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Discussed are some quantization problems of two-dimensional affine bodies. Quantum
dilatational motion is stabilized by some appropriately chosen model potentials. lsochoric part
of the dynamics is geodetic, i.e. potential-free. Surprisingly enough, this is compatible with the
existence of discrete spectrum (bounded quantum motion). The Sommerfeld polynomial method
is used to perform the quantization of such problems.
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1. Introduction and motivation

The paper is a continuation of [7, 8] where we have discussed affine symmetry
in classical and quantum mechanics of collective and internal modes.

Here we consider the two-dimensional situation on the quantum level [8], which
is also of some physical interest. Obviously, it may have some direct physical
applications when we deal with flat molecules or other structural elements. Besides,
our two-dimensional models may be useful in the theory of surface phenomena.
The general ideas of the model remain valid in the physical three-dimensional space
and in "academic" considerations concerning the general n-dimensional models. The
peculiarity of two-dimensional spaces (flat, spherical and hyperbolic ones) is that
there exist then realistically looking potentials with which the system is integrable
and may be solved in quadratures by the separation of variable method. This
follows from the exceptional geometry of the groups SO(2, R), GL(2, R) among
all SO (n, R), GL(n, R) with n > 2. The fundamental reason is that SO(2, R)
is commutative (and one-dimensional). The models in two-dimensional spaces are
therefore interesting in themselves. As we happen to live in (approximately) flat three
dimensional space, thus, for the time being, we postpone the study of infinitesimal
affine bodies in curved manifolds (Lobachevski space and spherical space) till
later, although they seem to be applicable beyond the purely academic field. Our
results may be physically applicable in mechanics of media with microstructure. We
mean micromorphic media which are continua of infinitesimal affinely-rigid bodies.
Namely, surfaces of such bodies will behave as two-dimensional continua with the
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effective microstructure induced by the usual three-dimensional microstructure. There
are also other possibilities like continua with the layered molecular structure or
surface defects. Obviously, the classical curved space results might be applicable
in geophysical problems or in ecological applications. Realize e.g. catastrophes like
those of tankers and their consequences like the resulting motion of two-dimensional
polution "spots" on the oceanic surface [2], or the sliding motion of continental
plates. However, such applications, based on classical mechanics are outside our
interest in this paper. No doubt, the surface motion of exotic molecules like fullerens
also may be analysed according to our quantum models of two-dimensional affine
bodies, adapted to curved manifolds; obviously the constant curvature spaces provide
the simplest and analytically treatable example. The quantized curved space motion
will be the subject of forthcoming papers.

The special stress is laid on models with "large" symmetry groups, i.e. with
the doubly-isotropic potentials, depending only on deformation invariants. Kinetic
energy models (metrics on the configuration space) are assumed to be:

(i) affinely invariant in the physical and material space,
(ii) spatially isotropic and affinely invariant in the material space,
(iii) affinely invariant in space and materially isotropic.

As usual when Hamiltonians have "large" symmetry groups, such models are
completely or to a large extent analytically treatable. Some more detailed arguments,
both geometrical and physical, for studying the models (i), (ii) and (iii) quoted
above were given in [7, 8].

Roughly speaking, the classical configuration space Q of our model is identified
with the group GL+(2, ~). Obviously, in n-dimensional physical space it would
be the group GL+(n, ~). This identification is a kind of technicality. It is more
correct to define the configuration space as a manifold of linear isomorphisms from
some material space U onto the physical space V. But when calculating anything,
it is more convenient to identify (the choice of bases) U and V with ~2 (~n in
general) and then just to identify the configuration space with GL(2,~) (GL(n,~)

