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a b s t r a c t

In living cells proteins motilities regulate the spatiotemporal dynamics of molecular pathways.

We consider here a reaction–diffusion model of mutual kinase–receptor activation showing that the

strength of positive feedback is controlled by the kinase diffusion coefficient. For high diffusion, the

activated kinase molecules quickly leave the vicinity of the cell membrane and cannot efficiently

activate the receptors. As a result, in a broad range of parameters, the cell can be activated only if the

kinase diffusion coefficient is sufficiently small. Our simple model shows that change in the motility of

substrates may dramatically influence the cell responses.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Regulatory network process cellular signals in time and space
enabling cell self-organization (see Kholodenko, 2006; Karsenti,
2008 for reviews). The temporal dynamics is coupled with spatial
gradients of concentrations or activity. For example, kinase
cascades can emerge from receptors and transmit signals from
the cell membrane to the nucleus. In this case the gradient of
active kinase activity develops since phosphorylation and depho-
sphorylation proceed at different cellular locations, respectively,
cell membrane and cell volume. Due to the estimations of Brown
and Kholodenko (1999), basing on measured values of protein
diffusion coefficients and phosphatase activities, gradients of
kinase activity are potentially very large. In a simple system in
which kinase molecules are phosphorylated at the cell membrane
and dephosphorylated by a phosphatase molecules located
homogeneously in the cell cytosol (analyzed by Brown and
Kholodenko, 1999) small diffusion implies high gradient and low
kinase activity in the cell center. The problem of receptor–kinase
interaction has been also studied in the context of diffusion with
obstacles in the stochastic numerical simulations of bacterial
chemotaxis (Lipkow et al., 2005). One of the conclusions of
Lipkow et al. (2005) is that crowding results in a fall of the
apparent diffusion coefficient and at the anterior end, where CheY
is phosphorylated, the local concentration of CheYp increases and
therefore accelerates the response of the anterior close motor. At
ll rights reserved.

v.pl (T. Lipniacki).
the other, posterior, end of the cell, the local CheYp concentration
is reduced by the need to diffuse through the obstacles and the
responses of motors in this region is consequently delayed.

Here we consider a similar model to the one analyzed by
Brown and Kholodenko (1999), but assume the mutual recep-
tor–kinase activation. Membrane receptors can bind extracellular
ligands, that leads to cascade of molecular processes inside the
cell and formation of the active receptor complex. In many cases,
receptor activation requires phosphorylation. Almost all G-protein
coupled receptors (GPCRs) are regulated by phosphorylation,
see Tobin (2008) for review. Engagement of immunoreceptors
(TCR, BCR, FcR) leads to activation of different members of the
Src kinase family, which includes Lck (for T-cell, Housden et al.,
2003), Fyn and Lyn (for B and mast cells, Gauld and Cambier,
2004). Src kinases then phosphorylate immunoreceptor tyrosine-
based activation motifs (ITAMs) contained within the immunor-
eceptors themselves or in receptor-associated molecules, see
Abram and Lowell (2007) for review. This may lead to positive
feedback, in which active receptors send signal to kinase and in
turn are activated by the same kinase species or by one of the
downstream kinases. In this study we consider the simplest
situation, in which receptors are activated by the same kinase
species they activate.

We will show, that in the case of mutual receptor–kinase
activation, in a broad range of parameters controlling the process,
the cell becomes activated only if the kinase diffusion is
sufficiently small. For large diffusion, the activated kinase
molecules quickly leave vicinity of cell membrane, and the
positive feedback coupling kinases with receptors becomes
inefficient.

www.sciencedirect.com/science/journal/yjtbi
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2. Model formulation

As said, we will assume that membrane receptors bind
extracellular ligands, that leads to a cascade of processes and
receptor activation. At constant extracellular cytokine concentra-
tion, a steady state uniform surface concentration of ligand-bound
receptors P ¼ const is established. We will consider two cases.
Firstly, following Brown and Kholodenko (1999) we will assume
that all ligand-bound receptors are active. Secondly, we will
assume that the limiting step in the formation of the active
receptor complex is its phosphorylation by the kinase. In turn,
active receptors may activate kinase molecules, that defines the
positive feedback in the regulation process. The activated kinase
may freely diffuse over entire cell volume, where they are
inactivated by uniformly distributed phosphatases.

