÞK
zfflfflfflffl}|fflfflfflffl{

¼ dcK

dt
¼ _K þ L

T

K þKL;

ð24Þ

where L ¼ _F F
�1

is the usual deformation-rate tensor. The relations (24) may be verified, of course, by

the direct time differentiation of KðIÞ and KðIIÞ or by using the join property (3.9, 10) of the operators H

and P. They hold also when F is an arbitrary orthogonal tensor, say F ¼R whereR
T

¼R
�1

: Then L

becomes the associated spin L ¼ _RR
T

: For K ¼ 1 the identity (24) reduces to (10.1).

b. Work-conjugate stress measures and their rates

(i) Let .R and . be the mass densities of m.e. in a reference and the actual configuration, respectively.

Denote by r the Cauchy’s stress and by s ¼ r=. the specific Kirchhoff stress. It differs from the

familiar Kirchhoff stress .Rs by a not important scalar multiplier .R: Use of s simplifies some

transformation formulas. Moreover, the tensor s does not require knowledge of any reference volume

of m.e. The incremental specific work dW (per unit of mass) is used to define the specific stress T (n)

work-conjugate to the selected strain measure E (n)3,

dW ¼ s �D dt ¼ sR �DR dt ¼ TðnÞ � dEðnÞ ¼ TðnÞ � _EðnÞdt: ð25Þ

The stress tensor sR � HðR
T

Þ s is induced from s by the polar rotation R. Therefore, its representation

�sKL on the Lagrangean triad NK is the same as the representation of s on the Eulerian triad nK ,

sR ¼
X

3

L;K¼1

�sKLNK �NL; s ¼
X

3

L;K¼1

�sKLnK � nL: ð26Þ

The general connection between T(n) and sR is found by substituting (9) into (25). Since the

resulting equality must hold for arbitrary DR we have

2 Some authors (see, e.g., [15]) employ the terminology ‘‘pull-back’’ and ‘‘push-forward’’ to the operations

fHðF
�1

Þ or HðF
T

Þg and their inverses, respectively. The time derivatives d
c

./dt and dc. /dt are frequently called ‘‘Lie

derivatives’’.
3 Hill employs the usual density-type work-conjugate .RT per unit of reference volume [1].
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TðnÞ ¼ EðnÞ
�1

sR; sR ¼ EðnÞTðnÞ: ð27Þ

Hence, to get more specific relations it is sufficient to replace _EðnÞ with sR; and DR with T(n), in all

relevant equations of Sect. 3.1a. In particular, the counterparts of (10) provide the familiar

definitions of the specific second Piola–Kirchhoff stress (n ¼ 1), Almansi stress (n ¼ @1) and Biot

stress (n ¼ 1/2),

Tð�1Þ ¼ HðU
�1

ÞsR ) s ¼ HðFÞTð1Þ ¼ HðF
�T

ÞTð�1Þ; ð28:1Þ

2Tð�1=2Þ ¼ PðU
�1

ÞsR ¼ PðU
�1

ÞTð�1Þ: ð28:2Þ

The index-free form of the inverse Tð�1=2Þ ! sR can be found in a similar manner as the inverse of

(10.2). The counterpart of (23.1) is the following approximation of T(0) by sR [1]:

Tð0Þ ¼ sR þO ½Edð0Þ�2
� 	

sR

d ðsR

d ¼ dev sRÞ: ð29Þ

More careful analysis of the relation (27) [cf. also (8)] shows that the principal directions of sR and s

are NK and nK ; respectively, provided that the principal directions of T(n) coincide with the

Lagrangean triad ð�TKL ¼ 0 for K 6¼ LÞ:
This property holds perpetually during deformations of an isotropic solid. Thus, for isotropic

solids the tensor sR may be regarded as the stress conjugate to the logarithmic strain measure.

A more detailed mathematical analysis of the work-conjugacy with E(0) can be found in [16]–[18].

(ii) The material derivative _TðnÞ is the direct flux of the conjugate TðnÞ: Its connection with _sR

depends on strain-rate and is not simple. The time differentiation of the relation such as (27) shows

that _TðnÞ is a linear function of _sR and _EðnÞ which depends also on the current strain state. The

general explicit index free form of this relation is also not available. The algorithm of the derivation

of the component-wise connection on the principal triad can be found in [1]. Here we shall single out

two known basic relations for n ¼ 1 and n ¼ @1. Denote by DðnÞr=Dt the following family

(parameter n) of Eulerian stress fluxes4 (cf. end of Sect. 3.1.c)

DðnÞr
Dt

¼ _rþ rx� xr� _.
.
r� nPðrÞD ¼ . ½ _sþ sx� xs� nPðsÞD �: ð30:1; 2Þ

The familiar connections between the rates _Tð�1Þ (specific second Piola–Kirchhoff T(1) and

Almansi T(@1) stress tensors) and stress-flux Dð�1Þr=Dt can be found by substituting K ¼ s into

(24) or by calculation the time derivative of (28.1)

HðFÞ _Tð1Þ ¼ dc s

dt
¼ 1

.
Dð1Þr
Dt

; HðF
�T

Þ _Tð�1Þ ¼ dc s

dt
¼ 1

.
Dð�1Þr

Dt
: ð31Þ

c. Special cases of confined deformations

(i) The simple explicit index-free form of the basic connections _EðnÞ , DR; TðnÞ , sR;

_sR , _TðnÞ can be found for special classes of restrictive strains. Consider first the situation when

strain distortion represented by the deviatoric part Ed(0) of the logarithmic strain measure is small.

In practice most of elastic–plastic materials (metal-like, rock-like and soil-like) do not sustain large

elastic distortions, therefore this case is of special interest when E(n) is identified with the elastic

strain measure in conjunction with the multiplicative decomposition of F (cf. Sect. 4.4.a).

4 Using the local mass balance expressed in the form � _.=. ¼ trD one can replace � _.=. occurring in (30) with trD.
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Adopting the common reference configuration, from Eq. (4) one deduces the following relation

between �EKðnÞ and �EKð0Þ:

1þ 2n �EKðnÞ ¼ exp½2n �EKð0Þ� ¼ J2n=3 exp½2n �E
d

K
ð0Þ�; ln J ¼ tr½Eð0Þ�: ð32Þ

The expansion of (32) with respect to small �Ed
K
ð0Þ under fixed J leads to the following relation

between E(n) and E(0):

EðnÞ ¼ U2n � 1

2n
¼ EvðnÞ þ J2n=3Edð0Þ½1þ nEdð0Þ� þO ½Edð0Þ�3

� 	

: ð33Þ

The second term on the right-hand side of this equation represents the approximation of J2n=3EDðnÞ
defined in (5). Calculating the time derivative of (33) and using the observation that
_Eð0Þ ¼ DR þO ½Edð0Þ�2

� 	

DR

d [cf. (23.1)] we find the approximate _EðnÞ , DR connections

J�2n=3 _EðnÞ ¼ DR þ nP½Edð0Þ�DR þO ½Edð0Þ�2
� 	

DR;

J2n=3 DR ¼ _EðnÞ � nP½Edð0Þ� _EðnÞ þO ½Edð0Þ�2
� 	

DR;
ð34Þ

and the work conjugacy implies the same connections between sR and T(n),

J�2n=3sR ¼ TðnÞ þ nP½Edð0Þ�TðnÞ þOð½Edð0Þ�2ÞTðnÞ; ð35:1Þ
J2n=3TðnÞ ¼ sR � nP½Edð0Þ�sR þOð½Edð0Þ�2ÞsR: ð35:2Þ

Now let us calculate the time derivative of (35.1) and neglect the terms of the order [Ed(0)]2,

J2n=3fI þ nP½Edð0Þ�g _TðnÞ ¼ _sR � nPðsRÞDR þO½Edð0Þ�sRDR

d: ð36Þ

To eliminate xR (occurring in the expression _sR ¼ R
T

_sþ sxR � xRs½ �RÞ note that U ¼ J1=3½Edð0Þþ
1� þO ½Edð0Þ�2

� 	

(substitute n ¼ 1/2 into (33)). If this last approximation is inserted into (12) then

the result is

DxU þUDx ¼ J1=3½Edð0ÞDR

d �DR

dEdð0Þ� þOð½Edð0Þ�2ÞDR

d: ð37Þ

Spins R
T

xR and R
T

xRR thus differ by first-order terms in Edð0Þ: Taking into account this observation

we find the following useful version of relation (36) that holds with an error of first-order in Ed(0):

J2n=3 _TðnÞ ¼ 1

.
HðR

T

ÞD
ðnÞr

Dt
; ð38Þ

where the one-parameter family of stress-fluxes DðnÞr=Dt is defined in (30).

(ii) We shall now consider the more restrictive situation encountered when the familiar first-order

updated Lagrangean technique is applied. Let the actual configuration of m.e. at a time t be adopted

as common reference configuration. Assume that the gradient of displacement G ¼ F � 1 describing

the shape and orientation of a m.e. at time t þ dt is a small quantity. In such case

EðnÞ ¼ OðGÞ; R ¼ 1þOðGÞ; J ¼ 1þOðGÞ; .R ¼ .þOðGÞ; ð39Þ

and from Eqs. (34), (35) and (38) we find that

dEðnÞ ¼ DdtþOðGÞ; ð40Þ

TðnÞ ¼ sþO Gð Þ; dTðnÞ ¼ 1

.
DðnÞr
Dt

dtþOðGÞ: ð41:1; 2Þ

Thus, all strain measures vanish, all strain rates coincide with D, all work-conjugate stresses

.TðnÞ match with the Cauchy’s stress r; and the family of direct fluxes . _TðnÞ reduces to the family
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(30) of stress fluxes with an error of the first-order in G: The equation of the type (41.2) provides the

physical interpretation of the Eulerian stress flux DðnÞr=Dt in terms of an infinitesimal variation of

Lagrangean work-conjugate T(n). In first-order updated Lagrangean mechanics the first term

occurring in the expansion (41.2) is substituted for the increment of T(n). Similar interpretations

concern those Eulerian quantities (of the rate type) which occur in the expansion of the increments of

some Lagrangean measures.

d. Generalized coordinates and generalized forces

In general, the knowledge of at most six variables, say q
i (i ¼ 1, 2,…, 6), is required to describe an

actual shape of homogeneously deformed m.e.. The array q
i may be regarded as ‘‘generalized

coordinates’’ in the abstract space of parallelepipeds.

