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Defect Identification in Electrical Circuits via the Virtual
Distortion Method. Part 1: Steady-state Case

MAREK KOKOT*,** AND JAN HOLNICKI-SZULC

Department of Intelligent Technologies, Institute of Fundamental Technological Research
Swietokrzyska 21, 00-049 Warsaw, Poland

ABSTRACT: Virtual Distortion Method, a numerical technique originally developed and
applied to various optimization problems in structural mechanics, is adapted to DC/AC
circuit analysis. Electro-mechanical analogies with discrete models of plain truss structures
are utilized to introduce and implement the main concepts of the method. Simulation of
conductance modifications in circuit elements by the equivalent set of virtual sources is a
foundation of numerically effective algorithms enabling fast re-analysis and sensitivity analy-
sis. Inverse problem of defect identification is discussed and solution based on distortion
approach is provided.

Key Words: optimization, embedded intelligence, structural health monitoring.

INTRODUCTION

V
IRTUAL DISTORTION METHOD (VDM) (Holnicki-
Szulc and Gierliński, 1995; Kolakowski et al.,

2007) is a technique of fast linear reanalysis, originally
formulated with respect to discrete mechanical systems.
The method introduces the concept of virtual distortions
as certain additional input functions which imitate the
influence of local structural modifications on global
system response. Interpreted as the states of initial
deformations in finite elements, distortions enable to
simulate modifications of various structural parameters
(mass, stiffness, damping) or system nonlinearities (plas-
ticity). Relations between modified parameters, distor-
tions and structural responses are formulated as local
systems of linear equations which can be effectively
computed. Moreover, gradients of response functions
with respect to modification parameters can be derived,
which enable to formulate and solve various optimiza-
tion and inverse problems. The VDM is most effective
when applied to models consisting of simple finite ele-
ments, i.e. truss and frame structures. The method has
been formulated both in statics and dynamics, in dis-
crete-time (Kolakowski et al., 2004) and frequency
domain (Świercz et al., 2008). The scope of applications
in structural mechanics includes progressive collapse
analysis, topological optimization, sensitivity analysis,
damage, and load identification. Recently, an effort
was made to adapt the method to analysis of other

engineering systems. In the paper by Holnicki-Szulc
et al. (2005), an application of the VDM to detection
of leakages in water networks was demonstrated.

This article is intended to be the first part of a two-
part work describing an adaptation of the VDM to elec-
trical circuit analysis. The scope is hereby limited to the
steady-state cases (DC and AC circuits), with the main
focus on introduction and interpretation of VDM con-
cepts based on analogies between circuits and truss
structures. Second part will cover transient analysis in
discrete time domain. The main objective of the work is
to provide a solution for the inverse problem of defect
identification in linear RLC circuits of complex topol-
ogy. The work has been motivated by the development
of Structural Health Monitoring system in which sensing
layer includes an embedded network of electrical sen-
sors. The problem is to identify damage-induced changes
of resistance or capacitance within the network when
outputs of sensors cannot be measured directly. It is
expected that the VDM, formulated in dynamic case,
with it’s ability to define local�global interrelations,
could provide a feasible solution.

TRUSS-CIRCUIT ANALOGIES

In the original formulation, the VDM operates on the
discrete, finite element model of mechanical system.
An important case in the view of further considerations
is the model of a plane truss structure, where only one
type of finite element (truss member) and a single defor-
mation mode (axial strain in elastic range) is considered.
For such a model, a clear and consistent system of ana-
logies with all-resistive circuit supplied by independent
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sources can be formulated. Let consider one-element
truss structure and single-resistor electrical circuit
shown in Figure 1. Truss member of initial length L
and stiffness k is presented in two configurations: sub-
jected to external force P and fixed initial deformation
e0. As a result of the load, the member undergoes defor-
mation and action of internal forces, described accord-
ingly by the strain e and axial force N. In the first load
scenario N¼P while e¼ e0 in the second. Constitutive
relation described by Hooke’s law, relation between
strain and nodal displacements x (in the local coordinate
system) and boundary condition related to the blocked
degree of freedom are gathered in Equation (1).

