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Abstract For 20 years of development, the virtual
distortion method (VDM) has proved to be a versa-
tile reanalysis tool in various applications, including
structures and truss-like systems. This article presents a
summary of principal achievements, demonstrating the
capabilities of the VDM both in statics and dynamics,
in linear and nonlinear analysis. The major advantage
of VDM is its exactness and no need for matrix inver-
sion in the reanalysis algorithm. The influence matrix—
numerical core of the VDM—contains the whole me-
chanical knowledge about a structure, by looking at all
global responses due to local disturbances. The strength
of the method is demonstrated for truss structures.

Keywords Exact structural reanalysis ·
Sherman–Morrison–Woodbury formulas ·
Nonlinear statics and dynamics · System analysis

1 Introduction

The virtual distortion method (VDM) has been ex-
tensively developed since mid-1980s in the Institute
of Fundamental Technological Research (see the au-
thors’ affiliation). The term distortions was adopted
from the book entitled “Theory of elasticity” written
by Nowacki (1970), who used them to model material
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dislocations and to describe thermoelastic interactions.
Then, Holnicki-Szulc and Gierlinski (1989) initiated
the VDM as such, introducing the notion of virtual
distortions and proposing the idea of influence matrix,
which is the essence of the method.

The concept of VDM is similar to the previously
existing approach, mainly initial strains, which was
first theoretically considered by Kroner (1958). Sub-
sequently, Argyris (1965) and Maier (1970) used ini-
tial strains to model the phenomenon of plasticity in
structures. The introduction of an initial strain to the
structure causes disturbance to the total equilibrium
condition. As there is no relation between the imposed
strain and the global response of the structure, the
redistribution of stresses in the initial strains approach
takes place in iterations. This is essentially the differ-
ence between initial strains and VDM, where local–
global relations between elements of the structure are
gathered in the influence matrix and further utilized in
computations. The influence matrix stores information
about the whole mechanical knowledge of the struc-
ture (topology, materials, and boundary conditions).
Thanks to this, the redistribution of stresses due to
introduction of a virtual distortion (equivalent to ini-
tial strain) is performed in simply one step, without
iterations.

The VDM belongs to fast reanalysis methods, which
basically means that a primary response of the structure
(obtained via a finite element method (FEM) analysis)
is further modified by introducing fields of virtual dis-
tortions in a fast and efficient way. It was proved by
Akgun et al. (2001) that there is an equivalence be-
tween the VDM and the general Sherman–Morrison–
Woodbury (SMW) formulas derived in 1949–1950,
telling how to compute efficiently an inverse of a matrix
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subject to a variation. A brief overview of other fast re-
analysis methods can be found in the following section.

The VDM was first applied by Holnicki-Szulc to
induce prestress in elastic structures. His works in-
clude analysis, design (e.g., remodeling), and control
applications (Holnicki-Szulc 1991; Holnicki-Szulc and
Gierlinski 1995). The same formal framework has been
recently used in other applications related to smart
structure technologies, e.g., adaptive structures or in-
verse problems of identification. Static and dynamic
mechanical applications of VDM are demonstrated in
this paper. The VDM can effectively work in the plastic
regime, provided that the nonlinearity is approximated
by piecewise linear sections. The greatest advantage
of VDM is its versatility. It is interesting to note that
the framework of VDM is general enough to solve
problems from other technical fields too, e.g., hydraulic
or electrical engineering, thanks to some analogies.

The purpose of the paper is to demonstrate the
capabilities of VDM by providing an overview of de-
velopments of the method done so far in statics and
dynamics. Sections 5.3 and 5.4 briefly describe new,
unpublished ideas of handling plasticity and mass modi-
fications in dynamics, respectively. However, they were
incorporated into this article for providing a complete
view of VDM at the current stage of development.

One-dimensional models (trusses and beams) are the
most effective in VDM, as the number of distortions
to be imposed in a finite element is small (just one for
trusses and three for beams). Plate or shell elements re-
quire more distortion states and consequently the com-
position of the influence matrix becomes more complex
and time-consuming. Thanks to the analogies between
trusses and nonstructural systems, i.e., water or electri-
cal networks, the VDM has recently been extended to
model these systems. Truss structures are quite popular
in civil engineering, so the method presented in the pa-
per is readily applicable for optimal design and health
monitoring of real structures. For all these reasons,
the strength of VDM is further demonstrated for the
truss model.

2 Overview of reanalysis methods

A few articles (Abu Kassim and Topping 1987;
Barthelemy and Haftka 1993) reviewing the static
methods of structural reanalysis have appeared in the
literature in the last 20 years. The most recent one has
been published by Akgun et al. (2001), who describe
and compare three methods of structural reanalysis—
the combined approximations (CA), theorems of struc-
tural variation (TSV), and VDM. It is shown that

all the methods stemming from structural analysis are
equivalent to the Sherman and Morrison (1949) and
Woodbury (1950) formulas originating from purely
mathematical considerations for linear modifications
of matrices. Akgun et al. admit that the capability of
handling physically nonlinear problems by VDM was
the incentive for them to extend the SMW formulas to
nonlinear range as well. Unlike in VDM, the nonlinear
reanalysis by SMW formulas requires an iteration pro-
cedure (e.g., Newton-like methods).

Fox and Miura (1971) and Noor and Lowder (1974)
presented the idea of the reduced basis approach (also
called the Ritz vector approach in model reduction
or eigenproblem) in structural reanalysis. The point is
that the displacement vector of the modified structure
is approximated with a linear combination of only a
few (significantly less than the number of the degrees
of freedom) linearly independent vectors (similar to
influence vectors in VDM) of a previously analyzed
structure. Kirsch and Liu (1995) continued to develop
the reduced basis idea in his CA method. The basis
vectors in the CA method are calculated from a recur-
rent formula using an inverse of a decomposed stiffness
matrix. The number of basis vectors in reanalysis is
arbitrarily selected, however, rarely exceeding ten even
for large problems. Satisfactory accuracy of response of
the system reanalyzed by the CA method is usually as-
sured with only a few basis vectors. If the basis vectors
come close to being linearly dependent, then the solu-
tion becomes nearly exact. The approach was primarily
developed for linear static analysis. An extension of CA
to geometrically nonlinear problems (Kirsch 2003) is
worth noting.

TSV (Majid and Elliott 1973) are in fact very similar
to VDM and were initiated at the same time. Instead of
applying unit strains for building the influence matrix,
unit loadings are used. Like VDM, the method pro-
vides exact results. The first theorem expresses element
forces and nodal displacements in a modified struc-
ture in terms of forces for the original structure and
forces due to unit loadings. The second theorem con-
cerns analogous expression for displacements. The TSV
method has been extended to 2D (Topping and Kassim
1987) and 3D (Saka 1998) finite elements. Elastoplastic
analysis can be performed by TSV (Majid and Celik
1985), too. No development of the TSV method in
dynamics has yet been done, as far as the authors know.