The generalized specific pi (i ¼ 1, 2,…, 6) forces are defined by the incremental total work per

unit of mass,

dW ¼
X

6

i¼1

pidqi; ð42Þ

where dq
i denotes the incremental variation of the generalized coordinates. Here and in the sequel

we apply usual summation convention concerning the repeated indexes. When the notion of

Lagrangean strain is employed with EKL -components (on some fixed in a laboratory rectangular

basis) the generalized coordinates can be identified, for example, according to the following rule:

q
1 ¼ E11, q

2 ¼ E22, q
3 ¼ E33, q

4 ¼ 2 E23, q
5 ¼ 2 E13, q

6 ¼ 2 E12. Then the corresponding

elements of the array pi are

p1 ¼ T11ðnÞ; p2 ¼ T22ðnÞ; p3 ¼ T33ðnÞ; p4 ¼ T23ðnÞ; p5 ¼ T13ðnÞ; p6 ¼ T12ðnÞ:

The use of variables (qi, pi) is convenient in the discussion of most important aspects of the

invariance and they will be frequently applied in the further part of this paper.

3.2 Free energy and incremental state equations

Similarly as in Sect. (2) of [4], the state of an elastic–plastic m.e. at fixed temperature is assumed to be

described by current values of q
i (or pi, i ¼ 1, 2,…, 6) and by the current pattern of internal

rearrangement (PIR) symbolically denoted by H. Details concerning the physical character of H can

be found in the original papers of Rice [19]–[21], Hill and Rice [22], as well as in the numerous more

recent papers and books (c.f., e.g., [23]–[25, Chap. 8]) where further relevant references can be found.

We shall single out the following independent differentials of the symbolic functions Aðqi;HÞ and

Aðpi;HÞ

dAðqi;HÞ ¼ Aðqi þ dqi;HÞ � Aðqi;HÞ;
dAðpi;HÞ ¼ Aðpi þ dpi;HÞ � Aðpi;HÞ;

ð43Þ

dpAðqi;HÞ ¼ Aðqi;H þ dHÞ � Aðqi;HÞ;
dpAðpi;HÞ ¼ Aðpi;H þ dHÞ � Aðpi;HÞ:

ð44Þ

The differential dpA is interpreted as the isothermal ‘‘plastic part’’ of the total incremental change in

A: For example, in the case of rate-independent plastic materials the parameters H may change only

along those path segments of a process that lie on the yield surface. In general, d
p-variations of any

quantity can be effected only by strain or stress plastic cyclic process that is associated with an
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infinitesimal change in H. d-Differential represents the infinitesimal change in A in the course of an

elastic process.

When the elastic response is always of Green type then there exists the free energy function /

/ ¼ /ðqi;HÞ ð45Þ

such that

pi ¼
o/
oqi

: ð46Þ

Equation (46) defines the transformation from (qi, H)-space to the (pi, H)-space.

Provided that the unique solution qi ¼ q
�

iðHÞ of six algebraic equations q/=qq
i ¼ 0 exists,

without loss of generality the function / may be rearranged into the form5

D/ ¼ /� /0 ¼ /eðqi;HÞ þ /sðHÞ D/
qi¼q

�
iðHÞ ¼ /sðHÞ;








 ð47Þ

where q
�

i is a possible measure of permanent changes of an m.e. shape, /0 ¼ const is the free energy

in the thermodynamic reference state, /e (qi, H) is the specific elastic strain energy, and /s(H) is the

free energy stored in the m.e. in the course of prior plastic straining. By definition of /e we have

pi ¼
o/eðqk;HÞ

oqi
; /e qk¼q

�
k
¼ 0; piðq

�
k;HÞ ¼ 0:








 ð48:1; 3Þ

The total complementary energy �w
T
ðpi;HÞ and the elastic complementary energy @we(pi, H) are

defined by the Legendre transformation

w
T
ðpj;HÞ ¼ ð/e � piq

iÞ






qi¼qiðpj;HÞ; weðpj;HÞ � w
T
ðpj;HÞ þ piq

�
iðHÞ ð49:1; 2Þ

such that w ¼ w
T
þ /s þ /0 is the usual Gibb’s potential. The inverse of (48.1) is

qi ¼ � ow
T

opi

¼ � owe

opi

þ q
�

iðHÞ; owe

opi

¼ we ¼ 0 for pj ¼ 0: ð50:1; 2Þ

In the classical isothermal theory of plasticity it is presumed that in q
i-space (or in its dual pi-

space) there exists an elastic domain bounded by a yield surface. The elastic–plastic response of a

material to incremental deformation is usually written in the form

dpi ¼
1

.R
lijdqj þ dppi ¼

1

.R
lijðdqj � dpqjÞ ð51Þ

or in alternative form

dqj ¼ .Rmijdpi þ dpqj; ð52Þ

where

1

.R
lijd

pqj ¼ �dppi: ð53Þ

Here lij ¼ lji and m
ij ¼ m

ji are generalized coefficients of isothermal elastic stiffness and

compliances (mij
ljk ¼ di

k). When (46) holds they are defined by

5 The macroscopic internal variables representing PIR need not to be the same in /s and /e. The relevant examples can

be found, e.g., in [24].
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1

.R
lij ¼

o2/
oqioqj

¼ o2/e

oqioqj
; .Rmij ¼ oqi

opj

¼ � o2w
T

opiopj

¼ � o2we

opiopj

: ð54Þ

The plastic parts d
p
pi and d

p
q

i occurring in Eqs. (51) and (52) are the components of the additive

decomposition of dpi and dq
i, respectively. They are usually specified by the plastic flow rule (not

necessary rate independent) and become non-zero when an appropriate condition for the plastic

loading process is satisfied, otherwise d
p
qi ¼ 0 and the response is purely elastic,

dpi ¼
1

.R
lijdqj; dqj ¼ .Rmjidpi: ð55Þ

The relation (52) is sometimes regarded as the ‘‘kinetic’’ equation that defines operationally d
p
q

i in

an infinitesimal loading–unloading stress cycle. However, the transformation rule for d
p
q

i presented

in the next Section proves that such a concept is not coordinate-invariant.

By calculating the p-differential of Eqs. (46) and (50) one may furnish the following energy-

interpretation of d
p
pi and d

p
q

i:

dppi ¼
oðdp/Þ

oqi
; dpqi ¼ � oðdpw

T
Þ

opi

¼ dq
�

iðHÞ � o½dpweðpj;HÞ�
opi

: ð56:1; 2Þ

Note that the incremental relations (51) can formally be derived by a calculation of the (q, H)-total

differential of (46). Likewise the relation (52) is the (p, H) total differential of (50.1), whereas the

p-differential of (49) results in the basic identities

dpw ¼ dp/) dp/e ¼ dpw
T
jpi¼piðqj;HÞ¼ ½dpwe � pidq

�
i�pi¼piðqj;HÞ: ð57Þ

Note also that the identity (53) can be obtained by calculation of the partial derivative of (57.1) with

respect to q
i.

The plastic increment of the free energy /, when taken with the negative sign, @d
p/, represents

an incremental variation of the energy dissipation dD [3], [19]

dD ¼ �dp/ ¼ �dp/e � d/sðHÞ	 0, dD ¼ �dpw ¼ �dpw
T
� d/sðHÞ	 0 ð58Þ

provided that pi is regarded as an equilibrium force. The semi-positive definiteness of dD is implied

by the second law of classical thermodynamics.

Denote by p the thermodynamic force energy conjugate to H, d
pw ¼ d

p/ ¼ @pdH, and suppose

that dH/dt admits the energy dissipation potential D
*(p, H), dH/dt ¼ qD

*/qp. Then d
p
q

i and d
p
pi

posses also the potentials

dH

dt
¼ oD�ðp;HÞ

op
) dpqi ¼ oDp

opi

dt; dppi ¼ �
oDq

oqi
dt; ð59Þ

where

Dpðpi;HÞ � D�½pðpi;HÞ;H�; Dqðqi;HÞ � D�½pðqi;HÞ;H�

on account of (56). This is one of the crucial issues of H–R theory of inelasticity. The potential

D
*(p, H) and related constitutive equations (59.1) for dH were employed by numerous authors (cf.,

e.g., [15], [26]).

In what follows we shall also use the notation

ðdWÞp � piðqk;HÞdpqi ¼ �pi

oðdpw
T
Þ

opi

¼ pidq
�

i � oðdpw
e
Þ

opi

pi ð60Þ

On the incremental plastic work and related aspects of invariance: Part II 89



to denote the ‘‘plastic’’ increment of the total work resulting from the additive decomposition of the

infinitesimal displacement dq
i into plastic d

p
q

i and elastic dq
i @ d

p
q

i parts. The increment (dW)p

should carefully be distinguished from the invariant infinitesimal work dW
p of plastic deformation

which will be defined in Sect. 3.4.