N ¼ k "; " ¼
x2 � x1

L
; x1 ¼ 0 ð1Þ

On the other hand, an ideal resistor of conductance G
(the reciprocal of resistance) is presented in configura-
tion with a current source J or a voltage source E. The
result of the supply is the state of voltage U and current
flow I in the element. In the first case of supply I¼ J
while U¼E in the second. Constitutive relation
described by Ohm’s law, relation between voltage and
electric potentials v across element terminals and bound-
ary condition related to the grounded node are gathered
in the Equation (2).

I ¼ G U; U ¼ v2 � v1; v1 ¼ 0 ð2Þ

Comparing the above relations, a system of analogous
quantities can be established, where strains correspond
to voltages, forces to currents and nodal displacements
to electric potentials. The analogy complies also with
load/supply conditions (external force $ current
source, initial deformation $ voltage source) and
global rules governing system behavior (equilibrium of
forces in nodes and continuity of deformations along
closed paths $ Kirchhoff’s laws).
In the following analysis, capacitors and inductors

(coils) will be also taken into consideration, although
no mechanical equivalents will be defined. In the general
case, constitutive relations for these elements are
described by integral or differential equations, but in

the steady-state analysis they can be reduced to algebraic
equations (Table 1). In the steady-state DC analysis,
ideal capacitor can be treated as an element of zero con-
ductance (break � no current flow) while ideal coil as an
element of infinite conductance (short-circuit � no volt-
age drop). In the AC analysis, current and voltage,
expressed as complex amplitudes, can be related by the
admittance Y. According to Euler’s formula, sinusoidal
signal of amplitude A, angular frequency ! and phase ’
can be expressed as follows:

xðtÞ ¼ A sinð!tþ ’Þ ¼ Im½Aej’ ej!t� ð3Þ

The quantity A¼A ejf ( j � imaginary unit) is defined as
a complex amplitude. It is a complex number whose
modulus and argument are associated with amplitude
and phase of the signal. In the steady-state of response,
the time factor ejot is the same for all considered signals,
hence all relation can be written with respect to complex
amplitudes. Admittances specific to the elements are:

Yr ¼ G; Yc ¼ j!C; Yl ¼
1

j!L
ð4Þ

In order to illustrate some of the introduced notions,
references to simple exemplary circuit shown in Figure 2
will be made. The circuit consists of 5 resistors (R17R5),
2 capacitors (C1, C2) and a coil L, and is supplied by
the voltage source E and the current source J. Six
nodes have been distinguished, with the node number 1
being grounded.

To describe the topology of the circuit, the notions
of directed graph and incidence matrix M will be
applied. If elements of the circuit are represented by
the edges of fixed orientation, linking pair of adjacent
nodes, then an entry of the matrix Mij¼ 1 denotes that
jth edge enters ith node, Mij¼�1 denotes that the edge
leaves the node and Mij¼ 0 states that the given edge
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Figure 1. Truss � circuit analogy.
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Figure 2. Exemplary circuit.

Table 1. Constitutive relations for different electrical
elements.

Resistor Capacitor Coil

General case i(t)¼Gu(t) iðtÞ ¼ C
duðtÞ

dt
iðtÞ ¼ 1

L

R
uðtÞdt

DC case I¼G U I¼ 0 U¼0
AC case I¼G U I¼ joCU I ¼ 1

j!L U
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and node are disjointed. The assumed orientation of
edges (pointing the node of higher index) establishes
reference for directions of current flow and polarity
of voltage. Figure 3 presents a subgraph obtained
for resistors from the exemplary circuit and the corre-
sponding incidence matrix. Separate matrices for
every kind of source and element will be further
used, with subscript denoting the set of components
the matrix represents (Mr for resistors, Mc for
capacitors etc.).
Incidence matrices enable to formulate relations

between quantities referring to nodes and elements.
Let arrange all quantities in column vectors denoted
by bold small letters: u and i are accordingly vectors of
voltages and currents in elements, v � electric potentials
in nodes, j � intensities of current sources and e � elec-
tromotive forces. The underlined vectors will denote
complex amplitudes (AC case). Making use of the inci-
dence matrices, voltages across elements can be related
with electric potentials:

u ¼MTv ð5Þ

while the product: [M i] enables to sum up currents in
nodes. The constitutive relations can be formulated in
the following way:

DC: i ¼ �Gu; AC: i ¼ �Yu; ð6Þ

Matrices of parameters G (for resistors) and Y (specific
to every passive element) store values of conductances or
admittances on the main diagonals. The negative signs
results from the assumed conventional flow notation:
arrow of voltage points toward higher potential while
current (i.e., movement of the positive charge) flows
toward lower potential.
An approach based on the modified nodal analysis

(MNA) will be used to formulate global system of circuit
equations. The method is founded on Kirchhoff’s cur-
rent law, with electric potentials in nodes assigned as
the unknown variables. The principle of current

equilibrium can be formulated in the following way
(both DC and AC case):

Mr ir þMc ic þMl il þMe ie þMj j ¼ ½0�: ð7Þ

Making use of Equations (5) and (6), currents can be
expressed in terms of nodal potentials. In the DC case,
the following relation is obtained:

MrGMT
r v�Ml il �Me ie ¼Mj j ð8Þ

While currents in coils and voltage sources cannot be
directly related with potentials, they are treated as
unknown variables and additional nodal constraints
are imposed, namely Vj�Vi¼ 0 for coils and
Vj�Vi¼E for voltage sources. Ultimately, the follow-
ing system of equations can be derived:

~G �Ml �M e

MT
l 0 0

MT
e 0 0

2
4

3
5 v

il
ie

2
4

3
5 ¼ Mj j

0

e

2
4

3
5 ð9Þ

where ~G ¼MrGMT
r . In the AC case, the system has the

following form:

~Y �Me

MT
e 0

� �
v

ie

� �
¼

Mj j

e

� �
ð10Þ

where the global matrix of admittance is:

~Y ¼MrYrM
T
r þMcYcM

T
c þMlYlM

T
l

The last step of the procedure is to impose constraints
related with the grounded nodes. At least one node
needs to be grounded (value of potential set to zero) in
order to obtain non-singularity of the main matrix
(which results from the fact that the number of indepen-
dent Kirchhoff’s current laws is less by one then the
number of nodes while Equation (7) has been formu-
lated with respect to all nodes). To implement the con-
dition Vi¼ 0, all entries in the ith row and the ith column
of the main matrix, as well as the ith entry in the exci-
tation vector should be set to zero, except the diagonal
entry of the matrix which should be set to one.

After imposing the constrains, Equations (9) or
(10) can be solved using standard routines and algo-
rithms for systems of linear equations (following the
rules of linear algebra in the complex number domain
in the AC case). The obtained variables (nodal poten-
tials, currents in voltage sources) enable to calculate all
other circuit responses (making use of Equation (5) and
constitutive relations). Not coincidentally, the assumed
system of analogies between trusses and circuits results
in distinct similarities between the MNA and the Finite
Element Method (equivalent unknown variables, aggre-
gation of the main matrices, handling boundary condi-
tions). It can be also noted that the MNA-based

1 2 3

546

1 2

3 4

5

Mr =

−1 0 0 0 0
1 −1 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1

Figure 3. Oriented graph and the corresponding incidence
matrix.
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approach enables to integrate many other electrical com-
ponents (like dependent sources, ideal transformers or
operational amplifiers), but that issue will not be taken
into account in the further considerations.

VDM FORMULATION

Basic notions and definitions of the VDM will be now
introduced with reference to linear model of a plane
truss structure (statically undetermined), subjected to
static load (nodal forces), where small deformations
(elastic range) are assumed. A very simplified descrip-
tion of the method is provided, more information can be
found in the cited references. Global state of nodal
displacements, internal forces, and strains in truss mem-
bers, generated by the external load, is called the linear
response of a structure. If stiffness properties (like
Young’s modulus or cross-sectional area) of some
elements have been modified, then the same boundary
and load conditions would generate the modified
response of a structure. VDM postulates that the influ-
ence of stiffness modifications can be simulated by the
field of initial strains (virtual distortions) imposed on the
original structure. These virtual deformations of
elements generate a certain state of strain/forces called
the residual response. It is assumed that superposition of
linear and residual response is globally equivalent to the
modified response of the structure. The second impor-
tant notion of the VDM is the influence matrix.
The column of the matrix stores the structural responses
on unit distortion imposed on the selected element
(assuming lack of external load and active boundary
conditions). Residual response can be computed as a
linear combination of distortions, where coefficients of
the combination are components of the influence matrix.
Based on the truss�circuit analogy from the previous