The cell will be modeled geometrically as a ball Bð0; r0Þ of
radius r0, centered at the origin of the coordinate system. We
restrict to the spherically symmetric case and we will use the
following notation:

Kðt; rÞ the concentration of the active kinase
Q ¼ const the total concentration of the kinase
RðtÞ the surface concentration of the active receptors
P ¼ constthe total surface concentration of the ligand bound

receptors (active and inactive)
FK ðtÞ the flux of the active kinase

The active kinase concentration satisfies

@K

@t
¼ d1r

2K � b1K , (1)

where b140 is the kinase dephosphorylation rate due to the
action of uniformly distributed phosphatases. The flux of the
active kinase results from its phosphorylation by the surface
receptors implying the Robin type boundary condition,

FK ¼ a1RðQ � KbÞ ¼ d1nðrKÞb, (2)

where n is a unit vector normal to cell surface and subscript b

denotes the boundary value for (r ¼ r0).
As already mentioned, regarding the receptors activation we

will consider two different cases:
(1)
 Case without feedback i.e. when activity of the receptors is
independent of intracellular processes, but is controlled by
binding and dissociation of some extracellular ligand (present
at the constant concentration). In such a case we may assume
that all the bound receptors are persistently active, i.e.
RðtÞ ¼ const ¼ P.
(2)
 Case with feedback, in which we assume that the limiting step in
the receptor activation is its phosphorylation by the kinase, that
defines the positive feedback in receptor–kinase activation,

dR

dt
¼ a2KbðP � RÞ � b2R. (3)
In the further consideration we will assume that all the reaction
rate coefficients, a1, a2, b1, b2, and diffusion constant c1 are
positive. In the non-dimensional units t ¼ tb1, r ¼ r=r0, Eq. (1)
reads

@K

@t
¼ dr2K� � K�, (4)

where d ¼ d1=ðb1r2
0Þ plays the role of the non-dimensional

diffusion coefficient and K� ¼ K=Q . We may thus rewrite Eqs. (2)
and (3) as

aR�ð1� K�bÞ ¼ dnðrK�Þb, (5)
dR�

dt
¼ qK�bðP

�
� R�Þ � bR�, (6)

where a ¼ a1P=b1, R� ¼ R=ðr0Q Þ, q ¼ a2Q=b1, b ¼ b2=b1 and
P� ¼ P=ðr0Q Þ. From now on, for the sake of simplicity all the
asterisks will be omitted. Let us notice that r 2 ½0;1�, K 2 ½0;1�,
R 2 ½0; P� and a, b, d, q and P are real and non-negative.
3. Results

3.1. Limit of infinite diffusion d!1, K ¼ KðtÞ, R ¼ RðtÞ

For the infinite diffusion, the active kinase concentration is
uniform, and the system of Eqs. (4)–(6) is equivalent to the system
of two ordinary equations, for KðtÞ, RðtÞ,

dK

dt ¼ 3aRðtÞð1� KðtÞÞ � KðtÞ, (7)

dR

dt
¼ qKðtÞðP � RðtÞÞ � bRðtÞ. (8)

Formally, we can obtain the above system by integrating Eq. (4)
over the ball Bð0;1Þ and using the Gauss theorem. Let us note
that the compact region D:¼½0;1� � ½0; P� is invariant with respect
to the flow generated by the above system. That is to say, if
fKð0Þ;Rð0Þg 2 D, then for arbitrary tX0, fKðtÞ;RðtÞg 2 D. System
(7)–(8) has two steady states: fK1;R1g ¼ f0;0g and fK2;R2g,
where

K2 ¼
3qaP � b

qð3aP þ 1Þ
; R2 ¼

3qaP � b

3aðbþ qÞ
. (9)

For bo3qaP the steady state point fK2;R2g is stable, while the
point fK1;R1g is unstable, for bX3qaP, K2o0, R2o0 and the point
fK2;R2g is unstable, while the fK1;R1g is stable. In other words,
restricting to subdomain D, the system has one stable steady state
f0;0g, for bX3qaP, or fK2;R2g for bo3qaP.

In the case without the feedback (i.e. when RðtÞ ¼ P), Eq. (7)
can be solved analytically,

KðtÞ ¼ Kð0Þ �
3aP

3aP þ 1

� �
exp½ð1þ 3aPÞt� þ 3aP

3aP þ 1
(10)

and has unique stable state K3 ¼ 3aP=ð1þ 3aPÞ:

3.2. Finite diffusion—steady state analysis

3.2.1. Case without feedback

In spherical coordinates Eq. (4) reads

@K

@t
¼ d

1

R2

@

@R
R2 @K

@R

� �
(11)

and has unique steady state solution

KðRÞ ¼ KcðeaR � e�aRÞ

2Ra
, (12)

where a ¼ d�1=2 and Kc ¼ Kð0Þ. Using Eqs. (5) (with R ¼ P) and
(12) we may calculate boundary value Kb ¼ Kð1Þ