Deng and Ghosn (2001) develop pseudoforce
method (PM) to perform reanalysis. The concept of
pseudoforces, analogous to virtual distortions in VDM
and pseudoloads in TSV, is used to model structural
modifications. Basing on the SMW formula, which
requires the inverse of an initial stiffness matrix, an
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algorithm is proposed for solving both linear and non-
linear reanalysis problems. It is noted that at some
point of nonlinear incremental analysis, factorization of
the stiffness matrix may be necessary. Otherwise, the
PM solution will prove costlier than a standard solver.
Linear reanalysis of optimal placement of bracing for a
2D frame and an elastoplastic analysis of a bridge deck
are presented.

Bae and Grandhi (2004) use successive matrix inver-
sion (SMI) method for reanalysis of structural systems.
For initialization, the inverse of an initial stiffness ma-
trix K is required. Subsequently, the applied structural
modification �K is decomposed into submodifications
�K j ( j=1, DOF (degree of freedom)), each one with
only the jth nonzero column for the DOF × DOF sys-
tem. This allows for taking advantage of the Neumann
(binomial) series expansion at the element level to
obtain a recursive formula for finding the inverse of the
modified stiffness matrix K + �K instead of inverting
it directly. The SMI method is applied to a truss, frame,
and plate in linear statics. Approximated (not exact)
solutions are obtained.

An approach proposing improvement of accuracy
to the Neumann series expansion was proposed by
Hurtado (2002). To this end, Shanks transformation
(ST) is used to handle large modifications effectively.
A significant improvement compared to the Pade ap-
proximation, described in Chen et al. (2000), is demon-
strated. Comparison with CA shows that the presented
method is equally accurate, however, exhibits faster
convergence with the increase of expansion terms in
the Neumann series. Linear examples of trusses are
presented.

The term reanalysis in the nonlinear range may be
understood in two ways. The first way is the standard
modification to a structural parameter like in linear
problems. The second way is different—it is rather an
improvement (reduction of operations) of the Newton–
Raphson procedure, which performs iterations to
follow a nonlinear path. Examples of the different
understanding of reanalysis are applications of the ST
method and the Leu and Tsou (2000) method.

Most of the existing reanalysis methods in dynamics
concentrate on resolving the modal problem, in which
only modifications to eigenvalues and eigenmodes are
considered. This problem is solved quasistatically in
the frequency domain (no dependence on time is in-
vestigated). A review of some eigenvalue reanalysis
methods can be found in Chen et al. (2000).

Recent methods dealing with reanalysis of the eigen-
problem are generally named in the literature as struc-
tural dynamic modification (SDM). For solving the
SDM problem, Ravi et al. (1998) propose single-step

perturbation method as an alternative to a previously
developed multiplestep perturbation. The single step
approach seems to outrank the multistep one, both
in terms of accuracy for large modifications and com-
putational effort. Yap and Zimmermann (2002) prove
that their iterative SDM method provides better es-
timates of both natural frequencies and mode shapes
than sensitivity-based methods. It can also provide a
reasonable trade-off between accuracy and computa-
tional effort. McDonnell–Douglass test space structure
was used to demonstrate the validity of their approach.
Chen (2006) proposes an efficient iterative SDM for
large modifications of modal parameters, basing only
on limited knowledge of the original mode shapes
(neither the original stiffness nor mass matrix is re-
quired). His noniterative high-order approximation ap-
proach also gives good estimations of the modified
modal parameters. Reduced eigenvalue reanalysis pre-
sented by Grissom et al. (2005) is used to predict the
behaviour of a structure with multiple absorbers on the
basis of the response of the structure without absorbers.
The method is confronted with impedance-based ap-
proaches. The obtained results agree with the ones
produced by the FE code NASTRAN and measured
in experiment. Recently, Kirsch et al. (2006) extended
the CA method to nonlinear dynamic problems. Sim-
ilar to SDM, the CA approach in structural dynamics
is also limited to recalculation of an eigenproblem.
The procedure involves shifts of the basis vectors and
Gram–Schmidt orthogonalizations. The effectiveness
very much depends on a proper choice of the basis
vectors. The approach has been validated against the
FE code ADINA. Huang et al. (2000) propose a
reanalysis method based on Rayleigh–Ritz analysis,
which handles extension of the basis vectors. This en-
ables performance of an eigenproblem reanalysis in
case of topological changes, i.e., addition of members
and joints to the structure. Accuracy highly depends
upon the number of eigenmodes analyzed for the orig-
inal structure. All the above-mentioned SDM methods
neglect the damping matrix in the analysis. With the
perturbation approach, proposed by Cronin (1990) and
Tang and Wang (1996), it is possible to analyze mod-
ifications to the damping characteristics of a structure
as well. The assumption is that the original structure
exhibits classical (proportional) damping, which means
that it has the same modes as the corresponding un-
damped structure. Thus, the perturbation reanalysis
can be performed in the configuration space by using
the known real modes.

The only reanalysis method, known to the authors,
producing a dynamic response in the time domain is
the one based on the dynamic modification method
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proposed by Muscolino (1996). Cacciola et al. (2005)
continue to develop this method proving its numerical
efficiency and accuracy. For performing dynamic analy-
sis, the equations of motion for a classically damped
structure are uncoupled by the modal coordinate trans-
formation, which also reduces the modal space (simi-
larly to the Ritz vector approach). As a result, diagonal
instead of full matrices enter the equations of motion.
The second step is reformulation of the reduced prob-
lem in the state space. A tridiagonal transition matrix
has to be defined. This allows for employing a relatively
simple solution procedure for the state variables involv-
ing operations (including inversions) on tridiagonal ma-
trices. Finding the solution back in the original modal
space is straightforward. For performing a dynamic
reanalysis with this method, an analogous procedure
is used in which the increment of modification has to
be specified explicitly. All other matrices appearing in
the reanalysis are related to the original structure. It is
claimed that nonproportional damping can be handled
by the method by treating it as a system modification.
Accurate results of a response in the time domain with
only five modes in the reduced basis are presented

for a truss structure. Both deterministic and stochastic
loads are considered. The approach fails only for drastic
modifications of the original system, for which the order
of the reduced modal space is not significantly lower
than the original one and the numerical gain vanishes.

3 Virtual distortion method—main idea

In the whole paper, the lowercase subindices refer to
elements in the local coordinate system. The upper-
case subindices refer to nodes in the global coordinate
system. Einstein’s summation rule is used. Underlined
indices are exempt from summation.