section, the concept of electrical distortion can be intro-
duced as a virtual source which imitate the modification
of conductance in the element of a circuit. Following the
analogy, an equivalent to the initial strain e0 would be a
voltage source e0 inserted in series with the element
(Figure 4). However, since the initial strain cannot be
directly included into the FEM-based model of the
system, distortionmay be also considered as a pair of virtual
nodal forces p0 which realize the initial strain (p0¼ ke0).

In this case, the electrical equivalent would be a current
source j 0 inserted in parallel with the resistor.

Voltage and current distortions are interchangeable
( j 0¼Ge0), hence in the further considerations only the
current distortion j 0 will be used. In the MNA-based
formulation of circuit equations, current distortions
are much easier to integrate. Taking into account sys-
tems of Equations (9) or (10), aggregation of voltage
distortions would require to extend system dimension
by imposing the additional nodal constraints, while
aggregation of current distortions requires only to
update the right-hand side vector of excitations. Since
current distortions are inserted in parallel with resistors,
an additional input vector can be formulated as:

z ¼Mr j
0 ð11Þ

Taking into account the superposition principle, the
response of a circuit with imposed distortions can be
considered as a sum of linear response (generated by
real sources) and residual response (induced by distor-
tion). For example, system of Equation (9) with imposed
distortions (and assumed absence of coils and volt-
age sources for the sake of simplicity), would have the
following form:

~G v ¼Mj jþ z ð12Þ

Vector of nodal potentials could be then calculated as:

v ¼ ~G
�1�

Mj jþMr j
0
�
¼ vL þDv j0 ð13Þ

The linear part vL is the response of a circuit in the orig-
inal configuration while the residual part can be consid-
ered as a linear combination of the distortions. Following
the VDM nomenclature, the matrix Dv will be called the
(potential) influence matrix. A column of the matrix can
be interpreted as a vector of nodal potentials generated
by the unit distortion imposed on the selected element
(solution to the system of circuit equations with input
vector equal to the column of incidence matrix Mr). In
the AC case, unit distortion means harmonic current
source of unit amplitude, zero phase, and frequency com-
pliant with real sources.

The concepts of influence matrix and residual
response can be applied to arbitrary circuit responses:

f ¼ fL þDf j0; fL ¼ T vL; Df ¼ TDv ð14Þ

where vector f stores circuit responses of arbitrary kind
(currents, voltages, potentials) and T is a certain matrix
of linear transformation. For example, voltages across
resistors can be calculated as:

u ¼ uL þDu j 0; uL ¼MT
r v

L; Du ¼MT
r D

v ð15Þ

L

L

p p

e

j 0

0
e 0L

0 0

G

G

k

k

Figure 4. Distortions in trusses and circuits.
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The matrices Du (voltage influence matrix) and Df (gen-
eral influence matrix) are important notions in regard to
VDM algorithms. First of them will be used to calculate
the distortions corresponding to the assumed modifica-
tions of conductance while the second to update the
circuit responses.
Having the concepts of linear responses and influence

matrices defined, the relation between the distortions
and the conductance modifications can be now derived.
According to the concept, an element of the modified
value of conductance ~G can be substituted by the ele-
ment of the original value G and the distortion j 0

inserted in parallel. It is assumed that the global state
of circuit responses is the same in both cases. Relations
between the current I and the voltage U across element
terminals can be written as follows:

Modified element: I ¼ � ~GU ð16aÞ

Element with distortion: I� j 0 ¼ �GU ð16bÞ

Assuming equality of currents and voltages, the follow-
ing condition for the value of the distortion can
be obtained:

j 0 ¼ ðG� ~GÞU ¼ ð1� �ÞGU; ð17Þ

where the parameter of conductance modification � is
introduced as:

� ¼
~G

G
ð18Þ

Relation (17) between the distortion j 0 and the modifi-
cation parameter � is not linear as the voltage response
U refers to the modified configuration of the circuit (it
depends on all other introduced distortions). Distortions
are mutually related hence they need to be considered
simultaneously. Equation (17) written in the matrix
form, with the voltage response expressed in terms of
distortions, is as follows:

j0 ¼
�
I� ½l�

�
G
�
uL þDu j0

�
ð19Þ

where I denotes the identity matrix and [l] � the diago-
nal matrix with the parameters � on the main diagonal.
Organizing variables with respect to distortions,
Equation (19) can be transformed into the following
system of linear equations:

A0 j0 ¼ b ð20Þ

where:

A0
¼ I�

�
I� ½l�

�
GDu ð21aÞ

b ¼
�
I� ½l�

�
GuL ð21bÞ

The system of Equation (20) enables to calculate vector
of distortions j0 corresponding to the given vector of
modifications l. The system can be formulated locally,
i.e., it may comprise only the modified elements (for
every mk¼ 1 meaning no modification of conductance
! A0

kj¼ Ikj, bk¼ 0 and immediately j0k¼0). In the AC
case, the system has the same form, but linear responses,
influence matrix and the resulting distortions are
expressed as complex amplitudes.

The basic algorithm of the VDM, which enables
to calculate system responses for the given set of
modifications, is a two step procedure. In the first
step distortions are calculated from Equation (20),
while in the second circuit responses are updated
from Equation (14). To illustrate, let us consider the
exemplary circuit from Figure 2, with the following
values of parameters assumed: R17R5¼ 5 k�,
C1¼C2¼ 1�F, L¼ 2mH. In the DC case, sources are
of constant values E¼ 5V and J¼ 0.002A. In the AC
case, sources are of frequency 1kHz and complex ampli-
tudes E¼ 5 jV and J¼ 0.002A. Suppose that changes of
conductance are introduced into resistors R1 and R3,
described by modifications parameters �1¼ 0.5 and
�3¼ 5 (i.e., the modified values of resistances are ~R1¼

10 k� and ~R3¼ 1 k�).
To calculate the distortions corresponding to the

assumed modifications, the linear voltage responses
and the voltage influence matrix need to be precom-
puted from the model of the original circuit:

uL ¼
UL

1

UL
3

" #
¼

0:625

3:75

" #
Du ¼

3125 �1250

�1250 2500

" #

uL ¼
�3:218 � 0:135j

3:385 þ 0:038j

� �

Du ¼
1672 � 88j �1666 � 18j

�1666 � 18j 1668 � 35j

� �

Columns of influence matrices correspond to voltage
responses on unit distortions imposed in turn on resis-
tors R1 and R3. Substituting modification parameters
and the computed quantities into the system of
Equation (20), the following values of distortions are
obtained:

j0 ¼
0:0002571

�0:0009143

" #
;

j0 ¼
�0:000139 � 0:000006j

�0:001239 � 0:000032j

" #

Let us suppose that a current in the coil and voltages
across both capacitors are of interest in a certain

Defect Identification in Electrical Circuits Via the VDM 1469
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problem. In the DC case, the linear responses and the
general influence matrix are:

fL ¼

IL
UC1

UC2

2
4

3
5¼ �0:000625

4:375
�3:125

2
4

3
5 D f ¼

�0:125 0:25
1875 1250
�625 1250

2
4

3
5

Making use of Equation (14), the updated values of
responses are:

f ¼ fL þDf j0 ¼

�0:000886
3:714
�4:429

2
4

3
5

It can be noted that the VDM may find application as
an efficient method of circuit re-analysis, especially for
large system, where only a few elements need to be mod-
ified and a few responses need to be re-calculated.
The problem reduces to solving two locally formulated
systems of linear equations (calculation of distortions
and the update of responses). The additional numerical
cost related with the calculation of linear responses and
influence matrices is paid only at the initial stage of
calculations. However, the more important application
of the concept of virtual distortions is the possibility to
derive accurate formulas for the gradient of circuit
response and to solve the inverse problem of identifica-
tion. These issues are covered in the next sections.