3.3 Basic transformation rules under a change of generalized coordinates

(i) Consider the situation when two observers take two different strain measures, say f1 and f, and

two different reference configurations jR

1 and jR to define the selected strain. If the constant tensor A

transforms jR into jR

1 then the deformation tensor transforms according to F ¼ F1A. From the polar

decomposition of both F and F1 one gets U2
1 ¼ ðA

�T

U2 A
�1

Þ and according to the definition (4) we

have

E ¼ f ðUÞ; E1 ¼ f 1ðU1Þ ¼ f 1 A
�T

U2 A
�1

� �1=2
" #

: ð61Þ

Thus, there must exist the geometrical relation between E1 and E [regard U in (61) as tensorial

parameter]

E1 ¼ WðE;AÞ: ð62Þ

When A ¼ 1 (common reference configuration) the component-wise relation on the principal triad

between two different strain measures E(n1) and E(n) is [cf. (4)]

½1þ 2n1
�EKðn1Þ�2n ¼ ½1þ 2n�EKðnÞ�2n1 : ð63Þ

The index-free form (33) of approximate relation is the another example of the connection (62).

More generally, the analogue of (62) written in terms of generalized coordinates

qa ¼ qaðqiÞ; qi ¼ qiðqaÞ ð64Þ

may be interpreted as transformation of generalized coordinates in the abstract space of

parallelepipeds. The generalized coordinates denoted by q
a (a ¼ 1, 2,…,6) are regarded as

‘‘new’’ coordinates. The array q
i (i ¼ 1,2,…, 6) thus is treated as ‘‘old’’ generalized coordinates. We

adopt here the early convention that the symbols furnished with the Latin and the Greek indexes

represent different arrays of numbers.

The infinitesimal displacements dq
i and dq

i are the prototypes of the contravariant vectors in the

abstract space of shapes of m.e.. Their transformation rules are the same and follow directly from

(64) (i, j, a, b ¼ 1, 2,…,6)

dqa ¼ Qa
i dqi; dqa ¼ Qa

i dqi ) dqj ¼ Qj
adqa; dqj ¼ Qj

adqa ð65:1�3Þ

where

Qa
i �

oqa

oqi
; Qj

a �
oqj

oqa
; Q

b
j Qj

a ¼ db
a ; Qj

aQ
a
i ¼ dj

i; det Q 6¼ 0: ð66Þ

During any infinitesimal strain cycle the net increment of a strain vanishes, no matter whether

the process is associated with dH ¼ 0 or not. The transformation rules (65) are such that

dq
i ¼ 0 ) dq

a ¼ 0, and dq
i ¼ 0 ) dq

a ¼ 0. Hence, one concludes that the notion of an

infinitesimal strain cycle is the invariant concept.

The incremental work (42) is the prototype of the invariant under the change of generalized

coordinates. Hence,

90 B. Raniecki et al.



pidqi ¼ padqa ) pa ¼ Qj
apj ð67:1; 2Þ

i.e., pi is an example of the covariant ‘‘vector’’. Since pi ¼ 0 implies pa ¼ 0 we conclude that the

notion of a stress cycle that starts and terminates at stress-free state is the invariant concept. As

remarked in Part I [4] we additionally take for granted that the incremental energy dissipation (58) is

also invariant,

�dp/	 0 dp/ðqa;HÞ ¼ dp/ðqi;HÞ






qi¼qiðqaÞ 	 0 ð68Þ

Differentiation of (68) with respect to q
a shows that the transformation rules of pi and d

p
pi are the

same,

dppa ¼ Qi
ad

ppi: ð69Þ

The above relation proves also the invariance of a plastic flow rule, provided it is specified for d
p
pi.

This rule in combination with Eqs. (51)–(55) and (65) yields the following bilinear differential

invariants:

dqidppi ¼ �dpid
pqi ¼ dqidpi � dpidqi; dqidppi ¼ ðdppi � dpiÞdpqi: ð70Þ

The invariance property of the differential forms (70) was proved by Hill [1] in a more general

situation when the potential / does not exist.

(ii) The transformation rules for the increment of pi (the counterpart of a stress rate in physical

space) and for the tangent elastic moduli are more involved. Differentiation of (67.2) leads to the

following formulas:

dpa ¼ Qj
a½dpj � Q

b
ijpbdqi� ¼ Qj

a½dpj � Ck
ijpkdqi�;

dpa ¼ Qj
a½dpj � Q

b
ijpbdqi� ¼ Qj

a½dpj � Ck
ijpkdqi�;

ð71Þ

where

Q
b
ij ¼

o2
qb

oqioqj
; Ck

ij ¼ Qk
bQ

b
ij: ð72Þ

As remarked in Part I [4], in general Q
b
ij = 0 and dpj ¼ 0 does not imply dpa ¼ 0. Therefore the

closed infinitesimal cycle in pi does not necessary close the infinitesimal cycle in pa until it starts and

ends at stress-free state. Thus, the notion of infinitesimal cycle in work-conjugate generalized forces

(or stresses) is not an invariant concept. Hence, the partitioning (52) of incremental strain into

elastic and plastic parts is also not an invariant concept [27]. The complex transformation rule for

d
p
q

i is presented in the formula (77).

Now we substitute dpa ¼ labdqb=.R

1 and dpj ¼ ljidqi=.R into (71.1) and arrive at the following

transformation rule for the tangent elastic moduli [1]:

1

.R

1

lab ¼ Qi
a

1

.R
lij � Ck

ijpk

� �

Q
j

b;
1

.R
lij ¼

1

.R

1

Qa
i labQ

b
j þ Q

b
ijpb; ð73:1; 2Þ

where .R

1 and .R are mass densities of the m.e. in ‘‘new’’ and ‘‘old’’ reference configurations. From

(73) it follows that the symmetry of elastic moduli is preserved under the transformation (64) [1].

However, neither the elastic linearity nor the positive definiteness of the moduli are the invariant

constitutive properties.

(iii) Consider rate-independent behavior and denote by l
e�p

ij the tangent moduli measured during

active elastic–plastic yielding [cf. (51)],
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dpi ¼
1

.R
l
e�p

ij dqj , dppi ¼ �
1

.R
ðlij � l

e�p

ij Þdqj: ð74:1; 2Þ

The transformation rule for l
e�p

ij is the same as for lij [cf. (73)] on account of (71). The condition

det{l
e�p

ij } ¼ 0 distinguishes the special states where infinitesimal strains can be generated under

stationary work-conjugate stresses. Such states and admissible differential deformations are called

by Hill [27] ‘‘eigenstates’’ and ‘‘eigenmodes’’, respectively. Suppose that detfle�p

ab g ¼ 0 for a

particular choice of work-conjugate couple (pa, q
a). From the transformation rule for fle�p

ab g ¼ 0

[an analogy of (73)] it follows that so determined eigenstates will manifest themselves at states

where

det l
e�p

ij � .RCk
ijpk

n o

¼ 0 ð75Þ

for an other choice, say (pi, q
i) of work-conjugate couple. A one-dimensional illustration of (75) is

given in Part I [4].

Return to (74.2) and note that due to (69) and (65.2) the notion of ‘‘relative tangent moduli’’

lij @ l
e�p

ij is an invariant concept [27] since

1

.R

1

ðlab � l
e�p

ab Þ ¼
1

.R
Qi

aðlij � l
e�p

ij ÞQ
j

b: ð76Þ

(iv) The transformation rule for the plastic part of the increment of q
i can be deduced from (53)

written for old and new measures. Using (69) and (73) one can eventually find

dpqa ¼ .R

1

.R
Q

j

blijm
badpqi ¼ Qa

i dpqi þ .R

1mabQ
j

bC
k
jipkdpqi: ð77Þ

To find the inverse it is sufficient to change in this formula Latin indexes into the Greek one and vice

versa, and to interchange .R

1 with .R:

The formula (77) is identical with Hill’s [27] transformation rule for the outward normal to the

yield surface in pi-space. As remarked in Part I [4], the fact that the transformation rules for dq
i and

d
p
q

i are different justifies the Rice statement [19] that physical dimension change of the m.e.

corresponding to the plastic strain increment is dependent on the choice of the strain measure

and reference configuration. Let (dW)p and ðdWÞ1p be the works expended on d
p
q

i and d
p
q

a,

respectively,

ðdWÞp ¼ pid
pqi; ðdWÞ1p ¼ pad

pqa: ð78Þ

We substitute (77) into (78) and note that the so defined incremental work is not invariant, ðdWÞ1p =

(dW)p,

ðdWÞ1p ¼ ðdWÞp þ .RCk
mjQ

m
a mjipipkdpqa: ð79Þ

Therefore, in general, (dW)p cannot be regarded as rigorous measure of that increment of external

work which must be irreversibly done to cause permanent changes in physical dimensions of m.e.

Both formulas (77) and (79) are independent of the physical nature of the plastic flow. The ratio

ðdWÞ1p/(dW)p differs from unity only by a small factor which is of the order of generalized stress

divided by the typical value of elastic moduli. It can also be shown that although

dpw
T
þ dp/s ¼ dp/ is the example of the invariant quantity, neither the total complementary

energy w
T

itself nor its elastic counterpart we [cf. (49)] are invariants under change of the generalized

coordinates q
i. Finally note that if in the physical space one adopts the common reference

configuration then q
a and q

i have common origin q
a ¼ q

i ¼ 0, and moreover Qa
i jqi¼0 ¼ da

i :
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3.4 Invariant incremental plastic work

Let us consider a strain-cycle consisting of the following three stages (Fig. 1):

(a) the elastic unloading from a state A(qi, H) to a stress free state A�½q� iðHÞ;H�

(b) in elastic–plastic loading–unloading stress cycle from the stress-free state A
* through B and C

to the other stress-free state C�½q� iðH þ dHÞ;H þ dH�

(c) elastic loading from the state C
* to the state A1(qi, H þ dH).