in general). If one does not pay any attention to geometric details, there are some
dangers of mistakes, but the computational simplification is obvious. So primarily one
"identifies" the configuration space with GL+(2, ~), but later on certain constraints
will be imposed so as to make deformation invariants positive, as one always does
in elasticity. Some peculiarities of the "Flatland" [1] case n = 2 enable one to
obtain some analytical rigorous solutions both on the classical and quantum level.
This is impossible in higher dimensions because the orthogonal group SO(n,~) is
then simple; this results in the very malicious nonseparable mixing of deformation
invariants. Both classical and quantum motion on GL+(n,~) may be split into
isochoric part SL(n,~) and one-dimensional dilatational part ~+ (multiplicative
group of positive real numbers). It turns out that affinely-invariant geodetic models
on SL(n,~) admit an open subset of bounded trajectories (we mean a subset of the
general solution) on the classical level and the discrete spectrum on the quantum
level. Of course there is a "dissociation threshold" above which one has to do with
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unbounded classical trajectories and quantum continuous spectrum [7, 8] (like in
the attractive Kepler problem). This is particularly easily seen just in the "Flatland"
case n = 2. The existence of classical and quantum bounded situations in the
geodetic (potential-free) motion on the noncompact manifold SL(n, JR) might seem
surprising. However, it is not so because in affinely-invariant models the "metric
tensor" underlying the kinetic energy form is curved, essentially Riemannian, thus
the superficial analogy with Euclidean space, where geodetics are unbounded, is
completely misleading. The geodetic highly-symmetric models possess often (and so
is in the situations we study below) rigorous solutions in terms of well-known special
functions. And it is interesting in itself that something like oscillatory vibration
regime of deformation invariants may be modelled without using the potential energy.
Of course this is not the case with the dilatational part of motion. Therefore, to obtain
a physically satisfactory vibrational motion (bounded trajectories, discrete quantum
spectrum) we must introduce some phenomenological potential depending on one
deformation invariant, just the extension ratio (or volume, i.e. surface area in the
two-dimensional case). This combination of geodetic SL(2, JR)-invariant vibrational
regime with some appropriately chosen physically realistic (and analytically treatable)
model mechanism of stabilizing dilatations is just the subject of this paper. Strictly
speaking, we discuss here the Schrodinger quantization procedure for such a problem.
The separation of variables is performed and then the corresponding one-dimensional
Schrodinger equations are solved using the Sommerfeld polynomial method [4].

2. Classical description

Let us begin with the classical description. When some reference configuration
and Cartesian coordinates are fixed, the configuration space of the two-dimensional
affinely-rigid body may be identified with GL+(2, JR) (when translational degrees
of freedom are neglected). This means that the Lagrange (material, reference)
coordinates a A and the Euler (spatial, current) variables Xi are interrelated as
follows: xi(t,a) = <p~(t)aA, where <p~ are generalized coordinates of internal motion
(rotations and deformations).

The most adequate description of internal degrees of freedom is that based on
the two-polar decomposition of matrices,

tp = LDR-1, (1)

where L, R E SO(2, JR), D is diagonal and positive. The term two-polar decomposition
is not very fortunate. We use it only because in some of our earlier papers [6, 8]
it was used. This decomposition is connected with the algebraic Gram-Schmid
orthogonalization. It is also know in literature as the "singular value decomposition".

This decomposition is unique up to the permutation of diagonal elements of
D accompanied by the simultaneous multiplication of Land R on the right by
the appropriate special orthogonal matrix. This implies that the potential energy of
doubly-isotropic models depends only on D and is invariant with respect to the
permutation of its nonvanishing matrix elements [5]. The natural parametrization of
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the problem is as follows :

L = [ cos a - sin a ],

sin a cos o

R = [ cos {3 - sin {3 ],

sin {3 cos {3

D = [~1 ~2] = [ expoql expO.!
The angular velocities of L- and R-rotators are given, respectively, by

x = dL L -I = L -1 dL = X= da [0 -01],
~ ~ dt 1

iJ = dR R-1 = R-1 dR = lJ = d{3 [0 -01],
dt dt dt 1

and their conjugate momenta are respectively as follows:

A [0 1]p = P = Pa ,
-1 0

A [0-T = -T = Pp
-1

where Pa, pp are canonical momenta conjugate to a , {3, respectively. The group
SO(2, R) is commutative, therefore p = p= S, T = f = - V [8]. Thus, the quantities
p, f are constants of motion . It is not the case for n > 2, where only spin S and
vorticity V (generators of spatial and material rotations, respectively) are constants
of motion (for invariant geodetic models and, more generally, for doubly-isotropic
models). But it is exactly the use of p, f that simplifies the problem and leads to
a partial separation of variables. So, the problem may be effectively reduced to the
dynamics of two deformation invariants both on the classical and quantum level.