A simple two-bar truss has been chosen for demon-
stration of the main idea. Figure 1 schematically depicts
an original structure consisting of two parallel truss
elements, suppressed at the upper common node and
exhibiting identical deformation at the lower common
node. Assume that the left-hand element of the original
structure has been subject to a modification (e.g., due to
a change of its cross-sectional area).

Fig. 1 VDM scheme
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Let us call the corresponding initial strain of the
left-hand element (in isolation, i.e., out of structure)
a virtual distortion ε0

1 . This initially deformed mem-
ber has to comply with the continuity constraints of
the structure. Thus, placing the element back into the
structure provokes a self-equilibrated state of residual
stresses σ R

i and a compatible state of strains εR
i (see the

prestressed structure in Fig. 1).
Then, let us apply external force-type load P to

the analyzed structure. It generates the deformation
denoted by εL

i in the loaded, linearly elastic structure.
Superposing these two states of the prestressed and the
loaded structure, we get, as a result, a distorted structure
(with combination of linearly elastic responses to initial
strains and external load). It is postulated now that (as
marked in Fig. 1) the distorted structure be identical in
terms of final strains εi and internal forces Aiσi with a
modified structure (with modified cross-sectional area
in the left-hand element from A1 to Â1).

Virtual distortions can be used to simulate not only
modifications of material distribution but also material
nonlinearities, i.e., plastic effects.

An arbitrary state of distortions can be uniquely
decomposed ε0

i = ε0c
i + ε0r

i (cf. Holnicki-Szulc and
Gierlinski 1995, see Fig. 1). The component ε0c is re-
sponsible for the compatible, stress-free deformation
of the structure (e.g., caused by homogenous heating
of both elements of the truss) while the component ε0r

causes the self-equilibrated, strain-free stress state in
the structure (e.g., caused by heating of the left element
with simultaneous cooling of the right one). The com-
ponents ε0r

i are presented in Fig. 1 before satisfying the
continuity constraints.

4 Static virtual distortion method

4.1 Influence matrix in statics

The main feature distinguishing VDM from the initial
strains approach is the influence matrix Dij. It describes
strains in the truss member i caused by the unit vir-
tual distortion ε0

i = 1 (unit initial strain) applied to the
member j. The unit virtual distortion is practically im-
posed as a pair of self-equilibrated compensative forces
of reverse signs (equivalent to a unit strain as in Fig. 2)
applied to the nodes of the strained element. The in-
fluence matrix Dij collects m influence vectors, where
m denotes the number of truss elements. To build an
influence vector, a solution of a standard linear elastic
problem by the FEM has to be found:

KMNuN = fM (1)

1

2

3

4 5

E A5 5

ε0

5=1

E A5 5

Fig. 2 Influence of the unit distortion applied in chosen location

with K being the stiffness matrix. Usually, the obtained
displacements serve to calculate a corresponding re-
sponse in strains:

εi = GiNuN (2)

with GiN being the geometric matrix, which transforms
global degrees of freedom to local strains. The response
in strains is a standard for building an influence vector.
However, storage of any other required response is also
useful, i.e., displacements, stresses, or forces.

The external force vector f in (1) corresponds to
two compensative forces (axial forces in case of truss
structures) applied to a structural member, equivalent
with application of a unit strain to the unconstrained
member (see the diagonal element in Fig. 2 after ap-
plying the pair of forces). The response of the structure
to the imposition of the unit virtual distortion ε0

5 = 1 is
depicted by the deformed configuration in Fig. 2.

Thus, to build the influence matrix Dij, m solutions
of a linear elastic problem have to be found. The
set (1) has to be solved with m different right-hand
sides corresponding to m pairs of compensative forces
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applied successively in each structural member. This
way, the influence matrix stores information about the
entire structure properties, including topology, material
characteristics, and boundary conditions in calculation
of structural response.

Note that the static influence matrix for statically de-
terminate structures becomes identity matrix (zero re-
dundancy means no interrelations between members)
and the VDM loses its major tool.

For truss structures, the strain influence matrix Dij

is quadratic, nonsymmetric and singular. Making use of
Betti’s mutual work principle, one can easily prove that
the matrix Aili Di j becomes symmetric, where Ai and li

denote initial cross-sectional area and element length,
respectively. The rank of the m × m, symmetric matrix
is rank[Aili Di j] = m − k, where m and k denote the
number of all elements and the structural redundancy,
respectively. It means that there are m-k linearly inde-
pendent components ε0c

i causing stressless compatible
strains εR

i and k linearly independent components ε0r
r

causing strainless self-equilibrated stresses σ R
i . All non-

vanishing eigenvalues of the matrix Aili Di j are positive,
thus, it is nonnegative definite.

Analogously, one can prove that the influence ma-
trix storing responses in stresses Aili Dσ

i j = Aili Ei(Di j −
δi j) is symmetric, nonpositive definite of the rank
[Aili Di j] = k. Ei denotes Young’s modulus and δij is
the Kronecker’s delta. This matrix (originally called Z)
was introduced by Maier (cf. Maier 1970) and applied
to initial strains approach allowing for elastoplastic
analysis of stress redistribution through a quadratic
programming procedure. In the VDM approach, how-
ever, the distortions β0

j modeling plastic permanent
deformations can be simply determined by solving a
set of linear equations while satisfying the condition
that yield stress be reached in all overloaded members
(cf. Holnicki-Szulc and Gierlinski 1995).

4.2 Stiffness remodeling in statics

Let us confine our considerations to truss structures
in the elastic range first. Let us consider introducing
a field of virtual distortions ε0

j into a truss structure.
This action will induce residual strains and stresses in
the structure, expressed as follows (cf. Holnicki-Szulc
1991; Holnicki-Szulc and Gierlinski 1995):

εR
i = Dijε

0
j (3)

σ R
i = Ei

(
Di j − δi j

)
ε0

j (4)

Assume that application of external load to the struc-
ture provokes elastic linear response εL

i and σ L
i , which

will be superposed with the residual response εR
i and

σ R
i . Thus, in view of (3) and (4), we get:

εi = εL
i + εR

i = εL
i + Dijε

0
j (5)

σi =σ L
i +σ R

i = Eiε
L
i +Ei

(
Di j − δi j

)
ε0

j = Ei

(
εi − ε0

i

)

(6)

Relation between element forces pi and stresses σi is
known via the cross-sectional areas Ai:

pi = Aiσi (7)

Let us now take into account structural stiffness
modifications exemplified by changes of Young’s mod-
ulus. This means considering a modified value Êi. In
view of (6) and (7) we can express element forces in
the modified structure and original structure with intro-
duced virtual distortion field (i.e., distorted structure),
as follows:

p̂i = Êi Aiε̂i (8)

pi = Ei Ai

(
εi − εo

i

)
(9)