Since pidq
i ¼ d/e @ d

p/e along B @ C, pidq
i ¼ d/e along other segments (elastic

behavior) of the considered deformation path, and /e(C
*) ¼ /e(A

*) ¼ 0, the net work done in

a transitional stress cycle A
* @ B @ C @ C

* is

I

pi¼0

pidqi ¼ �
Z

C

B

dp/e; ð80Þ

and the difference between this work and the work expended in the whole considered strain cycle

becomes
I

pi¼0

pidqi �
I

qi

pidqi ¼ �dp/eðqi;HÞ: ð81Þ

It holds for all states (qi, H) in the elastic domain and on its border (yield surface). A one-

dimensional graphical illustration of (81) is presented in Part I [4]. The generalized coordinates

q
�

iðHÞ and q
�

iðH þ dHÞ shown in Fig. 1 correspond to the permanent strains in stress-free states

(pi ¼ 0, H) and ðpi ¼ 0;H þ dHÞ; respectively. The work-interpretation (80) constitutes the

basis for the definition of the invariant incremental plastic work dW
p per unit of mass [cf. also

(57)],

dWp � �dp/eðqi;HÞ ¼ �dpw
T
¼ pidq

� i � dpwe: ð82Þ

The definition (82) concerns all those rate-dependent and rate-independent model materials that

behave elastically in a vicinity of stress-free states, and for which it is possible to construct a strain

C

C

1

p = 0, q (H)

H + dH 

H

q i

yield surface

A p = 0, q (H+dH)i
i

i
i

B

H = 0 
.

H = 0 
.

elastic domain

*

*

*
*

(q ,H)

(q ,H+dH)A

A

i

i

Fig. 1. Work-interpretation of basic

invariants
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energy function /e including materials displaying a degradation of elastic properties. The invariant

plastic work dW
p plays a role of the potential for d

p
pi,

dppi ¼ �
oðdWpÞ

oqi
; ð83Þ

on account of (56.1). In the course of plastic yielding we have

dW ¼ d/e � dp/e ) dW � dWp ¼ dWe; dWe � d/e: ð84Þ

The total incremental work dW is additively partitioned into the invariant incremental elastic work

dW
e ¼ d/e and the invariant incremental plastic work dW

p. As remarked in Sect. 3.2 [cf. (58)] in

classical thermodynamics of elastic–plastic materials, the incremental energy dissipation dD is equal

to @d
p/, provided that the total strain is regarded as the state parameter. The d

p-differential of (47)

in combination with (82) shows that the difference between dD and the invariant incremental plastic

work dW
p is the total differential of the stored free energy,

d/sðHÞ ¼ dWp � dD: ð85Þ

Under the common assumption that the configurational entropy is negligible, the stored free energy

represents (in the course of isothermal processes) the difference between the invariant plastic work

and the heat exchanged with the surrounding. The energy /s is thus a measurable quantity. The

experimental results such as reported, e.g., in [28], [29] should be accounted for when proposing the

specific form of /s.

In passing we note that [cf. (81)]

d
I

pi¼0

pidqi ¼ 0) d
I

qi

pidqi ¼ dðdp/Þ ¼ dqidppi ð86Þ

because the first integral is a function of H alone. This is the work-interpretation of bilinear

differential invariants (70) deduced by Hill [2] with use of the other physical arguments. It does not

provide, of course, the basis for the definition of invariant incremental plastic work.

3.5 Examples of transformation rules in tensor notation

(i) In the total Lagrangean description (fixed reference configuration) the complementarities of the

incremental constitutive relations (51) and (53) derived from the free energy /[E(n), H] are

dTðnÞ ¼ 1

.R
LKRðnÞdEðnÞ þ dpTðnÞ ¼ 1

.R
LKRðnÞ½dEðnÞ � dpEðnÞ�;

dpEðnÞ ¼ �.RMKRðnÞdpTðnÞ; MKRðnÞ ¼ LKR

�1

ðnÞ;
ð87Þ

where LKRðnÞ is the tensor of Lagrangean tangent moduli of elasticity, defined in the reference

configuration jR:

To find the symbolic form of transformation rules under a change of strain measure, for the

quantities occurring in (87), first write Eq. (9) for two different exponents, say n1 (new measure) and

n (old measure) and eliminate DR from the obtained equations. The results may be presented in

symbolic form as

_Eðn1Þ ¼ Qðn1;nÞ _EðnÞ ; Qðn1;nÞ ¼ Eðn1Þ EðnÞ
�1

¼ oEðn1Þ
oEðnÞ : ð88Þ

The fourth-order tensor Q(n1,n) [the counterpart of Q
a
i– cf. (65)] has the following properties:

94 B. Raniecki et al.



Q
T

ðn1;nÞ ¼ Qðn1;nÞ ; Q
�1

ðn1;nÞ ¼ Qðn;n1Þ ; Qðn;nÞ ¼ I; ð89:1�3Þ
Qðn1;n2ÞQðn2;n3Þ ¼ Qðn1;n3Þ; ð89:4Þ

where (89.2) may be regarded as a ‘‘chain rule’’. The components of Q on the principal triad NK may

be obtained by elimination of �DKL between two equations of the type (8) written for n and n1. The

simple index-free form is available only for special situations, e.g., Qð1; 1=2Þ ¼ 0:5 PðUÞ;
Qð�n;nÞ ¼ HðU�2nÞ provided that 2n (n = 0) is an integer (cf. [7, Chap. 3]). The operators P

and H are defined in (1), (2). Next calculate the derivative of (88.2) to determine the sixth-order

pairwise symmetric tensor Qðn1;nÞÞ [the counterpart of Q
a
ij – cf. (72)]

QIJKLMNðn1;nÞ �
o2

EIJðn1Þ
oEKLðnÞoEMNðnÞ

¼ oQIJKLðn1;nÞ
oEMNðnÞ

;

_Qðn1;nÞ ¼Qðn1;nÞ½j : ; _EðnÞj�
ð90Þ

and define the sixth-order tensor Cðn1;nÞ [the counterpart of Cij
k – cf. (72)]

CIJKLPQðn1;nÞ ¼QIJKLMNðn1;nÞQMNPQðn;n1Þ ð91Þ

which has pairwise symmetry with respect to the first two pairs only. The components ofQðn=2; 1=2Þ
on the principal triad NK can be found in [7, Chap. 3]. The symbolic forms of transformation rules in

the physical space are [counterparts of (67.2), (69), (71), (73.2), (77)]

Tðn1Þ ¼ Qðn;n1ÞTðnÞ ; dpTðn1Þ ¼ Qðn;n1ÞdpTðn1Þ;
Qðn;n1ÞdTðn1Þ ¼ dTðnÞ �Qðn1;nÞ½jdEðnÞ;Tðn1Þj� ,
Qðn1;nÞdTðnÞ ¼ dTðn1Þ � Cðn1;nÞ½jdEðnÞ;TðnÞj�;
ð1=.RÞLKRðnÞ ¼ ð1=.RÞQðn1;nÞLKRðn1ÞQðn1;nÞ þQðn1;nÞ½jTðnÞ; : j�;
dpEðn1Þ ¼ Qðn;n1ÞdpEðnÞ þ .R MKRðn1ÞQðn;n1ÞCðn1;nÞ½jdpEðnÞ;TðnÞj�:

ð92Þ

(ii) If the current configuration is chosen to be the common reference configuration then the first-

order incremental relations may be written in terms of their rate counterparts

DðnÞ r
Dt

¼ LðnÞDþDp r

Dt
¼ LðnÞ ½D�DpðnÞ�;

DpðnÞ ¼ �MðnÞDp r

Dt
; MðnÞ ¼ L

�1

ðnÞ
ð93Þ

on account of (41.2). Here LðnÞ are first-order instantaneous tangent moduli of elasticity. The first-

order plastic increment of the specific conjugate stress is formally written in the form

ðdt=.ÞDpr=Dt: The transformation rules under a change of strain measure in this case are

relatively simple since all strain increments coincide with Ddt, and all specific conjugate stresses

match with s: Hence, all plastic increments of conjugate stresses Dpr=Dt also coincide (are

independent of n), i.e., Q(n,n1) ¼ I (Qa
i ¼ da

i). The transformation rule for stress increments (stress

rates) follows directly from (30.1) and (41.2),

1

.
Dðn1Þr

Dt
¼ 1

.
DðnÞr
Dt
� ðn1 � nÞPðsÞD; ð94Þ

which impliesQðn1;nÞ½j : ; sj� ¼ Cðn1;nÞ½j : ; sj� ¼ ðn1 � nÞPðsÞ: The counterparts of (73), (77) and

(79) are

Lðn1Þ ¼ LðnÞ � ðn1 � nÞPðrÞ ; Dpðn1Þ ¼ fI þ ðn1 � nÞMðn1ÞPðrÞgDpðnÞ
ðdWÞ1p � ðdWÞp ¼ ðn1 � nÞ s �Mðn1ÞPðrÞDpðnÞ;

ð95Þ

where P is defined in (1). Thus, even within this approximation (dW)p is not invariant.
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(iii) When the strain measure is fixed and the reference configuration jR is changed into jR

1 by

mapping A [set f ¼ f1 in (61)], the simple index-free form of transformation rules for unrestricted

strains is available only for Green (n ¼ 1) or Almansi (n ¼ @1) strain measures. In this case the

function W occurring in (62) is linear. The transformation quantities Qi
ab;C

k
ij [cf. (71)–(72)] and their

counterparts in the physical space vanish.