It is convenient to introduce the new variables:

ql +q2
q = X = q2 _ s' ,

2

their conjugate canonical momenta are, respectively,

P = PI + P2,
P2 - PI

Px =
2

This splits Q into pure dilatational and isochoric parts, i.e ., GL+(2, R) = lR+SL(2, R).

REMARK. Some comments are necessary here. Namely, the primary thing is the
decomposition GL+(2, R) = ]R+SL(2, R) ("centre times simple part"). But we have
used above the coordinates q I, q2, thus representing the diagonal elements Q I , Q2
in exponential form:
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This is not quite correct due to the peculiarity of the even dimension n = 2. Namely,
unlike in the above representation, QI and Q2 may be simultaneously negative and
this does not violate the condition that the determinant of the diagonal part is
positive. It would be more correct to use two charts so that

Q1 = ± exp q I, Q2 = ± exp q2

(coincidence of signs assumed). Another possibility would be to use the "plus signs"
only and simultaneously to replace lR+ by JR \ {O}. But in elasticity for certain
reasons one assumes the deformation invariants to be positive, and then the use of
the (q, x) representation actually denotes imposing some constraints onto GL+(2, lR) .

Thus, the expressions for the classical affine-affine, metric-affine and affine-metric
kinetic energies in Hamiltonian representation are as follows [8]:

T aff-aff = p
2 + p; + (P13 - Pa)2 (P13 + PcJ2

IUt 4(A + 2B) A 16A sinh2 ~ 16A cosh? ~ ,

2 2 ( )2
Tmet-aff = P +~ + P13 - Pa

IUt 4(1 + A + 2B) 1 + A 16(1 + A) sinlr' ~

(P13 + Pa)2 + Ip;

16(1 + A ) coslr' ~ 12 - A2 '

2 2 ( )2
Taff-met = P +~ + P13 - Pa

IUt 4(1 + A + 2B) 1 + A 16(1 + A) sinlr' ~

(P13 + Pa)2 Ip~

16(1 + A ) cosh/ ~ + 12 - A 2'

where I , A , B are inertial constants. Those alternative choices are a bit enlightened
by the remarks below.

One can wonder if there exists any essential difference between the above
models of kinetic energy T aff-aff T me,-aff Taff-met From the purely analytical, IUt 'IUt 'IUt .
point of view they are in a sense isomorphic. There exists however an important
physical distinction between them. The model 1j~-aff does not "see" the metric
tensor both in the physical and material space. It is invariant under the group
GL(2, R) acting in the physical and material space. Unlike this, 1j~et-aff depends
explicitly on the spatial metric tensor but is independent on the material space metric
tensor. Therefore, its invariance group is not any longer GL(2 , lR) x GL(2, R) but
SO(2 , R) x GL(2, R). The hyperspin (affine spin), i.e. Hamiltonian of the right-acting
linear group is a conserved quantity, but the spatial hyperspin, i.e. generator of
the left-acting GL(2, R) is not such. However, its skew-symmetric part, i.e. spatial
angular momentum, is a constant of motion in virtue of the invariance under the
group of left-acting (spatial) rotation SO(2 , R). Such a model may be interpreted as
a discretization (in two dimensions) of the Arnold model of fluid, SDiff(2 , lR) being
restricted to SL(2, lR). And the situation is exactly reciprocal in the case of model



150 A. MARTENS

1i~-met. Now the spatial hyperspin will be conserved, but only the skew-symmetric
part of the material affine momentum, i.e. the vorticity (Dyson's term [3]) will be a
constant of motion. The situation in this respect is more readable in the n-dimensional
space JRn, because it is not obscured then by peculiarities ("pathology") of dimension
n = 2. But it is always true that the models 1i~-aff, 1i~et-aff, 1i~-met have identical
solutions on the level of variables (angular momentum, deformation invariants and
their conjugate momenta, vorticity), i.e. P«. q, X, P, Px, PfJ. Nevertheless they
are different when all degrees of freedom including also (a, fJ) are taken into
account. It is also important that the models 1i~et-aff and 1i~-met have the maximal
symmetry compatible with the one-side affine invariance, when translational degrees
of freedom are taken into account. Indeed, nondegenerate metric tensors on the total
affine group GAf(n, JR) :::: GL(n, JR) X S JRn do not exist. This follows from the rather
malicious nonsemisimplicity of the affine group. Just this fact fixed our attention
on the metric-affine and affine-metric model. This kind of symmetry is compatible
with including translational degrees of freedom.