The main postulate of the VDM in static remodeling
requires that local strains (including plastic strains) and
forces in the modified and distorted structure are equal:

ε̂i = εi (10)

p̂i = pi (11)

This postulate leads to the following relation:

Êi Aiεi = Ei Ai
(
εi − εi

0
)

(12)

Equation (12) provides the coefficient of the stiffness
change for each truss element i as the ratio of the
modified Young’s modulus to the original one:

μE
i

def= Êi

Ei
= εi − ε0

i

εi
= Âi

Ai

def= μA
i (13)

Note that the coefficient μE
i may be equivalently ex-

pressed as the ratio of the original to modified cross-
sectional area of a truss element μA

i . If μE
i = 1, we deal

with an intact structure. Variation of the coefficient in
the range 0 ≤ μE

i ≤ 1 means reduction of stiffness and
in the range μE

i ≥ 1 increase of stiffness. Substituting
(5) into (13), we get a set of equations for ε0

i , which
must be solved for an arbitrary number of modified
elements (usually small compared to all elements in
the structure), described by a coefficient μE

i different
than 1:
(

Di j − δi j

1 − μE
i

)

ε0
j = −εL

i (14)
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4.3 Plasticity in statics

Virtual distortion field introduced in the structure may
be twofold. We shall distinguish between purely vir-
tual distortions ε0

i (having no physical meaning) used
for modeling structural geometry modifications (e.g.,
changes of cross-sectional area) and plastic-like distor-
tions β0

i used for simulating physical nonlinearities in
the structure. The plastic-like distortions are identified
with plastic strains:

β0
i ≡ ε

pl
i (15)

and have no virtual character. Thus, the plastic behav-
ior of members is effectively included in the strain and
stress formulas in the following way [cf. (5) and (6)]:

εi = εL
i + Dikβ

0
k (16)

σi = Eiε
L
i + Ei

(
Dik − δik

)
β0

k = Ei

(
εi − β0

i

)
(17)

The VDM can be used to model nonlinear constitutive
relation provided that it is piecewise linear (see Fig. 3).

Consequently, let us assume the behaviour of mate-
rial, after reaching the yield limit σ�

i , as a linear section
with inclination γi Ei to the horizontal axis less than the
original Young’s modulus Ei:

σi − σ�
i = γi Ei

(
εi − ε�

i

)
(18)

The coefficient γi determines isotropic hardening of
material. If γi = 0, perfectly plastic behaviour occurs.

ε

σσ

σσ∗

ε,σ

Εγ

Ε

αα

σσ∗

Δβ0

Εγ

Fig. 3 Piecewise nonlinear constitutive law

Substituting (16) and (17) to (18), a local set of equa-
tions is assembled to be solved for plastic distortions β0

i :
(

Dik − δik

1 − γi

)
β0

k = −εL
i + ε�

i (19)

4.4 Example no. 1 in statics

The five-element, 1 × 1 m truss structure, shown in
Fig. 4, has been chosen for demonstration of the VDM
capabilities in statics. All elements have the same
Young’s modulus E=210 GPa and cross-sectional area
A=1.0e-05 m2. The structure is subjected to a static
vertical force of F=2.5 kN in node no. 2. Buckling is not
taken into account.

The strain influence matrix D of the structure and an
equivalent of the stress influence matrix D-I (see static
influence matrix) take the following values:

D =

⎡

⎢⎢⎢⎢
⎣

0.8845 −0.1155 −0.1155 0.2310 0.2310
−0.1155 0.8845 −0.1155 0.2310 0.2310
−0.1155 −0.1155 0.8845 0.2310 0.2310

0.1634 0.1634 0.1634 0.6733 −0.3267
0.1634 0.1634 0.1634 −0.3267 0.6733

⎤

⎥⎥⎥⎥
⎦

D − I =

⎡

⎢⎢⎢⎢
⎣

−0.1155 −0.1155 −0.1155 0.2310 0.2310
−0.1155 −0.1155 −0.1155 0.2310 0.2310
−0.1155 −0.1155 −0.1155 0.2310 0.2310

0.1634 0.1634 0.1634 −0.3267 −0.3267
0.1634 0.1634 0.1634 −0.3267 −0.3267

⎤

⎥⎥⎥⎥
⎦

Note that the degree of redundancy of the structure
is 1, which is also the rank of the stress influence matrix

1

43

21

54

3

2

1 m

1 m

Y

X

Fig. 4 Five-element truss structure for testing VDM algorithms
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Table 1 Results of elimination of three members from the origi-
nal truss structure

εL εR ε ε0

1 –0.664E–03 –0.526E–03 –0.119E–02 0.000E+00
2 0.526E–03 0.397E–03 0.923E–03 0.923E–03
3 0.526E–03 0.397E–03 0.923E–03 0.923E–03
4 –0.744E–03 –0.610E–03 –0.135E–02 –0.135E–02
5 0.938E–03 0.744E–03 0.168E–02 0.000E+00

σL σR σ μ

1 –0.139E+09 –0.110E+09 –0.250E+09 1.000
2 0.110E+09 –0.110E+09 –0.642E-07 0.000
3 0.110E+09 –0.110E+09 0.104E-07 0.000
4 –0.156E+09 0.156E+09 –0.234E-07 0.000
5 0.197E+09 0.156E+09 0.353E+09 1.000

D-I (there is only one state of prestress available for
the truss—all columns of the matrix D-I are linearly
dependent). The rank of the strain influence matrix
D is equal to 4 (there may be four states of strains
accompanying the single prestress state).

Let us first demonstrate how we can quickly remodel
the topology of the structure, simulating elimination of
elements nos. 2, 3, and 4 by virtual distortions. To this
end, the condition μ = 0 is imposed in the mentioned
members. This leads to a set of equations (3 × 3) to be
solved for ε0 in one step [cf. (14)]. The results of the
analysis are presented in Table 1.

The remaining members nos. 1 and 5 form a stati-
cally determinate structure, which can be further op-
timized to become isostatic (i.e., of zero redundancy
and uniformly strained). To achieve this goal in this
example, the stress in element no. 5 should be reduced
(increasing the cross-section by

√
2) to match the stress

in element no. 1.
Next, let us perform an elastoplastic analysis of the

structure, assuming the yield limit σ�=294 MPa, and
perfectly plastic (γ = 0) postcritical behaviour. The
nominal load F is gradually increased by the factor α >

1. Only one member can enter the plastic zone without
violating the integrity of the structure. It is the diagonal
element no. 5. Any other plastic hinge (element) will
provoke kinematic mechanism. The results of the final
stage (just before collapse at α = 1.66 when the other
diagonal no. 4 is very close to the yield limit σ�) are
presented in Table 2.