The familiar rules for Green strain measure are

E1ð1Þ ¼ HðA
�T

ÞEð1Þ þ 0:5 ðA
�T

A
�1

� 1Þ;

dE1ð1Þ ¼ HðA
�T

ÞdEð1Þ; T1ð1Þ ¼ HðAÞTð1Þ;

dT1ð1Þ ¼ HðAÞdTð1Þ; 1

.R

1

L
KR

1 ð1Þ ¼
1

.R
HðAÞLKRð1ÞHðA

T

Þ;

dpT1ð1Þ ¼ HðAÞdpTð1Þ; dpE1ð1Þ ¼ HðA
�T

ÞdpEð1Þ;

ð96Þ

where the subscript ‘‘1’’ denotes tensorial quantities defined in the reference configuration jR

1:

If the current configuration j(t) is identified with jR

1 then the substitution .R

1 ¼ . and A ¼ F(t)

into (96) links the instantaneous quantities occurring in (93) with the one defined in the arbitrary

fixed Lagrangean configuration jR for n ¼ 1 (Green strain measure)

E1ð1Þ ¼ 0; Ddt ¼ HðF
�T

ÞdEð1Þ ; s ¼ HðFÞTð1Þ;
1

.
Dð1Þr
Dt

dt ¼ HðFÞdTð1Þ ; 1

.
Lð1Þ ¼ 1

.R
HðFÞ LKRð1ÞHðF

T

Þ;

1

.
Dp r

Dt
dt ¼ HðFÞdpTð1Þ ; Dpð1Þdt ¼ HðF

�T

Þ dpEð1Þ:

ð97Þ

The same connections may also be obtained by application of the ‘‘push-forward’’ technique based

on (24).

The updated Lagrangean tangent moduli Lð1Þ associated with the Green measure are related to

LKRð1Þ; defined in a fixed reference configuration jR; in the linear fashion. It is also worthwhile to

note that in this case ðdWÞ1p ¼ s �Dpð1Þdt ¼ ðdWÞp ¼ Tð1Þ � dpEð1Þ: However, in general

neither product represents the invariant (true) plastic work even in the case of materials with the

elastic properties insensitive to prior plastic straining.

The similar simple transformation rules valid for unrestricted strains can also be found for the

Almansi strain measure (n ¼ @1).

4 Eckart–Mandel theoretical framework

4.1 Elementary connections between H–R and E–M approaches in terms of generalized

coordinates

(i) Within this familiar framework (cf., e.g., [30], [31]) one employs the conceptual instantaneous

unloaded configuration, say j*(t), such which m.e. would have attained had the surface tractions

been instantaneously reduced to zero (at the instant t) keeping all internal variables H constant. This

operational definition does not impose any restriction on the orientation of the unloaded m.e. in the

space (the laboratory), hence the unloaded configuration is defined with the accuracy to the rigid

body rotation. The concept is associated with the multiplicative decomposition of the deformation

tensor F ¼ FeFp. The total deformation tensor F maps some fixed reference configuration jR of m.e.

into the actual one j(t) (mass density .ðtÞÞ; the ‘‘permanent deformation’’ Fp maps jR into j*(t)
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(mass density .�ðtÞÞ; whereas Fe maps j*(t) into j(t). Both Fe and Fp are defined within the

accuracy to a rigid body rotation, say R ðRRT ¼ 1Þ; i.e., both FeFp and ðFeRÞ; ðRTFpÞ are

admissible multiplicative decompositions of F. The aspects of the solid mechanics discussed in the

further part of this paper are valid for any choice of R; therefore R will not be specified here. In

passing we recall that the strain counterpart E*(n) of the generalized measure of permanent changes

in m.e. shape q
� i

(Sect. 3.2) can be identified with any member of the permanent strain family

2nE�ðnÞ ¼ ðUpÞ2n � 1; Fp ¼ RpUp ð98Þ

which is independent of R: The basic inconvenience in a direct application of E*(n) and _E�ðnÞ is

that their experimental determination requires the knowledge of m.e. dimensions in a certain past

reference configuration.

The description of the actual shape and orientation of an m.e. in j(t) within the E–M theoretical

framework is made relative to a moveable reference configuration j*(t). Therefore, the associated

description of m.e. properties may be referred to as ‘‘mobile Lagrangean description’’. The motion of

j*(t) is governed by the plastic flow rule, and Fp depends on structural changes associated plastic

deformation, i.e., Fp ¼ Fp(H). In particular det(Fp) ¼ J
p(H) and the mass density .� in j*(t) may

also be influenced by prior plastic straining, .�ðtÞ ¼ .�½HðtÞ�: The state of m.e. in j*(t) is called ‘‘the

instantaneous natural state’’ [3].

The familiar kinematic quantities implied by the multiplicative decomposition of F are: the total

L, elastic Le and permanent L* deformation-rate tensors

L ¼ F
:

F
�1

; Le ¼ Fe
:

Fe
�1

; L� ¼ Fp
:

Fp
�1

; Lp � FeL�Fe
�1

; ð99:1�4Þ

The Eulerian permanent deformation-rate tensor Lp is the component of the additive decomposition of

L, i.e., L ¼ Le þ Lp. The fundamental role plays the known Eulerian elastic strain rate De, Eulerian

measure of the permanent strain-rate Dp and Eulerian measure xp of the rotation of j*(t) defined by

2De ¼ Le þ Le
T

; 2Dp ¼ Lp þ Lp
T

; D ¼ De þDp; 2xp ¼ Lp � Lp
T

: ð100:1�4Þ

Similarly as L, the elastic deformation-rate tensor Le is independent of a reference configuration in

the sense that Le does not change when Fe A is substituted for Fe (A ¼ const, detA = 0). In

particular, on purely kinematical grounds we have Le ¼ L in all those time periods when
_F

p ¼ 0 ðL� ¼ Lp ¼ 0Þ: It is also worthwhile to emphasize that trLp ¼ trDp ¼ trL� ¼ _Jp=Jp is the

proper measure of the rate of permanent dilatational changes of m.e. in the stress-free state. The

increment Dp
dt should be carefully distinguished from the plastic part of any total strain increment

defined within the H–R formalism (Sect. 3.2). In particular, the increment DpðnÞdt defined in the

vicinity of the current configuration [cf. (93)] is in general not equal to Dpdt: The exploration of the

relation between DpðnÞ and Lp is therefore meaningful (see Sect. 4.4).

(ii) To find the formal connection between the total Lagrangean description used in Sect. 3 and the

mobile Lagrangean description let us identify F1, A and U1 occurring in (61) and (62) with Fe, Fp

and Ue (Fe ¼ ReUe), respectively. Let us also identify the ‘‘new’’ strain E1 with the elastic strain

measure Ee(n*) (n1 ¼ n
*) belonging to the family (4). The relation (62) may then be rewritten in the

symbolic form

Eeðn�Þ ¼ W½EðnÞ; FpðHÞ� ¼ W1½EðnÞ;H�; ð101Þ

where W1 depends on the parameter n and n
* what is not explicitly marked in (101), and we have

W1½E�ðn�Þ;H� ¼ 0 [cf. (98)]. The relation between the elastic strain and total strain depends on the

internal state of m.e. through the dependence of Fp on H. More generally, the counterpart of (101)

written in terms of generalized coordinates
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qa ¼ qaðqi;HÞ; qi ¼ qiðqa;HÞ; qaðq� i;HÞ ¼ 0; qið0;HÞ ¼ q
� i ð102:1� 4Þ

may be regarded as a transformation from fixed to moveable coordinates in the six-dimensional

space. The array q
a describes the actual shape of m.e. relative to its shape in the mobile unloaded

configuration j*. It is therefore the counterpart of the elastic strain.

During elastic infinitesimal processes dH ¼ 0, whence the transformation rules for dq
i presented in

(65) do not change. However, when dH = 0 the transformation rule for dq
i is different from (65),

dqa ¼ Qa
i dqi þ dpqa; dqi ¼ Qi

adqa þ dhqi; ð103:1; 2Þ
dhqi þ Qi

ad
pqa ¼ 0; dpqa þ Qa

i dhqi ¼ 0; ð103:3; 4Þ

where the array Qa
i and its inverse Qi

a are defined in (66). The new differential dhA of a property A
can be applied only when A is expressed in terms of new coordinates q

a representing the elastic

strain or in terms of its energy-conjugate pa [cf. (106)]. It has the following meaning:

dhA ¼ Aðqa;H þ dHÞ � Aðqa;HÞ;
dhA ¼ Aðpa;H þ dHÞ � Aðpa;HÞ:

ð104Þ

The meaning of d
p-differentials remains unchanged [cf. (44)]. The identities (103) are implied by the

mapping (102).

(iii) The specific free energy / ¼ /0 þ /e(q
i, H) þ /s(H) and the elastic strain energy /e(q

i, H)

(cf. Sect. 3.2) are invariant under the coordinate transformation (102)

/eðqi;HÞ ¼ /eðqa;HÞ






qaðqi ;HÞ: ð105Þ

This is one of the basic formulae that link H–R and E–M theoretical frameworks. In practice, the

function /e(q
a, H) is of primary importance. The elastic strain can be measured in the course of

unloading, and its experimental determination does not require knowledge of the physical dimensions

of m.e. in any past reference configuration. The application of d @ differential to (105) yields

d/e ¼ pidqi ¼ padqa; ð106:1Þ

pa ¼ Qi
api ¼

o/e

oqa
; pi ¼ Qa

i pa; ð106:2; 3Þ

where /e ¼ q/e/qq
a ¼ 0 for q

a ¼ 0 on account of (48.2, 3) and (102.3, 4). The new force pa is

the energy-conjugate to the elastic-coordinates q
a. Note that the dual potential wð1Þe ðpa;HÞ

defined by

wð1Þe ðpa;HÞ ¼ /eðqa;HÞ � paq
a ) qa ¼ � owð1Þe

opa
; wð1Þe ¼

owð1Þe

opa
¼ 0 for pa ¼ 0 ð107:1�3Þ

has a different physical meaning than we defined in (49.2) (Sect. 3.2).