Kb ¼
aPa2ðe2a � 1Þ

ð1þ a� aa2P þ e2aðaþ aa2P � 1ÞÞ
(13)

and then

Kc ¼ 2Kba=ðea � e�aÞ ¼
2aPa3ea

ð1þ a� aa2P þ e2aðaþ aa2P � 1ÞÞ
. (14)

In the limit of infinite diffusion a! 0, the active kinase
distribution is uniform, KðRÞ � Kc , with Kc ¼ K3. The total amount
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of active kinase Ktot is

Ktot ¼ 4p
Z 1

0
R2KðRÞdR ¼ 4pKc

a coshðaÞ � sinhðaÞ
a3

. (15)

Differentiating Kb, Kc and Ktot several times with respect to a,
one can show that for a40 and P40:
(1)
Fig.
diffe

a ¼ P
Kb is a monotonically increasing function of a ¼ d�1=2 and

(2)
 Kc and Ktot are monotonically decreasing functions of a.
Large diffusion enhances the flux of the active kinase from the
cell membrane towards the cell center. Thus, as one could expect,
both Kc and Ktot are growing functions of diffusion coefficient.
Simultaneously, the active kinase concentration close to the
boundary decreases with increasing diffusion, Fig. 1.

3.2.2. Case with feedback

In the case with feedback the spatial profile of KðRÞ is the same
as in the case without feedback; Eqs. (5) and (6) give us two values
of Kb (or Kc ¼ Kb � 2a=ðea � e�aÞ) corresponding to one stable and
one unstable steady state solution

Kc1 ¼ 0; Kc2 ¼
2aeaðbe2a

ð1� aÞ � bðaþ 1Þ þ qaPa2ðe2a � 1ÞÞ

qðe2a � 1Þð1þ a� aa2P þ e2aðaþ aa2P � 1ÞÞ
.

(16)

The stable solution KðRÞ is given by

KðRÞ ¼ KcðeaR � e�aRÞ

2Ra , (17)

where Kc ¼ maxðKc1;Kc2Þ, i.e. for Kc240 the stable solution is
positive, while for Kc2o0; KðRÞ � 0. The global stability (with
respect to a perturbation without spherical symmetry) of KðRÞ
solution is proved in Appendix A.

Let us note, that in the limit of the infinite diffusion coefficient
d!1, i.e. a! 0, KðRÞ � Kc ¼ K2 and thus one obtains the same
solution as given in Eq. (9). In the opposite limit d! 0 (i.e.
a!1), Kb ¼ 1, Kc ¼ 0, Ktot ¼ 0. In further analysis we set q ¼ a ¼

P ¼ 1, and consider the steady state kinase activity profiles with
respect to two non-dimensional parameters: a ¼ d�1=2 and b

(receptor inactivation constant).
In Fig. 2 we analyze the dependence of the stable steady state

KðRÞ on the diffusion parameter a ¼ d�1=2. With respect to the
1. The case without feedback. Profiles of active kinase concentration KðrÞ for

rent values of a ¼ d�1=2. For all plots the remaining parameters are fixed:

¼ 1.
receptor dephosphorylation coefficient b, we may distinguish
three cases, shown in Panels A–C. For small b (Panel A), the
dependence of active kinase concentration profiles KðRÞ on a is
similar as in the case without feedback; the larger is a, the steeper
is the active kinase profile, with higher value at the boundary and
the lower value in the cell center. Qualitatively different is the
case shown in Panel B for larger values of b. For b ¼ 2:5, the active
kinase concentration is higher across the whole cell for some
finite diffusion (a ¼ 2) than for the infinite diffusion (a ¼ 0). In the
case of large dephosphorylation parameter (Panel C, b ¼ 4) for
infinite, or large diffusion, KðRÞ � 0, while for smaller diffusion
KðRÞ40. This somehow surprising effect is due to the fact that the
strength of positive feedback is controlled by the diffusion. For
small diffusion activated kinase remain longer in the vicinity of
the membrane and may activate the receptors more effectively.

In Figs. 3A and B we analyze KbðaÞ and KcðaÞ for four different
values of b. As can be expected, Kb is a growing function of a. For
small b, Kc decreases with growing a (as in the case without
feedback); however, for larger b, KcðaÞ has a maximum for some
amðbÞ40. The existence of such an ‘‘optimal’’ am is due to interplay
of two counter-effects:
(1)
 large diffusion (small a) speeds translocation of active kinase,
so they have a larger chance to remain phosphorylated until
they reach the cell center
(2)
 simultaneously large diffusion attenuates the positive feed-
back coupling kinases with receptors.
In contrast to the case without feedback, the total amount of
active kinase KtotðaÞ for large b has maximum for some
a0mðbÞ4amðbÞ40. Let us note also, that both a0mðbÞ and amðbÞ are
growing functions of b, diverging logarithmically to infinity
with b.