The use of VDM for optimal static design of
more complex structures, including beams and in-plane
loaded plates, is amply exemplified in Holnicki-Szulc
and Gierlinski (1995).

Table 2 Results of elastoplastic analysis of the truss at the stage
preceding collapse (α = 1.66)

εL εR ε ε0

1 –0.110E–02 0.112E–03 –0.990E–03 0.000E+00
2 0.873E–03 0.112E–03 0.985E–03 0.000E+00
3 0.873E–03 0.112E–03 0.985E–03 0.000E+00
4 –0.124E–02 –0.158E–03 –0.139E–02 0.000E+00
5 0.156E–02 0.325E–03 0.188E–02 0.483E–03

σL σR σ μ

1 –0.231E+09 0.234E+08 –0.208E+09 1.000
2 0.183E+09 0.234E+08 0.207E+09 1.000
3 0.183E+09 0.234E+08 0.207E+09 1.000
4 –0.259E+09 –0.332E+08 –0.293E+09 1.000
5 0.327E+09 –0.332E+08 0.294E+09 1.000

4.5 Example no. 2 in statics

The problem of optimal remodeling of truss structures
in statics, using VDM, was previously presented in
Kolakowski and Holnicki-Szulc (1997). From that arti-
cle, a medium-size truss example was chosen to provide
an insight into topological optimization capabilities of
VDM. The ground structure approach, utilizing a reg-
ular 5 × 5 grid of nodes and considering 300 possible
connections between them, was adopted. To reduce the
computational effort associated with the literal ground
structure, many members (i.e., overlapping and be-
tween supports) were disregarded to start up with only
136 connections. The horizontal-to-vertical aspect ratio
of the grid is 8:5 (24 × 15 m). Uniform cross-section
A=2.55 cm2 is assumed for all initial members.

The problem is posed in a classical manner as finding
the minimum volume of the ground structure subjected

Fig. 5 First optimal topology for the 136-element ground
structure
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Fig. 6 Second optimal topology for the 136-element ground
structure

to one static force P, provided that limit stresses are not
exceeded in any member. An equivalent formulation
of the problem is to find maximum stiffness at constant
volume. It is clear that most of the initial members
should be eliminated in the process of structural remod-
eling and the remaining ones should be resized. For one
load case, presented here, the resultant optimal truss
is an isostatic (i.e., statically determinate, uniformly
stressed) structure. Using VDM-based gradient opti-
mization, two solutions, complying with the require-
ment, were found. The reason for having two solutions
is that the threshold for elimination of members in the
remodeling process—the coefficient of stiffness change
[cf. (13)]—was arbitrarily adjusted in the range 0.05 ≤
μ ≤ 0.10. The first topology, shown in Fig. 5, consists of
only six members and the corresponding final volume
is 80.61 dm3. The second topology, depicted in Fig. 6,
consists of 12 members and the corresponding final
volume is 80.26 dm3. Formally, the performance of the
algorithm was equally good in both cases. However,
from the application point of view, the first topology is
more attractive.

5 Dynamic virtual distortion method

5.1 Influence matrices in dynamics

For dynamic problems, the influence matrix has to be
given one more dimension—time. The imposition of
unit virtual distortion takes place in the first instant of
an analyzed period of time. This corresponds to the
first time step in numerical algorithms, where certain
time discretization is assumed. Similar to statics, the
unit virtual distortion ε0 = 1 in the first time step is
applied to an element as a pair of self-equilibrated com-
pensative forces causing a unit strain of the element,
when taken out of the structure (see Fig. 7). Such action
has the character of an impulse excitation, which is
consecutively imposed in all elements of the structure
to compose the whole influence matrix. In practice,
the response of the structure to the impulse virtual
distortion in element is calculated using the Newmark
integration algorithm over a chosen period of time. We
are interested in two influence matrices, one storing
the structural response in displacements (further de-
noted by Bε) and the other—in strains (further denoted
by Dε).

The above-described influence matrices in dynamics
are full analogies to the influence matrix in statics (ex-
pressed in strains), able to model stiffness changes and
material nonlinearities. The second important parame-
ter in dynamics is inertia and the ability of modeling
mass changes. To this end, another kind of influence
matrices (further denoted by Bp and Dp) must be
introduced. This time the virtual distortions are succes-
sively imposed in degrees of freedom of the structure
(see Fig. 8). The principal difference is that the nodal
virtual distortion has the form of an unequilibrated unit
impulse force, contrary to unit virtual distortion applied

Fig. 7 Impulse virtual
distortion in an element,
showing the process of matrix
Bε , Dε composition
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Fig. 8 Impulse virtual
distortion at a node, showing
the process of matrices Bp

and Dp composition
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as a pair of self-equilibrated forces. This kind of impulse
force distortion at node aims to capture the influence of
inertia on structural response. Again, the response of
the structure to the impulse force distortion at nodes is
obtained by the Newmark algorithm.

It will be demonstrated in subsequent sections that
by establishing the influence matrices, Bε , Dε , Bp, and
Dp, the remodeling of stiffness and mass in the struc-
ture becomes feasible. Nonlinear constitutive relation
can be also accounted for. However, linear geometric
relations (small strains) are assumed.

5.2 Stiffness remodeling in dynamics

In signal processing performed in many fields of engi-
neering, the output response of a system is expressed
as an integral of the product of the input excitation and
transfer function (i.e., system’s response to an impulse
function like Dirac’s delta) over some period of time.

For a simple harmonic oscillator of mass m and nat-
ural frequency ω, the convolution of the two functions
determines the displacement u(t) due to a series of
impulses f (τ )dτ over the time period 〈0, t〉, as:

u(t) = 1

mω

∫ t

0
f (τ ) sin ω(t − τ)dτ (20)

Equation (20) is called the Duhamel’s integral. Its
range of validity is limited by the assumption of
system’s linearity, i.e., exhibiting small strains by a
structural system.