Consider a non-elastic infinitesimal process dH = 0 and calculate the d @ differential of (105).

The total incremental work dW, the invariant incremental elastic work dW
e ¼ d/e, and the

invariant incremental plastic work dW
p ¼ @d

p/e(q
i,H) [cf. (82) and (84)] are expressed within

E–M theoretical framework in terms of pa, q
a as follows:

dW ¼ pidqi ¼ dWe þ dWp ¼ padqa þ pid
hqiðqa;HÞ; pid

hqi ¼ Qa
i pad

hqi; ð108Þ

dWe ¼ padqa þ dh/eðqa;HÞ; dWp ¼ pid
hqi � dh/e ð109Þ
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on account of (103.2) and (106.2). The expression (85) for the incremental energy dissipation

dD ¼ @d
p/(qi, H) becomes

dD ¼ dWp � d/sðHÞ ¼ pid
hqi � dh/e � d/sðHÞ	 0: ð110Þ

The relations (109) and (110) are the other examples of basic connections between H–R and E–M

formalisms. It is seen that during plastic yielding (dH = 0) the incremental elastic work dW
e is not

equal to padq
a unless the elastic properties of a material are not influenced by prior plastic straining.

The incremental form of (106.2) and (107.2) at plastic yielding is

dpa ¼
1

.�0
labdqb þ dhpaðqg;HÞ , dqa ¼ .�0mabdpb þ dhqaðpg;HÞ;

labmbc ¼ dc
a; dhpaðqa;HÞ ¼ � 1

.�0
labdhqbðpg;HÞ:

ð111Þ

Here .�0 is a a certain conventional constant mass density, lab are elastic tangent moduli defined in an

unloaded state j*(t) and associated with the selected elastic strain measure, and m
ab are

corresponding elastic compliances,

1

.�0
lab ¼

o2/e

oqaoqb
; .�0mab ¼ � o2wð1Þe

opaopb
: ð112Þ

The increment d
h
q

a(pg, H) and its dual d
h
pa(qg, H) defined by

dhqa � � odhwð1Þe ðpg;HÞ
opa

; dhpa �
odh/eðqg;HÞ

oqa
ð113Þ

represent the deformation and stress effects of the mechanisms (e.g., damaging, compacting, void-

nucleation, pressure sensitivity) responsible for the sensitivity of elastic properties to prior plastic

straining.

When the specific elastic strain energy is independent of H ðdh/e ¼ dhwð1Þe ¼ 0) dWe ¼ padqa;

dWp ¼ pid
hqiÞ these effects are disregarded. Such materials were classified in [4] as ‘‘materials with

the elastic properties insensitive to prior plastic straining’’. Here we shall distinguish in addition

another class of materials characterized by the following form of /e:

/eðqa;HÞ ¼ 1

.�ðHÞ
�/eðqaÞ: ð114Þ

In this situation the density of the elastic strain energy �/e in the unloaded (natural) state j�ðtÞ (elastic

strain energy per unit of volume in j*) is independent of prior plastic straining. The tangent elastic

moduli �lab defined as

.�ðHÞ
.�0

lab ¼ �labðqaÞ; �labðqaÞ ¼ o2 �/e

oqaoqb
ð115Þ

are the same in every stress-free state j�ðtÞ; and moreover

dh/e ¼ �
d.�ðHÞ
.�ðHÞ /e ) dWp ¼ pid

hqi þ d.�

.�ðHÞ/e; dhpa ¼ �
d.�

.�
pa: ð116Þ

Note also that (107.1–3) implies the identity dhwð1Þe ðpa;HÞ ¼ dh/eðqa;HÞ that holds for every dual

pair ( pa, q
a) connected by (106.2) or (107.2). Therefore, d

h/e occurring in (109) and (110) may be

replaced by d
hw(1)

e (pa, H).
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4.2 Example of the basic connections in tensor notation

(i) The connection (101) is linear when Green (n ¼ 1, n
* ¼ 1) or Almansi (n ¼ @1, n

* ¼ @1)

strain measure are used to define elastic and total strain. For Green strain measure the relation (101)

qi $ Eð1Þ; qa $ Eeð1Þ is

Eð1Þ ¼ HðFp
T

ÞEeð1Þ þE�ð1Þ; Eeð1Þ ¼ HðFp
�T

Þ½Eð1Þ �E�ð1Þ� ð117Þ

where the special fourth-order tensor function H is defined in (2). The quantity HðFp
T

Þ corresponds

to Qi
a occurring in (103) and defined in (66). According to (106.2) the transpose of HðFp

T

Þ links the

usual specific Piola–Kirchhoff tensor Tð1Þ with the specific ‘‘elastic’’ stress tensor Teð1Þ which is

the energy-conjugate to the elastic Green strain measure Eeð1Þ ðTð1Þ ¼ HðF
�1

Þs$ pi;T
eð1Þ $ paÞ

Teð1Þ ¼ H
T

ðFp
T

ÞTð1Þ ¼ HðFpÞTð1Þ ¼ HðFe
�1

Þs ¼ Fe
�1

sFe
�T

ð118Þ

on account of the property (3.4) of H: Since we have _Eð1Þ ¼ HðF
T

ÞD ¼ HðF
T

ÞDe þHðF
T

ÞDp and

HðF
T

ÞDe ¼ HðFp
T

ÞHðFe
T

ÞDe ¼ HðFp
T

Þ _E
eð1Þ the counterpart of (103.1) for the considered situation

at the plastic yield point is

_Eð1Þ ¼ HðFp
T

Þ _E
eð1Þ þHðF

T

ÞDp;

_E
eð1Þ ¼ HðFp

�T

Þ _Eð1Þ �HðFe
T

ÞDp;

ð119Þ

where Dp is the Eulerian measure of the permanent strain rate defined by (100.2).

The quantities HðF
T

ÞDpdt and �HðFe
T

ÞDpdt; associated with the Green measure in the physical

space, correspond to the arrays d
h
q

i and d
p
q

a occurring in (103), respectively. Similar expressions

hold also for the Almansi strain tensor Eð�1Þ:
(ii) In view of (119) the invariant incremental works (108)–(109) and the incremental energy

dissipation per unit of mass dD in the course of active elastic–plastic straining are

dW ¼ Tð1Þ � dEð1Þ ¼ Teð1Þ � dEeð1Þ þ s �Dpdt; Teð1Þ � dEeð1Þ ¼ s �Dedt; ð120Þ

dWe ¼ Teð1Þ � dEeð1Þ þ dh/e½Eeð1Þ;H� ¼ s �Dedtþ dh/e½Eeð1Þ;H�;
dWp ¼ s �Dpdt� dh/e½Eeð1Þ;H�;
dD ¼ s �Dpdt� dh/e½Eeð1Þ;H� � d/sðHÞ	 0

ð121Þ

since padqa ¼ Teð1Þ � dEeð1Þ and pid
hqi ¼ s �Dpdt: The latter term is sometimes (cf., e.g., [32])

presented in the form s �Dp ¼ P� � ðL�
T

Þ where the non-symmetric tensor P* defined by

P� � Fe
�1

sFe ¼ Ue
�1

sReUe; sRe � Re
T

sRe ¼ HðRe
T

Þs ð122Þ

is referred to as Mandel stress tensor and L* is defined in (99.3). We do not pursue this concept

because it increases the number of thermodynamical rates occurring in the expression for dD. As

remarked in [23] nine components of P* are not independent.

4.3 Arbitrary elastic strain measure as a state parameter

(i) When applying E–M theoretical framework (cf., e.g., [31], [25, Chap. 11]) the most frequently

one uses the Green elastic strain measure Ee(1). With this measure there are associated simple and

exact relations between the elastic strain-rate measures defined in j*(t) and j(t), as well as between
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corresponding rates of energy-conjugate stresses. However, as shown in Sect. 4.1 the application of

any other measure belonging to the family 2nEe(n) ¼ (Ue)2n @ 1 is also admissible. In particular,

the application of the logarithmic elastic strain measure Ee(0) has a lot of merits [33], [34]. In the

case of materials isotropic with respect to the elastic properties one can establish exact and simple

connections between increments of the logarithmic elastic strains defined in j*(t) and j(t), as well as

between the increments of their energy conjugate stresses. Moreover, when elastic distortion

Eed(0) ¼ devEe(0) is a small quantity the simple transition from j*(t) to j(t) of all discussed

properties can be made for any elastic strain measure (cf. Sect. a).

The increments d
h/e and dW

e are invariant under the change of elastic strain measure, and in the

course of elastic deformation ð _H ¼ 0) L� ¼ 0;Dp ¼ 0Þ the incremental total work is equal to dW
e

so that the resulting equality

dWj _H¼0 ¼ dWej _H¼0 ¼ s �Dedt ¼ sRe �DRedt ¼ Teð1Þ � dEeð1Þ ¼ TeðnÞ � dEeðnÞ ð123Þ

defines the elastic stress measure Te(n) energy conjugate to elastic strain Ee(n). Here

DRe ¼ HðRe
T

ÞDe ¼ Re
T

DeRe: There is full analogy between (25) and (123). All formulas presented

in Sect. 3.1 can be directly applied to find the corresponding relations between elastic quantities. It is

sufficient to replace F by FeðF ! FeÞ; NK ! Ne
K (principal direction of Ue), kK ! ke

K
(principal

elastic stretches), U ! Ue; nK ! ne
K

(principal directions of Ve), V ! Ve; R! Re; J ! Je

¼ detFe; EðnÞ ! EeðnÞ; eðnÞ ! eeðnÞ;D! De; DR ! DRe; x! xe ¼ 0:5ðLe � Le
T

Þ ¼ x�
xp; xR ! xRe ¼ _R

e
Re

T

; sR ! sRe; TðnÞ ! TeðnÞ; _TðnÞ ! _T
eðnÞ and .R ¼ .�0 in all formulas

of Sect. 3.1. For example the analogue of (30) now becomes

DðnÞe r

Dt
� _rþ rxe � xer� _.