As shown in Fig. 4 there are unbounded parameter domains Dc

and Dtot in ða; bÞ plane for which, respectively, Dc:¼Kcða; bÞ �
Kcð0; bÞ40 and Dtot:¼Ktotða; bÞ � Ktotð0; bÞ40. Since for finite
diffusion KbðaÞ4KcðaÞ: Dc � Dtot . In the case of the infinite
diffusion ða ¼ 0Þ, the positive solutions Kðr;a; bÞ40 are
restricted to domain bo3. In the case of finite diffusion, for
arbitrarily large b there exists such aðbÞ that Kðr;a; bÞ40.
4. Discussion

Dynamics of molecular pathways is determined by both,
chemical reaction rules and localization of substrates that in turn
is governed by diffusion or transport. We considered here a simple
theoretical model of mutual receptor–kinase activation in which
the kinase molecules are phosphorylated by the receptors at the
cell membrane and may freely diffuse in the cell volume, where
they are dephosphorylated with time- and space-independent
dephosphorylation rate. The positive feedback, considered in the
model, arises since activated kinase may in turn activate
receptors.

In the case without feedback, active kinase concentration in
the cell center and the total amount of active kinase are
monotonically growing functions of diffusion coefficient. How-
ever, the presence of the positive feedback causes that the
concentration of the active kinase in the cell volume is a non-
trivial function of the diffusion coefficient. The active kinase
concentration in the cell center depends on the two opposite,
diffusion controlled effects: the kinase activity profile along the
cell radius is flatter for large diffusion and the strength of positive
feedback controlling active kinase concentration at the boundary
is stronger for small diffusion. As a result in a broad range of
parameters a; q; P and b controlling mutual kinase–receptor
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Fig. 2. The case with feedback. Profiles of active kinase concentration KðrÞ for different values of a ¼ d�1=2. Three qualitatively different cases corresponding to three

different value of non-dimensional receptor dephosphorylation rate b are considered: Panel A (b ¼ 1;a ¼ 0;2;4), Panel B (b ¼ 2:5;a ¼ 0;2;4) and Panel C

(b ¼ 4;a ¼ 0;3:5;6). For all plots the remaining parameters are fixed: q ¼ a ¼ P ¼ 1.

Fig. 3. The case with feedback. Concentration of active kinase at the boundary Kb (Panel A), in the cell center Kc (Panel B) and total amount of active kinase Ktot (Panel C) as

a function of a ¼ d�1=2. For all plots the remaining parameters are fixed: q ¼ a ¼ P ¼ 1.
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activation and inactivation rates the maximum value of the active
kinase concentration in the cell center is reached for some finite
value of the kinase diffusion coefficient. Moreover, for the large
receptor inactivation rate (bX3qaP) the active kinase concentra-
tion is everywhere zero for the infinite diffusion, but it is positive
for the sufficiently small diffusion. Interestingly, for constant a; q

and P, even for arbitrarily large inactivation coefficient b, there
exists a positive steady state solution for the active kinase
concentration if the diffusion is sufficiently small.

In living cells the diffusion and thus spatiotemporal localiza-
tion of substrates can be controlled in a number of ways.
Molecules can bind to a larger molecules of lower motility called
buffers, or to the cell membrane and other structural elements
directly or with help of the, so-called, anchoring proteins. On the
cell membrane receptors can form larger complexes of lower
motility, or get localized within lipid rafts. Relevant to our model,
cell membrane can create microdomains which trap signalling
molecules, like Lck kinase, that activates TCR receptors (Douglass
and Vale, 2005). Major simplification of our study is that it does
not account for macromolecular crowding and presence of
diffusion obstacles within the cell (organellen, cellular structures).
The macromolecular crowding may have non-trivial effect on
molecular association in the cell, possibly increasing its rate by
limiting the volume in which molecules are free to diffuse (see
Minton, 2001; Zimmerman and Minton, 1993).