Similar to the Duhamel’s integral, the VDM residual
response in displacement, modeling some modifications
in the structure, can be written as a discrete convolution
of the influence matrix (in displacements) Bε

Mj and vir-
tual distortions ε0

j . Superposing the residual with linear

response (no modifications for an elastic structure), we
get [cf. (5)]:

uM(t) = uL
M(t) +

t∑

τ=0

Bε
Mj(t − τ)ε0

j (τ ) (21)

The summation (not integral) over time in (21)
indicates that the considered period of time 〈0, t〉 was
discretized to use the FEM. For performing time in-
tegration, the authors chose the Newmark algorithm.
Except for the initial conditions at t = 0, all other quan-
tities in the Newmark algorithm are calculated starting
from the first time step onward. Therefore, to be con-
sistent with the numerical integration, (21) should be
formally modified to yield:

uM(t) = uL
M(t) +

t∑

τ=1

Bε
Mj(t + 1 − τ)ε0

j (τ ) (22)

where the summation starts from τ = 1 [cf. (21)].
By using the geometrical relations between displace-

ments and strains [cf. (2)], the latter can be expressed
with the following formula:

εi(t) = GiMuM(t) (23)

For the sake of simplifying subsequent strain and stress
formulas, the following influence matrix (in strains) Dε

ij
is specified:

Dε
ij = GiM Bε

Mj (24)

Using (24), the total strain, composed of the linear and
residual one, can be conveniently written as:

εi(t) = εL
i (t) +

t∑

τ=1

Dε
ij(t + 1 − τ)ε0

j (τ ) (25)
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The corresponding stresses take the following form:

σi(t) = Ei

(
εi(t) − ε0

i (t)
)

= σ L
i (t) + Ei

(
t−1∑

τ=1

Dε
i j(t + 1 − τ)ε0

j (τ )

+
(

Dε
i j(1) − δi j

)
ε0

j (t)

)

(26)

Retrieving the valid static postulate [cf. (12)] of
equivalence between the distorted and modified struc-
ture in terms of strains and internal forces, the following
modification coefficient can be derived:

μE
i

def= Êi

Ei
= εi(t) − ε0

i (t)

εi(t)
= Âi

Ai

def= μA
i (27)

Note that using the formula (27), structural stiffness can
be modified here either as a change of Young’s modulus
or cross-sectional area, analogously to statics. Another
observation is that the coefficient μi, constant in time,
is expressed in dynamics in terms of time-dependent
components εi(t) and ε0

i (t). After reshaping (27), the
system of equations to be solved for virtual distortions
ε0

i is obtained:

[
δij − (1 − μi)Dε

i j(1)
]
ε0

j (t) = (1 − μE
i )ε

�=t
i (t) (28)

where ε
�=t
i (t) denotes strains aggregated in all time steps

preceding the current time instant t:

ε
�=t
i (t) = εL

i (t) +
t−1∑

τ=1

Dε
ij(t + 1 − τ)ε0

j (τ ) (29)

Note that the governing matrix on the left-hand side
of (28) is time-independent, hence, remains constant
throughout all time steps. Only the right-hand side vec-
tor varies. The set is local, i.e., limited to the elements
(in local coordinates), for which stiffness is remodeled.

5.3 Plasticity in dynamics

Obtaining the VDM strain and stress formulas for the
dynamic plastic range can be quickly done by replacing
the virtual distortion ε0

j (t) in (25) and (26) with the
plastic distortion β0

k(t) to produce:

εi(t) = εL
i (t) +

t∑

τ=1

Dε
ik(t + 1 − τ)β0

k(τ ) (30)

σi(t) = Ei

(
εi(t) − β0

i (t)
)

= σ L
i (t) + Ei

[
t−1∑

τ=1

Dε
ik(t + 1 − τ)β0

k(τ )

+
(

Dε
ik(1) − δik

)
β0

k(t)

]

(31)

Like in statics, a piecewise linear constitutive law
(see Fig. 3) is adopted in dynamics, too. This time the
relation is written in the incremental form, enabling to
determine an increment of plastic distortion �β0

k(t) in
every time step:

σi(t) − sign(σ TR
i )σ �

i = γi Ei

(
sign(σ TR

i )�i + �β0
i (t)

)

(32)

The vector σ TR
i in (32) denotes trial stresses, neces-

sary to determine elements entering the plastic zone,
according to the formula:

σ TR
i = Ei(εi(t) − β0

i (t − 1)) (33)

The vector �i in (32) denotes an equivalent (total)
plastic strain at isotropic hardening, expressed as:

�i =
∑

t

∣∣�β0
i (t)

∣∣ (34)

For performing stepwise plastic analysis, the increment
of strains needs to be explicitly specified in the strain
formula (30):

εi(t) = εi(t − 1) + �εi(t) (35)

The strain increment in the current time step is
given as:

�εi(t) = �εL
i (t) +

t−1∑

τ=1

Dε
ik(t + 1 − τ)�β0

k(τ )

+Dε
ik(1)�β0

k(t) (36)

The stresses (31), expressed in the incremental form,
yield:

σi(t) = σi(t − 1) + Ei�εi(t) − Ei�β0
i (37)

Substituting (36) to (37) and reshaping, using (33), we
get a local set of equations (limited to plastic elements),
which has to be solved for �β0

k(t):
[
Ei(1 + γi)δik + Ei Dε

ik(1)
]
�β0

k(t)

= σ TR
i − sign(σ TR

i )
(
σ�

i + γi Ei�i

)
(38)

Equation (38) is known elsewhere as the return map-
ping algorithm for rate-independent plasticity.
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5.4 Mass remodeling in dynamics

The inertia effects (mass remodeling) influencing struc-
tural behaviour are inherent to dynamic analysis. If we
want to account for mass modifications it is necessary
to introduce another quantity—an impulse force distor-
tion p0 (pseudoload). Unequilibrated distortions, each
one in the form of a unit impulse force, are successively
applied to global degrees of freedom, producing a cor-
responding influence matrix Bp (in displacements) or
Dp (in strains)—see dynamic influence matrices. It is
an important distinction from the matrices Bε and Dε,
in which a self-equilibrated pair of forces (equivalent
to a unit strain) was applied. This time, however, it
is necessary to collect the out-of-balance influences to
reflect the changes of inertia.

Equations of motion for the modified structure sub-
ject to a change of mass and the structure modeled by
impulse force distortions are given by:

M̂MNüN(t) + KMNuN(t) = fM(t) (39)

MMNüN(t) + KMNuN(t) = fM(t) + p0
M(t) (40)

Subtracting (40) from (39) we get:

M̂MNüN(t) = MMNüN(t) − p0
M(t) (41)

Equation (41) constitutes the dynamic postulate of
VDM [cf. static postulate (12)], saying that the inertia
forces and accelerations in the modified and distorted
structure are equal. Rearranging (41) leads to:

�MMNüN(t) + p0
M(t) = 0 (42)

where

�MMN = M̂MN − MMN

=
∑

i

(
μ

ρ

i − 1
)

Aiρili
iaT

MK Mel
KL

iaLN (43)

defines a modification of the global mass matrix. The
summation in (43) applies to all finite elements. The
matrix ia denotes a local–global transformation and Mel

is the element consistent mass matrix. The coefficient
μρ defines the ratio of the modified density to the
original one (or the modified cross-sectional area to the
original one):

μ
ρ

i
def= ρ̂i

ρi
= Âi

Ai

def= μA
i (44)