.
r� nPðrÞDe ¼ D

ðnÞr

Dt
� rxp þ xprþ nPðrÞDp; ð124Þ

where DðnÞr=Dt is the family (30) of Cauchy’s stress fluxes.

Likewise, such a procedure gives rise to the new notion of ‘‘elastic logarithmic spin’’ xeð0Þ [cf. (19)]

�xeð0Þ
LK
¼ �xe

LK
þ ðke

K
Þ2 þ ðke

L
Þ2

ðke
K
Þ2 � ðke

L
Þ2
� 1

lnðke
K
=ke

L
Þ

" #

�D
e

LK
; ð125Þ

where overbarred arrays are now the components of xe ð0Þ;xe and De on the principal triad ne
K

of the

elastic stretch tensor. The associated ‘‘elastic logarithmic co-rotational rate’’ Delogð:Þ=Dt may be

defined in an analogous manner as (20) (substitute xe ð0Þ for xð0ÞÞ such thatDelogeeð0Þ=Dt ¼ De: In

general DelogX=Dt 6¼ DlogX=Dt: However, there exists the special kinematic relation

Delogeeð0Þ
Dt

¼ D
logeð0Þ
Dt

¼ D ¼ De ð126Þ

that holds in the course of elastic processes, i.e., provided that _Fp ¼ 0: Logarithmic co-rotational

rates of the associated logarithmic strains are not dependent on the choice of the fixed reference

configuration since stretching D has this property.

(ii) Let /e ¼ [Ee (n), H] be the elastic strain energy expressed in terms of arbitrary elastic strain

measure and denote by wð1Þe ½TeðnÞ;H� � /e � TeðnÞ �EeðnÞ the dual potential. Now the basic state

equations in the unloaded configuration j*(t) are

TeðnÞ ¼ o/e½EeðnÞ;H�
oEeðnÞ ; EeðnÞ ¼ �owð1Þe ½TeðnÞ;H�

oTeðnÞ ð127Þ

on account of (123). The equations defining the incremental elastic, true (invariant) plastic work and

the energy dissipation have forms similar to (121). It suffices to replace in (121) d
h/e[E

e(1), H] with
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d
h/e[E

e(n), H]. Note that in the case of materials with the elastic properties insensitive to prior

plastic straining (dh/e ¼ 0) we have

dWp ¼ s �Dp dt ðdh/e ¼ 0Þ ð128Þ

where Dp is defined in (100.2).

The incremental form of the generalized state relations (127) in j*(t) is

dTeðnÞ ¼ 1

.�0
L�ðnÞdEeðnÞ þ dhTeðnÞ;

dEeðnÞ ¼ .�0 M�ðnÞdTeðnÞ þ dhEeðnÞ;
ð129Þ

where

1

.�0
L�ðnÞ ¼ o2/e

oEeðnÞ oEeðnÞ; .�0 M�ðnÞ ¼ � o2wð1Þe

oTeðnÞ oTeðnÞ ðM
� ¼ L

�1�
Þ ð130Þ

are elastic tangent moduli and compliances defined in j*(t) and associated with the selected elastic

strain measure Ee(n). The increments

dhTeðnÞ ¼ o dh/e

oEeðnÞ; dhEeðnÞ ¼ �o dhwð1Þe

oTeðnÞ; dhTeðnÞ ¼ � 1

.�0
L�ðnÞdhEeðnÞ ð131Þ

describe the stress and deformation effects associated with the sensitivity of elastic properties to prior

plastic straining. Equations (129)–(131) are the counterparts of (111)–(113) in the physical space.

4.4 Rate form of state equations in updated Lagrangean configuration j(t)

a. General case

(i) In field theories of an elastic–plastic continuum one formulates fundamental rate boundary-value

problems either in a fixed or in the updated Lagrangean configuration. To this end one has first to

transfer the incremental relations (129)–(131) from configuration j*(t) to jR or to j(t).

We shall here restrict the attention to the latter situation. The general rate equations in the current

configuration have the form (93), and the question arises what are the relations between the physical

quantities occurring in (129) and (93). They are presented beneath without discussing details of their

derivation. Consider the following unified transformation rule:

1

.
LðnÞ ¼ 1

.�0
HðF ÞL�ðnÞHðF

T

Þ ; MðnÞ ¼ L
�1

ðnÞ; ð132:1Þ

DpðnÞ ¼ ½I þ nMðnÞPðrÞ�Dp þ DhðnÞ �MðnÞ ðrxp � xprÞ; ð132:2Þ

DhðnÞdt ¼ HðF
�T

ÞdhEeðnÞ ¼ �.MðnÞHðF ÞdhTeðnÞ; ð132:3Þ

where d
hTe(n) and d

hEe(n) are defined in (131). These are exact connections for n ¼ 1 provided

F ¼ Fe; and for n ¼ @1 when F ¼ F
�T

e (‘‘push forward’’ the physical quantities into j(t) using

HðFeÞ and HðFe
�T

Þ:) To justify this statement it is sufficient to substitute the elastic counterparts of

(10.1) and (31) (written for Fe) together with (124) into (129). For anisotropic solids and other elastic

strain measures the exact index-free relations are not known. However, when elastic distortions are

small, what is the most frequent case in practice, one may use the elastic analogues of (34)–(38)

specified for Fe and arrive at Eqs. (132) with
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F ¼ ðJeÞn=3
Re: ð133Þ

Such equations are valid for arbitrary n with an error of first-order in the deviatoric part of the

logarithmic elastic strain. Within the same accuracy we have (cf. Sect. 3.1.c)

xRe ¼ _R
e
R

T

e ¼ x� xp þO½eedð0Þ�De
d; ð134Þ

where De
d and eed(0) are deviators of De and Eulerian elastic logarithmic strain ee(0), respectively.

This equation can be used to determine Re. The relations (132) and (133) are valid for both isotropic

and anisotropic materials.

b. Isotropic elastic behavior – logarithmic elastic strain as a state variable

(i) Let us assume that /e[E
e(n), H] is an isotropic tensor valued function of Ee(n) (all H occurring in

/e are scalars – but not necessary those present in /s) and recall some general properties of isotropic

elastic behavior described by the Te(n) $ Ee(n) tensor connection (127):

(a)

TeðnÞ ¼ o/e½EeðnÞ;H�
oEeðnÞ ) teðnÞ � HðReÞTeðnÞ ¼ o/e½eeðnÞ;H�

oeeðnÞ ð135:1; 2Þ

where eeðnÞ ¼ HðReÞEeðnÞ;/e½eeðnÞ;H� ¼ /e½EeðnÞ;H�:

(b) All elastic energy conjugate couples fTeðnÞ $ EeðnÞg and the tensor sRe ¼ HðR
T
eÞ s are

coaxial with Ue (principal directions N e
K
Þ: In particular sRe ¼ Teð0Þ is the energy conjugate to

elastic logarithmic strain E e(0). The justification of this property is similar to that presented in

Sect. 3.1.b for the total logarithmic strain.

(c) Likewise, all Eulerian couples {te(n), ee(n)}, Kirchhoff stress s; Cauchy’s stress r are coaxial

with the right elastic stretch tensor Ve (principal directions ne
K
Þ: In particular,

s ¼ teð0Þ ¼ ðVeÞ2 teð1Þ ¼ ðVeÞ�2
teð�1Þ:

d) In general if the connection between two symmetric tensors (Lagrangean or Eulerian), say

T ¼ T(E), is isotropic then TE ¼ ET and such commutation property entails the identity

oTKL

oEMN

½EKPX
�
PL
� X�

KP
EPL � ¼ TMKX

�
KN
� X�

MK
TKN ð136Þ

that holds for an arbitrary skew-symmetric tensor X� ¼ �X�
T

: Due to this property one can

apply any co-rotational time derivative to T ¼ T(E) and derive rate relations without

affecting the physical content contained in the equality _T ¼ ðoT=oEÞ _E (the principle of

objectivity concerns relations between physical quantities and not the individual terms

occurring in such relations).

(ii) The kinematical relation between the Zaremba–Jaumann derivative of ee(0) (co-rotational with

xeÞ and De was derived in [33]. Using (125) it may be written in the following alternative form:

Dee
eð0Þ
Dt

� _eeð0Þ þ eeð0Þxe � xeeeð0Þ ¼ ðI þ DEÞDe ð137Þ

where DE is defined as follows.

Denote by D�EJKMN and �XMN the components of DE and an arbitrary symmetric second-order tensor X,

respectively, on the Eulerian elastic triad ne
K
: The fourth-order tensor-function DE is defined by
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D�EJKMN
�XMN ¼

0 for J ¼ K ð138:1Þ

ðke
J
=ke

K
Þ2 þ 1

ðke
J
=ke

K
Þ2 � 1Þ

lnðke
J
=ke

K
Þ � 1

" #

�XJK for J 6¼ K ; ð!J;KÞ ð138:2Þ

8

>
>
<

>
>
:

where ke
K

are the principal elastic stretches and ðke
J
=ke

K
Þ ¼ expfeed

J ð0Þ � eed
K
ð0Þgðeed

K
ð0Þ are principal

values of eed(0)).

It can be shown that DE has the usual pairwise symmetry property. The most important other

properties are

• If an arbitrary symmetric tensor a is coaxial with Ve then

ðI þ DEÞa ¼ a ) ðI þ DEÞ�1
a ¼ a; ðDEÞa ¼ 0; ð139Þ

Lð0Þ DE ¼ DELð0Þ

where the moduli Lð0Þ are defined below in (141).