We can notice that on the level of new variables all these geodetic models have
identical dynamics. The difference appears only on the level of angular variables
a and fJ. And, just as for the general n, the same is true if we introduce to
Hamiltonians some doubly-isotropic potentials V(q, x) = Vdil(q) + Vsh(X),

H = T + V(q,x),

where T is any of the kinetic energy terms described above. In particular, this is
true for dilatation-stabilizing potentials Vdil (q), i.e. in a sense, for geodetic invariant
models on SL(2, JR) (incompressible bodies).

3. Schrodlnger quantization

The mathematical framework of Schrodinger quantization is based on the Hilbert
space L 2 ( Q , A). The Haar measure A on GL(2, JR) is given as [8]:

dA(a; q, x; fJ) = IsinhxldadfJdqdx.

The Fourier expansion of wave functions with respect to a, fJ is given by

\I1(a; q, x; fJ) = L fmn(q, x)eimaeinfJ,
m.n

where m, n E Z.
The reduced Hamiltonians corresponding to our dynamical affine models are as

follows:
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(2)

(4)

where
1 a ( af mn

)Dxfmn =. - Isinhxl-- .
[sinhx] ax ax

In all these expressions the complete separation between dilatational and incom
pressible motion is very effectively described in analytical terms just due to the use
of new variables q, x.

Solutions of the corresponding stationary Schrodinger equations may be sought
in the form I'":«. x) = <jJmn(q)Xmn(x);

the problem with the potential Vdi1(q) reduces then to one-dimensional Schrodinger
equations for <jJmn and Xmn :

(i) affine-affine models:

d 2<jJmn 4(A + 2B) mn
-----;Jq2+ tt2 (Eq-Vdil(q))<jJ =0,

d (. d Xmn) ((n-m)2 (n+m)2 A ). mn- Ismhxl-- - .? I - 2 I - 2Ex [sinhxlj; = 0; (3)
dx dx 16smh-2:x 16coshzx tt

(ii) metric-affine models:

d2<jJmn 4(1 + A + 2B) mn
-----;Jq2 + tt 2 (E q - Vdil(q)) <jJ = 0,

d ~ d Xmn) ((n-m)2 (n+m)2 1m
2

I+A )- Isinhxl-- - - +-----Ex Isinhxlx mn = 0;
dx dx 16sinh2~x 16cosh2~x I-A tt2

(5)
(iii) affine-metric models:

(6)
d 2<jJmn 4(1 + A + 2B) mn
----;J;]2+ tt 2 (Eq-Vdil(q))<jJ =0,

d ( d Xmn) ((n-m)2 (n+m)2 In 2 I+A )- Isinhxl-- - - +-----E Isinhxlx mn = 0
dx dx 16sinh21x 16cosh21x I - A tt2 x ,

(7)
where Eq and Ex are fixed values of the energy.
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In our case, there exists a discrete spectrum (bounded situations) for x-functions,
i.e. for the isochoric SL(2, IR)-problem, even in the purely geodetic case without any
potential Vsh(X). And this is true in spite of the noncompactness of the SL(2, IR)
configuration space. Everything depends on the relationship between the quantum
numbers n, m. If In +ml > In - ml, the spectrum is discrete. In the opposite case,
if In +ml < In - ml, it is continuous.

It is natural to expect that for dilatation-stabilizing potentials Vdil (q) the resulting
Schrodinger equations should be rigorously solvable in terms of some standard special
functions. The most convenient way of solving them is to use the Sommerfeld
polynomial method [4].