Determination of the influence matrix Bp and
force distortions p0 enables us to express nodal

Table 3 Modifications to the five-element truss structure consid-
ered in dynamic reanalysis

Element μE μρ σ� γ

1 1.00 1.00 294 0.01
2 1.00 1.00 294 0.01
3 0.12 0.22 120 0.01
4 0.62 1.14 210 0.01
5 0.62 1.14 210 0.01

displacements for the mass remodeling problem in the
following way:

uM(t) = uL
M(t) +

t∑

τ=1

Bp
MN(t + 1 − τ)p0

N(τ ) (45)

The corresponding nodal acceleration [second deriva-
tives of (45) with respect to time] takes the form:

üM(t) = üL
M(t) +

t∑

τ=1

B̈p
MN(t + 1 − τ)p0

N(τ ) (46)

Substituting (46) to (42) and rearranging, the following
set of equations is obtained:
[
δMK + �MMN B̈p

NK(1)
]

p0
K(t) = −�MMNü �=t

N (t) (47)

where

ü �=t
M (t) = üL

M(t) +
t−1∑

τ=1

B̈p
MN(t + 1 − τ)p0

N(τ ) (48)

collects the contribution from the preceding time steps.
Note that again [cf. (28)], the governing matrix in (47)
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Fig. 9 Virtual distortions modeling assumed stiffness
modifications
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Fig. 10 Force distortions
modeling assumed mass
modifications. (a) At node
no. 2 and (b) at node no. 4
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is constant in all time steps and only the right-hand side
varies. The set is local, i.e., limited to the degrees of
freedom (in global coordinates) corresponding to the
remodeled mass in neighboring elements.

In combined reanalyses, where both stiffness and
mass changes are considered and the nonlinear con-
stitutive law is adopted (see the following example),
it is necessary to define all relations on the element
level. Therefore, there is a need to define the matrix Dp

(in strains), which is related to Bp (in displacements) as
follows [cf. (24)]:

Dp
iN = GiM Bp

MN (49)
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Fig. 11 Plastic distortions modeling the assumed bilinear consti-
tutive law

The process of mass remodeling at structural nodes
(e.g., modeling an impacting mass) proceeds analo-
gously to the one presented above for elements.

5.5 Example in dynamics

The same five-element truss structure, already pre-
sented for statics (see Fig. 4), is considered in dynamic
reanalysis. Instead of applying the static vertical force,
the structure is excited with an initial vertical velocity of
the value v = 20 m/s applied to node no. 2. The com-
bined analysis was performed, i.e., stiffness and mass
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Fig. 12 Energy balance of the five-element truss
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Fig. 13 Relative error of plastic strains (VDM vs. ANSYS)

remodeling plus nonlinear constitutive law were in-
cluded. The stiffness and mass modification coefficients
as well as plastic parameters are listed in Table 3. The
changes correspond to the replacement of material in
element no. 3 from steel to magnesium and in elements
nos. 4 and 5 from steel to copper.

The components of virtual distortion ε0 modeling
stiffness changes are depicted in Fig. 9. Force distor-
tions p0 corresponding to node nos. 2 and 4 are shown
in Fig. 10a and b, respectively. Five components of
plastic distortions β0 are illustrated in Fig. 11. Energy
balance is shown in Fig. 12. The plastic distortions and
energy balance have been validated against the FE code
ANSYS.

It can be observed in Figs. 11 and 12 that the
VDM-generated curves follow the ones obtained from
ANSYS very closely. For better visualization of dif-
ferences between VDM and ANSYS, a relative error
of plastic strains (with ANSYS results as reference) is
depicted in Fig. 13. The error is 7 per mille for element
no. 3 and less than 2 per mille for other elements.

It should be commented that the simultaneous mod-
ification of stiffness and mass is also possible by varying
only the cross-sectional area. However, it is a special
case because then only one coefficient μ can be used
and the two fields of distortions ε0, p0 are closely
correlated. If independent changes are of interest, it is
convenient to use modifications to the Young’s modu-
lus E for stiffness and density ρ for mass.

Other truss and beam examples were presented
in papers (Jankowski and Wiklo 2006; Kolakowski

et al. 2004, 2006; Swiercz et al. 2006), dealing with
one of the most promising applications of VDM in
dynamic analysis—the inverse problem of parameter
identification.

6 Recapitulation

6.1 General remarks

The VDM has proved to be a versatile tool of structural
and system reanalysis for 20 years of its development.
In the authors’ opinion, the principal advantages of the
VDM, distinguishing it from other reanalysis methods,
are:

– Exact, analytical formulation, capturing all system’s
features in the influence matrix;

– Handling nonlinear constitutive law; and
– Dynamic reanalysis in the time domain en-

abling modification of both stiffness and inertia
parameters.

VDM is an analytical approach, producing exact (not
approximated) results unlike the majority of structural
reanalysis methods presently used. The exactness of
the method is due to the influence matrix capturing
all relations between a local disturbance and global
response of a structure (or system). Any response of
a structure subject to modifications is simply a linear
combination of components of the influence matrix and
virtual distortions (design variables) even for physically
nonlinear problems. The exact formulation of VDM is
especially important in calculating precise sensitivities,
which are subsequently utilized in gradient-based opti-
mization. This feature also enables effective handling of
large modifications of parameters (see Sections 4.4 and
4.5). If the number of design variables to be modified
is small compared to the degrees of freedom, the VDM
solution is fast, as the set of equations to be solved is
always local (referring only to the modified variables).

Inverse of the stiffness matrix is required in VDM
only at the stage of building the influence matrix. For
some applications, e.g., progressive collapse analysis,
only selected influence vectors need to be built, for
others, e.g., identification problems, it is convenient
to have full influence matrix at start. In statics, once
assembled for a structure with some redundancy, the in-
fluence matrix remains constant throughout the whole
reanalysis. Nevertheless, building the full influence ma-
trix, especially for dynamics, may involve some ini-
tial computational cost for large structures. However,
creating the full influence matrix has the advantage
of forming a computational basis for VDM. With this
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matrix and VDM-based analytical sensitivities, various
types of analyses, sometimes addressing really complex
problems (see Section 6.4), can be performed.

As shown in Akgun et al. (2001), reanalysis methods
are variations of the SMW formulas. For VDM in the
linear regime, the equivalence to SMW is restricted
with the condition that only required influence vec-
tors (not the whole influence matrix), corresponding
to the modified locations, are constructed. For physical
nonlinearities, the VDM algorithm progresses without
iterations due to considering a piecewise linear (in par-
ticular bilinear) constitutive law. It seems that for the
extension of SMW formulas to the nonlinear regime,
proposed in Akgun et al. (2001), iterations would not
be necessary either, if an analogous, piecewise linear
relation were assumed instead of a general, nonlinear
one.