• The Taylor expansion of the function of ke
J
=ke

K
occurring in (138.2)

D�EJKMN
�XMN ¼

1

3

ke
J

ke
K

� �

� 1

� �2

þ � � �
( )

�XJK ð140Þ

shows that the leading term is second-order and D�EJKMN is small, e.g., when 5=6
 ke
J
=ke

K

 7=6 the

term of curl bracket is less than 1/96. Thus, DE is negligible and can be set to be zero in practice.

Now apply the Zaremba–Jaumann derivativeDeð:Þ=Dt to the relation s ¼ o/e=oeeð0Þ [substitute

n ¼ 0 and te ¼ s into (135.2)], and transform the obtained equality to the form that matches with

(93). The eventual structure of the terms present in (93) for n ¼ 0 is (note the difference between

moduli Lð0Þ and Lð0ÞÞ :

Lð0Þ ¼ Lð0ÞfI þ DEg; 1

.
Lð0Þ ¼ o2/e

oeeð0Þoeeð0Þ; M
ð0Þ ¼ Lð0Þ

�1

; ð141Þ

Dpð0Þ ¼ Dp þDhð0Þ � L
�1

ð0Þ ðrxp � xprÞ;
¼ Dp þDhð0Þ � ðI þ DEÞ�1½eedð0Þxp � xpeedð0Þ�; ð142Þ

Dhð0Þdt ¼ �.Mð0Þ
dh s ¼ �o½dhwð1Þe ðs;HÞ�

os
; dhs ¼ oðdh/eÞ

oeeð0Þ : ð143Þ

Here wð1Þe ¼ /e � s � eeð0Þ is the elastic complementary energy which should not be confused with

we present in (48). The same identification can be found by applying the operation Delog=Dt [cf.

(125)] to Eq. (135.2) specified for n ¼ 0, and by subsequent use of the property (136). Note that the

set of Eqs. (141)–(143) coincides with the Eqs. (132)–(133) specialized for n ¼ 0 provided that

DE ¼ 0: This situation was discussed in detail in [33] where the hydrodynamical theory of metals

was combined with the usual theory of thermoplasticity.

Remarks

(a) It can be readily verified using (132) that in general dWp ¼ s �Dpdt� dh/e 6¼ s �DpðnÞdt;

even if d
h/e ¼ 0.

In the case of materials isotropic with respect to the elastic properties we have

trfs½eedð0Þxp � xpeedð0Þ�g ¼ 0, and the spin xp influences neither the product s �Dpð0Þ nor

104 B. Raniecki et al.



s �DpðnÞ on account of (95.2) and (142). If additionally the elastic properties are not influenced by

prior plastic straining (dh/e ¼ 0, Dh (n) ¼ 0) then in a vicinity of the current configuration the

plastic increment of the total logarithmic strain Dpð0Þ may be given the invariant plastic work

interpretation, i.e.,

dWp ¼ s �Dp dt ¼ s �Dpð0Þdt ð144Þ

From the transformation rule (95.2) it then follows that such property cannot be attributed to the

plastic increment DpðnÞ of any other strain measure (n = 0).

(b) The situation d
hwe

(1) ¼ 0 (Dh(0) ¼ 0) is considered in the paper [35] where instead of the

elastic the total logarithmic rate Dlogs=Dt of the Kirchhoff stress s is applied to get the rate form of

the state equations, notwithstanding the fact that such procedure leads to the implicit dependence of

the instantaneous elastic moduli Lð0Þ [cf. (93)] on prior plastic straining [past plastic deformation

can make current principal stretches occurring in (19) to be arbitrarily large/small]. Likewise, the

plastic part of the total stretching defined in [35] is also influenced by the past plastic strain. This

approach is inconsistent with (141)–(143) and with the approach remarked beneath.

(c) In computational mechanics it has become popular (cf. [26, Chap. 9]) to use

be ¼ FeFe
T

¼ ðVeÞ2 ¼ 2eeð1Þ þ 1 as a state variable, /e ¼ /e(b
e), and to postulate the plastic

flow rule for the strain-rate tensor D0 defined as [cf. (98)]

D0 � �1

2

dc
be

dt
¼ �1

2
HðFÞ

_
ðUpÞ�2
zfflfflffl}|fflfflffl{

¼ HðFÞ _E�ð�1Þ ¼ HðFeÞD�; ð145Þ

where 2 D� ¼ L� þ L�
T

[cf. (99)] is the ‘‘permanent stretching’’ tensor, and the contravariant time

derivative dc(.)/dt is defined in terms of the total deformation-rate tensor L as in (24). For elastically

isotropic materials insensitive to prior plastic straining we have /eðbeÞ ¼ /e½Up
�1

CUp
�1

�ðC ¼ F
T

FÞ
and this proposal enables to avoid the need to postulate the constitutive equation for the plastic spin

xp [cf. (100)]. It is incompatible, however, with the two general theoretical frameworks discussed in

the present paper. The following kinematic connection between D
0
and Dp defined by (100.2) holds:

D0 ¼ Dp þ P½eeð1Þ�Dp þ xp eeð1Þ � eeð1Þxp ð146Þ

showing that the knowledge of D0 is insufficient to separate Dp from xp:

We noted that in the discussed situation ½seeð1Þ ¼ eeð1Þs ; dh/e ¼ 0� the tensor D0 may be

furnished with the special plastic work interpretation

dWp ¼ s �D dt� _/e dt ¼ s �Dp dt ¼ teð1Þ �D0 dt; teð1Þ ¼ HðV
�1

eÞ s ¼ b
�1

es: ð147Þ

The similar approach, valid for elastically isotropic solids and based either on multiplicative

decomposition of the metric tensors of the embedded basis or on the additive decompositions of their

rates, was applied earlier (e.g., in [36]–[40]).

c. Relation between nominal rate of stress and deformation rate

In the updated Lagrangean field theory one applies the rate equilibrium in the form [41]–[44]:

op�ij
oxj

þ b�j ¼ 0; ð148Þ

where x is the position of a particle in the current configuration of a body (at the same time the

position x identifies the particle of a body), b� is the nominal-rate of the body forces and p� is the

nominal-rate of stress defined by
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p� � _r� Lrþ rtrD: ð149Þ

To formulate the rate boundary value problem for the increment v dt (v-velocity field in the current

configuration) one needs the p� $ L relation. Under the assumed known current state of the body

such relation can be found by elimination of _r between (149) and (30) and by subsequent use of (93),

p�ðLÞ ¼ LðnÞ½D�DpðnÞ� þ ðn� 1ÞPðrÞDþ rL
T

: ð150Þ

A more specific structure of the first term one obtains by eliminatingDpðnÞ with the aid of (132.2) or

(142). In order for the set of differential equations to be closed the extra constitutive equations (plastic

flow rules) should be postulated for Dp, _H and xp: The latter spin does not occur in the expression for

the incremental energy dissipation. Therefore, the equation for xp can be specified at will, until the

definite experimental observations concerning the rearrangement of the internal structure (crystal

plasticity [45], evolution of texture [46]) are intended to be included into the theoretical framework.

Mandel [47], [48] has introduced the concept of ‘‘isoclinic’’ unloaded configuration. One of the basic

element of this concept is that Dp ¼ 0 ) xp ¼ 0 and this is one of the rational restrictions that may

be imposed on the choice of xp; in particular it can be set to be zero even in the case of anisotropic

materials. Other representative proposals are presented, e.g., in [49] (cf. also, e.g., [25, Chap. 11]).

The uniqueness theorems concerning the rate boundary-value problems, the foundation of the related

bifurcation theories as well as stability criteria can be found in [42]–[44], [50]–[52]. The adequate

computational methods were developed, e.g., in [53], [54, Chap. 6].

5 Brief discussion

Most of the invariance aspects of the finite-strain theory of plasticity illustrated in Part I [4] on the

background of the simple tension have been shown to be valid also in 3D situation. Hill’s

transformation rules of the basic constitutive quantities were recasted for materials with the Green

type of elasticity in a manner slightly different, by presuming that the incremental free energy is the

basic invariant. They help to distinguish the universal concepts (e.g., notion of incremental strain

cycle, plastic increment of work-conjugate stresses) from others that are not invariant (e.g., notion of

incremental stress cycle, positive semi-definiteness of the tangent moduli, plastic increment of the

total strain). The special cyclic process has been analyzed to define the invariant incremental plastic

work within H–R formalism.

The E–M theoretical framework has naturally resulted from H–R approach as a transition from a

fixed generalized coordinates system to a moving one the changes of which correspond to the

changes in the internal state of m.e. The structure of the updated Lagrangean plastic increment of

total strain has been shown in terms of thermodynamic properties described by the free-energy

potential including those representing stress and deformation effects due to damage, pressure

sensitivity etc. Special attention has been paid to the situations when elastic distortions remain small.

These are of special engineering interest since the most not rubber-like materials undergoing

permanent deformations do not experience large elastic distortions. The derived approximate

relations (132)–(133), connecting the updated Lagrangean quantities with those defined in an

unloaded configuration are valid for general anisotropic materials. In our view they constitute the

appropriate compromise between simplicity, generality and usefulness. Notwithstanding the merits

they were not discussed in the literature. The generalized Hooke’s law can be recasted by assuming

that either the moduli L�ðnÞ or .�ðHÞL�ðnÞ=.�0 presented in (132) are at most functions of H. Their

image LðnÞ in the actual configuration j(t) depends on the extra constant n. This illustrates the
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concept ‘‘let the experiments judge what is the most optimal strain measure for the investigated

material’’. Such concept in more general context was advanced in the nonlinear elasticity of rubber-

like materials by Hill [1] and Ogden [55]–[57].
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