SENSITIVITY ANALYSIS

An important issue in many optimization problems is
to determine how system responses are influenced by the
minor modifications of structural parameters. In a gen-
eral sense, to perform sensitivity analysis, the gradient of
the response with respect to the selected variables need to
be calculated. In this section, the VDM notions will be
used to find the gradient of an arbitrary circuit response
fi, with respect to the parameter of conductance modifi-
cation �j, for any state of circuit modifications (l 6¼ 1).
The classical formulation of the problem, based on

the definition of the derivative, has the following form:

@fiðlÞ

@�j
¼ lim

��!0

fiðl; �j þ��Þ � fiðlÞ

��
ð22Þ

The above formula provides only numerical approxima-
tion of gradient value, of accuracy strongly dependent
on proper selection of the finite increment ��.
The VDM, making use of relations between system
responses, distortions and modification parameters,
enables to derive accurate analytical formulas.
It has been demonstrated in the previous section that

arbitrary circuit response can be expressed as a linear
function of distortions:

f ¼ fL þDf j0 ð23Þ

The linear responses and the components of the influ-
ence matrix are independent of the introduced
modifications, hence the Jacobi matrix of the first
derivatives of responses with respect to the modifica-
tion parameters l can be calculated from the follow-
ing relation:

@ f

@l
¼ Df @ j

0

@l
ð24Þ

The unknown quantity qj0/ql on the right-hand side
of the equation is defined as a gradient of distortions.
Similarly as the distortions, the components of the gra-
dient are mutually interrelated and need to be consid-
ered globally. To derive the formula for the gradient
of distortions, both sides of Equation (19) need to be
differentiated:

@ j0

@l
¼
@

@l

��
I� ½l�

�
G
�
uL þDu j0

��
ð25Þ

Calculating the derivative of the right-hand side of the
equation and organizing variables with respect to
components of the gradient, the following system of
linear equations can be formulated:

A0 @ j
0

@l
¼ B ð26Þ

where:

A0
¼ I�

�
I� ½l�

�
GDu ð27aÞ

B ¼ diag
n
�G

�
uL þDu j0

�o
ð27bÞ

Matrix A0 is the same matrix as in the system of equa-
tions used to calculate distortions (Equation (21a)). B is
a diagonal matrix dependent on the modeled voltage
response. In the case of original circuit configuration
([l]¼ I), components of gradient of distortions can be
calculated from the simplified relation:

@j0i
@�k
¼

�
�Gi U

L
i for i ¼ k

0 for i 6¼ k
ð28Þ

In order to calculate the gradient of circuit
response, distortions (if necessary) have to be
calculated from Equation (20), then the gradient of dis-
tortions from Equation (26) and in the end, the gradi-
ent of the response can be obtained from Equation (24).
All the above relations have been derived for
the DC case, but are also valid for the AC case
(provided that responses and distortions are expressed
as complex amplitudes and complex derivatives are
considered).
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INVERSE ANALYSIS AND DEFECT

IDENTIFICATION

The concept of virtual distortions is well suited to
formulate and solve inverse problems related with modi-
fications of structural parameters. If the main task is to
identify the modifications of parameters which realize
the desired system performance (system optimization)
or which invoke changes in response conforming with
the behavior of a real system (model calibration, defect
identification), then the problem can be formulated as a
search for the equivalent distribution of distortions and
solved from the transformed system of linear equations
or by means of a gradient-based optimization. This sec-
tion is devoted to the problem of defect identification,
where the term defect should be understood as a modi-
fication of conductance (in a range from break to short-
circuit) in resistive element of a circuit. It is assumed that
input data include full numerical model of the circuit in
the original configuration and a certain set of responses
obtained for the modified configuration. These reference
responses, presumably measured in the real system, may
be of any kind: nodal potentials, voltages or currents in
arbitrary elements. It is also assumed that locations of
defects can be initially limited to selected circuit ele-
ments, although all elements may be considered as well.
Vector of the reference responses f ref (acquired from