Apart from the dynamic modification method
(Muscolino 1996), the VDM appears to be exceptional
in performing dynamic reanalysis in the time domain.
Thanks to considering two fields of virtual distortions—
one modeling stiffness modifications like in statics
and the other modeling mass modifications—various
changes of structural parameters can be effectively
tracked in dynamics. The time-domain dynamic VDM
turns out to be a powerful tool when analyzing com-
bined problems of design and adaptation for structures
subjected to impact loading (see Section 6.4).

Thus far the VDM is basically limited to skeletal
structures. An extension of the method for continuum,
similar to what has been done within the TSV approach
(cf. Saka 1998; Topping and Kassim 1987), will be the
subject of future research.

6.2 Applications of virtual distortion method
to structures

The list of main application areas of VDM in structural
mechanics includes:

• In statics

– Stiffness remodeling (direct problem)—topol-
ogy optimization and

– Piecewise linear constitutive law (direct prob-
lem)—noniterative plasticity.

• In dynamics

– Stiffness remodeling (inverse problem)—
identification of stiffness degradation in
structural health monitoring;

– Mass remodeling (inverse problem)—iden-
tification of dynamic load history; and

– Combined stiffness, mass remodeling, and
piecewise linear plasticity (direct problem)—
optimal design of adaptive structures for dy-
namic loads of known characteristics.

In static analysis, the VDM can be successfully used
for remodeling of structures. Analytically derived sen-
sitivities for trusses (Kolakowski and Holnicki-Szulc
1998) and frames (Putresza and Kolakowski 2001)
are the basis for gradient-based topological optimiza-
tion (Kolakowski and Holnicki-Szulc 1997). Another
useful accomplishment in statics is the ability of ana-
lyzing a piecewise, nonlinear constitutive relation, prac-
tically employed in the progressive collapse analysis
(Holnicki-Szulc and Gierlinski 1995). A preliminary
quasistatic study of optimal design of adaptive struc-
tures was presented in Holnicki-Szulc et al. (1998).
An overview of the VDM in statics can be found in
Holnicki-Szulc and Bielecki (2000).

In dynamic analysis, the VDM, contrary to most
reanalysis methods, is able to model the response of a
modified structure in the time domain. Using stiffness
degradation as a damage modeling parameter, an in-
verse dynamic analysis, examining response due to an
impulse excitation, was proposed for damage identifica-
tion (Kolakowski et al. 2004). This way, the VDM has
been applied to a new field of structural health monitor-
ing. Comparison of performance of the gradient-based
VDM approach with a soft-computing method was
made in Kolakowski et al. (2006). The VDM damage
identification philosophy can also be transferred to the
frequency domain by applying a harmonic excitation
and looking only at amplitudes (Swiercz et al. 2006).
A similar problem of load identification (location and
magnitude) using VDM was successfully handled in
Jankowski and Wiklo (2006). Using VDM, first at-
tempts to evaluate the crashworthiness of structures
(Holnicki and Knap 2004) and to design adaptive struc-
tures (Holnicki-Szulc et al. 2003), effectively dissipating
the energy of impact load, were undertaken. However,
the problems have to be analyzed with the assumption
of nonlinear geometry (large strains) and still remain a
research challenge.

The VDM has been the subject of study of other
researchers, too. Makode et al. (1996) describe an
extension of VDM to frame structures. In their sub-
sequent paper (Makode et al. 1999) (with the name
Pseudo Distortion Method), simultaneous modification
of moment of inertia and cross-sectional area is in-
cluded. Also, the elastoplastic analysis with multiple
hinges in the structure, located either at one or two ends
of the frame element, is presented. In the following
companion paper, the VDM is used to account for
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secondary geometric effects caused by large axial forces
influencing bending moments in frame structures.

Recently, an application of VDM to probabilistic
analysis has been developed. Di Paola et al. (2004) and
Di Paola (2004) use the VDM to model uncertainty of
parameters in truss structures.

6.3 Applications of virtual distortion method
to nonstructural systems

The VDM framework is general enough to encom-
pass problems concerning systems other than structural
as well. This is due to analogies between structural
mechanics and network analysis discovered by Cross
(1936) and to capturing all system’s features in the influ-
ence matrix by VDM. Using the general system theory
(Lind 1962) and oriented graph approach, it turns out
that similar relations govern constitutive, continuity,
and equilibrium conditions for truss structures, water
networks, and electrical networks. Taking advantage
of this fact, the VDM idea, originating from structural
mechanics, was adapted to model both the types of
nonstructural systems.

In Holnicki-Szulc et al. (2005), closed-loop water
networks, assuming a steady-state flow, are modeled
using VDM. For water heads measured in all nodes of
the network, an algorithm for detection of leakage in
the midpoint of a branch was proposed. VDM sensi-
tivity enabled to employ a quadratic programming tool
to solve the problem. As a result, the algorithm gives
the location and intensity of leakage. Multiple leakage
detection is feasible. Continuation of the research will
include precise location of leakage along the branch,
optimal location of measuring nodes, consideration of
transient effects (unsteady flow).

In Kokot and Holnicki-Szulc (2005), closed-loop
electrical networks are modeled using VDM. Static-
like approach with constant current intensities is
proposed. As an extension, quasistatic approach for
harmonic current sources has been developed, where
only amplitudes and phase shifts are analyzed in the
complex numbers domain. Finally, dynamic-like, time-
dependent approach, able to reflect transient behavior
of electrical networks as a response to an impulse
current, is described in Kokot and Holnicki-Szulc
(2006). An “electrical finite element” has been elab-
orated, enabling to perform a FEM-like analysis.
Defects in electrical networks are effectively modeled
in all the mentioned approaches as loss of conduc-
tance in branches. The changes of conductance (de-
fect coefficient) may be tracked in the continuous

range from zero (break in the network) to one (intact
conductance).

6.4 Future challenges

One of the benefits of using VDM is the possibility
of analyzing complex problems. The advantages of the
method mentioned at the beginning of Section 6 allow,
for instance, to consider the following task: “Given a
structure subjected to an impact load in several possible
locations, find its optimal topological design and predict
its best adaptation to the identified load.” The first
part of the problem belongs to topological optimization
as a fully stressed design problem (multiload case),
performed for dynamic loading in the time domain.
The second part belongs to smart structures—assuming
that the location of impact has been identified (by
a sensor), the adaptation of the structure (meeting a
defined criterion) through modification of nonlinear
constitutive characteristics takes place. An example of
such analysis for a truss structure subjected to static
loading can be studied in Kolakowski and Holnicki-
Szulc (1997). Dynamic case will be the topic of a future
paper.
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