4. Some models

In this method the solutions are expressed by the usual or confluent Riemann
P-functions. They are deeply related to the hypergeometric functions (respectively,
usual F or confluent F1, F2) . If the usual convergence demands are imposed, then
the hypergeometric functions become polynomials and our solutions are expressed
by elementary functions. At the same time the energy levels and separation constants
are expressed by the eigenvalues of the corresponding operators. There exists some
special class of potentials to which the Sommerfeld polynomial method is applicable.
The restriction to solutions expressible in terms of Riemann P-functions is reasonable,
because this class of functions is well investigated and many special functions used
in physics may be expressed by them. There is also an intimate relationship between
these functions and representations of Lie groups [9].

Eqs. (2), (4) and (6) may be solved only when the explicit form of potential
Vdil(q) is specified. It is clear that simple solutions in terms of known special
functions may be expected only when the potential has some particular geometric
interpretation.

4.1. Harmonic oscillator

Here we consider the model of the harmonic oscillator potential as a "stabilizer"
of dilatational motion, i.e.

y 2
Vdil(q) = i q , y > O. (8)

Applying the Sommerfeld polynomial method we obtain the energy levels E = Eq+Ex

as follows:
(i) affine-affine models:

E = hQ (I +D-:: [(2k + 1+ In : m I + In ~ml)' - 1]. (9)

where 1, k = 0,1, ... and
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After some calculations we obtain the functions </>mn and Xmn in the form

(10)

(11)

where

K=
2y(A + 2B)

li 2

In+ml
JL= --

4

In-ml
v=---

4

(ii) metric-affine models:

_( 1) liZ [( In+ml In-m l)2 41m2 ]E = liQ 1+ - - 2k + 1 + + - -- - 1
2 4(1 + A) 2 2 I - A '

(12)
where

n= J2(1 +: + 2B) .

The functions </>mn and Xmn are given respectively by (10) and (11), where

K=
2y(l+A+2B)

liZ (13)

(iii) affine-metric models,

E=lin(l+!)- liZ [(2k+1+ln+ml+ln-ml)2_ 41n
2 -1].

2 4(/ + A) 2 2 I - A

(14)
The functions </>mn and Xmn have the form (10) and (11) respectively, where K is
given by (13).

(15)~ > o.

4.2. Oscillator combined with the inverse-square repulsion

We consider also another model for the dilatational potential combining the
oscillatory attraction for large values of q and infinite repulsion from the singular
collapsed state q = 0, i.e.

Vdil(q) = ~ (;2 +q2),

It is seen that q = 1 corresponds to the stable equilibrium situation. Here the energy
levels E = Eq + Ex are as follows:
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where

(i) affine-affine models:

E =tiQ (I ~ ~(A + 2B) ~)+ 2 + ti2 + 16

-~[(2k 1 In+ml In-m l)2-1]
4A + + 2 + 2 '

- ~~Q-
- A+2B'

After some calculations we obtain the function ¢mn in the form

i!.- 1
¢mn = e-IC T (J"Kq)a+'1 F, (-I; 1 + a; Kq2) ,

(16)

(17)

where

K= a=
4~(A + 2B) 1

ti2 +4'

where

and Xmn is given by (11).
(ii) metric-affine models:

ti v ( 1 ~(1 + A + 2B) 1 )
E = Q 1+ 2: + ti2 + 16

_ ti
2

[(2k+l+ln+ml+ln-ml)2 _ 41m
2 -1]

4(1 + A) 2 2 I - A '

v J 4~
Q = I+A+2B'

The functions ¢mn and Xmn are given respectively by (17) and (11), where

K=
4~(1 + A + 2B)

ti2
(18)

(iii) affine-metric models

ti v ( 1 ~(1 + A + 2B) 1 )
E = Q 1+ 2: + ti2 + 16

_ ti
2

[(2k 1 In+ml In-m l)2_ 41n
2 -1].

4(1 + A) + + 2 + 2 I - A

The functions ¢mn and Xmn have the form (17) and (11) respectively, where K is
given by (18).
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5. Conclusions

The considered systems are completely nondegenerate. On the quantum level this
fact is reflected by the existence of four quantum numbers labelling the energy
levels. They cannot be combined into a single quantum number, i.e. there is no
total quantum degeneracy, i.e. hyperintegrability, with respect to them. As yet it is
not clear for us if some weaker degeneracy does occur. This is to be discussed
later on.
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