the modified circuit) corresponds to a certain unknown
state of modification parameters l, which can be simu-
lated by virtual distortions j0:

f ref ¼ fðlÞ ¼ fðj0Þ ð29Þ

The response of a circuit with imposed distortions can
be decomposed into linear and residual part:

fðj0Þ ¼ fL þDf j0 ð30Þ

The linear responses and the influence matrix are
obtained from the model of the original circuit. By
simple substitution and transformation, the vector of
distortions corresponding to the unknown modifica-
tions, can be calculated as:

j0 ¼ ðDfÞ
�1
ðf ref � fLÞ ð31Þ

Naturally, this operation is allowed and produce a
unique solution only if the influence matrix is square
and non-singular. Hence, the procedure of inverse
analysis based on Equation (31) demands that the
selected reference responses have to fulfill the following
conditions:

1. The number of the reference responses (corre-
sponding to the number of rows in the influence
matrix) is equal to the number of assumed possible

distortion locations (corresponding to the number of
columns).

2. The reference responses depend on the modifications
(they are not determined exclusively by the supply or
boundary conditions).

3. The reference responses are mutually independent
of each other (one cannot be determined from
the others using constitutive relations or Kirchhoff’s
laws).

To explain the second and third condition, let us turn
back again to the exemplary circuit from Figure 2. A full
graph of the circuit comprising all its elements is pre-
sented in Figure 5(a). The third condition requires that
the reference responses cannot include voltages in all
elements comprising a single loop, nor currents in all
elements connected to a single node. Another demand
is that the voltage and current in the same element
cannot be assigned as reference responses if the element
is excluded from the set of possible defect locations. If
these conditions are not satisfied then one or more rows
of the incidence matrix can be expressed as a linear com-
bination of the others (using Kirchhoff’s or Ohm’s laws)
and the matrix is singular. The resulting general rule is
that the number of independent voltage responses is
equal to the number of independent nodes while the
number of independent current responses is equal to
the number of elementary loops. In the full graph of
the exemplary circuit, six nodes and five loops can be
distinguished. However, the second condition postulates
that nodes and loops for which potentials and currents
can be determined from the supply or boundary condi-
tions, need to be excluded (Figure 5(b)). These are nodes
number one (V1¼ 0) and six (V6¼V1þE) and a loop
including the current source J. Additional dependencies
can be pre-determined in the DC case (Figure 5(c)):
the coil introduces a short-circuit (V5¼V4) while the
capacitors introduce breaks (loop currents equal zero).
Altogether, in the DC case there are only three indepen-
dent nodes and two elementary loops, while in the AC
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Figure 5. Graphs of exemplary circuit.
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case there are four nodes and four loops. If possible
defect locations are assumed in all resistive elements
of the exemplary circuit (five unknowns), then five
mutually independent reference responses need to be
assigned. In the DC case the only option is to choose
voltages on three different resistors (or potentials in inde-
pendent nodes) and two currents in every loop. In the
AC case there are eight possible responses to choose
from (four voltages and four currents, provided that
the third condition is not violated).
It was assumed in the above analysis that the numer-

ical model of the circuit and the reference responses are
accurate and error-free. In practice, parameters of cir-
cuit elements are always specified within a certain toler-
ance and reference responses are disturbed by the
measurement errors. Moreover, if the constraints need
to be imposed on the unknowns, then Equation (31)
cannot be used directly to find the solution. However,
the VDM enables to solve the problem iteratively,
through the gradient-based optimization.
Let the vector of distance functions d contain differ-

ences between the responses simulated by a temporary
state of distortions and the reference responses:

d ¼ f ðj0Þ � f ref ð32Þ

The objective function g is defined as the least square
problem:

g ¼ ðdÞHd ð33Þ

where (�)H denotes the conjugate transpose. Function g
is a real-valued function of real (DC case) or complex
arguments (AC case). Optimization variables, in regard
to which function g will be minimized, may be the dis-
tortions j0 or the modification parameters l. In the latter
case, constraints can be easily defined: they may specify
physical conditions (�k� 0), but also expected type
of defects (like �k2 [ 0; 1] in the case of breaks identifi-
cation). Making use of the steepest-descent approach, in
every iteration of the optimization procedure, the mod-
ification parameters are updated according to the fol-
lowing formula:

lðpþ1Þ ¼ lðpÞ � �ðpÞ rg ð34Þ

where p denotes the iteration step and �(p) is a non-
negative factor normalizing the step length. The gradient
of the objective function rg with respect to the modifi-
cation parameters l can be calculated from the follow-
ing relation:

rg ¼ 2
@d

@l

	 
H

d ð35Þ

where qd/ql is the Jacobi matrix of partial derivatives
of the distance functions, equal to the gradient of
response (Equation (24)):

@d

@l
¼
@ f

@l
¼ Df @ j

0

@l
ð36Þ

However, the procedure of gradient-based optimiza-
tion usually also demands that the number of the
assumed defect locations is not greater than the number
of independent reference responses. If not, the
obtained vector of modifications lopt, although mini-
mizes the objective function, may not be equal
with the actual solution (lopt 6¼ l). The corres-
ponding vector of distortions consists then of the addi-
tional components called the impotent states of
distortions:

lopt()j0 þ
X

j0ðimpÞ ð37Þ

j0 represents the distortions corresponding with the
actual solution (j0,l). The remaining components
are called the impotent states because they do not gen-
erate voltage or current response, either globally or
locally with regard to the reference responses.
Impotent states of distortions can be explained on the
base of principle of inserting ideal sources known from
the circuit theory:

. Ideal current sources (current distortions) of equal
intensity inserted in parallel with all elements com-
prising a loop will not affect the state of voltages in
the circuit. This results from the fact that every node
belonging to the loop is connected with two current
sources of opposite direction (which mutually cancel
in Kirchhoff’s current law).

. Ideal voltage sources (voltage distortions) of
equal value inserted in series with every element
connected with the selected node will not affect
the state of currents in the circuit. This results
from the fact that every loop containing the
given node includes two voltage sources of opposite
polarity (which mutually cancel in Kirchhoff’s
voltage law).

Impotent states of distortions may be generated during
the optimization if the set of the assumed defect loca-
tions includes elements comprising a loop or elements
isolating a node. To avoid generation of these specific
configurations of distortions, the set of the reference
responses needs to include current in at least one of
the elements comprising the loop and voltage in one of
the elements isolating the node.
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SUMMARY

It has been demonstrated that the concept of vir-
tual distortions, to the well-defined system of analogies,
can be easily adapted to the steady-state analysis
of simple electrical circuits. Modifications of conduc-
tance can be simulated by the equivalent set of virtual
current sources (distortions) which enable to formulate
effective algorithms for re-analysis, derive a formula for
the gradient of response and solve the inverse problem of
defect identification. However, the procedure of defect
identification for the steady-state cases is limited in the
case of the global approach. If a large number of possible
defect locations is assumed then the same number of inde-
pendent reference responses need to be acquired in order
to solve the problem (measurements of both voltages and
currents might be required). Additionally in the AC case,
since the reference responses are considered to be com-
plex amplitudes, both amplitude and phase of the signal
need to be measured.
A continuation of this work will be implementation of

Impulse Virtual Distortion Method (IVDM) to the tran-
sient analysis in discrete time domain. Combined with the
concept of piezodiagnostic (i.e., the monitored structure is
equipped with piezo-electric sensors registering propaga-
tion of elastic wave), the IVDM enables to solve the
dynamic problem of damage identification (solution
through the gradient-based optimization). The IVDM
not only enables to reduce the required number of sen-
sors, but also to identify other structural modifications

(for example reduction of mass). It is expected that anal-
ogous defect identification procedure may be formulated
for the transient states in electrical circuits.
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Holnicki-Szulc, J. and Gierliński, J.T. 1995. Structural Analysis,
Design and Control by the Virtual Distortion Method, John
Wiley & Sons, Chichester, U.K.

Holnicki-Szulc, J., Kolakowski, P. and Nasher, N. 2005. ‘‘Leakage
Detection in Water Networks,’’ Journal of Intelligent Material
Systems and Structures, 16(3):207�219.
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