Our simple model provides an example in which diffusion
controls the strength of the feedback regulation and thus the
dynamics of kinase activation. In the considered model, for a
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Fig. 4. The case with feedback. Dependence of active kinase concentration in the cell center (Panel A) and total amount of active kinase (Panel B) with respect to a ¼ d�1=2

and non-dimensional receptor dephosphorylation rate b. In Panel A we may distinguish three domains in (a;b) plane in which respectively, Kcða; bÞ ¼ 0;

Dc ¼ Kcða; bÞ � Kcð0;bÞ40; Dcp0. In domain Dc40, isolines of Dc are shown. Similarly, in Panel B we may distinguish three domains in which respectively,

Ktotða; bÞ ¼ 0; Dtot ¼ Ktotða; bÞ � Ktotð0; bÞ40; Dtotp0. In domain Dtot40, iso lines of Dtot are shown. For both plots the remaining parameters are fixed: q ¼ a ¼ P ¼ 1.

B. Kazmierczak, T. Lipniacki / Journal of Theoretical Biology 259 (2009) 291–296 295
broad range of parameters the cell can be activated only when the
kinase diffusion coefficient is sufficiently small, i.e. when reacting
kinases and receptors are well collocalized that enablestheir
mutual activation.
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Appendix A. Stability of spherically symmetric solutions

Let eKðrÞ and eR ¼ const denote the spherically symmetric
stationary solution of system (4)–(6). For the initial data not
coinciding with ðeKðrÞ; eRÞ, the solution ðKðx; tÞ;RðtÞÞ to system
(4)–(6) will be in general different, i.e.

Kðx; tÞ ¼ eKðrÞ þ dKðx; tÞ; Rðx; tÞ ¼ eRþ dRðx; tÞ.

Our task here is to examine the asymptotic in time behavior of the
functions K and R. We will confine here to initial data preserving
the positivity of the functions K and R. The equations for dR and
dK read

@dK

@t ¼ dr2dK � dK

inside the sphere and

ddR

dt ¼ qdKbðP � eRÞ � ðqeKb þ bÞdR� qdKbdR,

adRð1� eKbÞ � aeRdKb � adRdKb ¼ cn � rdKb

on the sphere. Here we used the fact that eR and eK satisfy system
(4)–(6). For �40 an arbitrarily small positive number, let

dk ¼ dK exp �t; dr ¼ dR exp �t. (18)

Then, the above equations can be written as

@dk

@t ¼ dr2dk� ð1� �Þdk, (19)

ddr

dt ¼ qðP � eRÞdkb � ðqeKb þ bþ qdkb expð��tÞ � �dr, (20)
adrðx; tÞð1� eKbÞ ¼ dn � rdkþ aðeRþ drðx; tÞ expð��tÞÞdkb. (21)

The idea of the stability proof is to construct a time independent
sub- and supersolution pairs: ð�dr�; dk�Þ and ðdrþ; dkþÞ. As �40
this will prove that dRðx; tÞ and dKðx; tÞ tend to 0 as t!1.

Let

dK	ðrÞ ¼ 	dK	bfðr;a�Þ, (22)

where a� ¼ ð1� �=dÞ1=2 and

fðr;aÞ ¼ ðe
aR � e�aRÞ

Rðea � e�aÞ
. (23)

Let us recall that f is an increasing function of r and fð1;aÞ ¼ 1
for all a 2 ð0;1Þ. In fact

eKðrÞ ¼ eKbfðr;a0Þ. (24)

Let

dK�b ¼
eKb �cð�Þ, (25)

where cð�Þ & 0 as �! 0. This function will be specified later. It
follows from (23) and (24) and the continuity of the function
fðr;a�Þ with respect to the parameter � that if Kðx;0Þ4Z40 for
jxjp1, we can find �40 so small that

Kðx;0Þ4eKðrðxÞÞ � dK�bfðrðxÞ;a�Þ40

for all x inside the sphere. Let dKþ be at least so large that
Kðx;0ÞoeKðrðxÞÞ þ dKþbðrðxÞÞ, implying that dKðx;0ÞodKþbðrðxÞÞ.
Let

WR ¼
qðP � eRÞ

qeKb � qdK�b þ b� �
¼

qðP � eRÞ
qcð�Þ þ b� �

. (26)

We will assume that

dR	 ¼ dK	bðWR þ �Þ. (27)

Let us note that as

ðP � eRÞ=eR ¼ b=ðqeKbÞ, (28)

it follows from Eq. (27) that

dR� ¼ eR� C2cð�Þ þ eC2�þ oðcð�ÞÞ þ oð�Þ (29)

for some positive constants C2 and eC2. If, for small �X0,
cð�Þ=�XC340 with C3 sufficiently large, then dR�oeR. On the
other hand, for any Rð0Þ40 we can find �40 sufficiently small
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such that Rð0Þ4eR� dR�. Obviously, we may also choose dKþ so
large that Rð0ÞoeRþ dRþ.

Let

dr	 ¼ dR	; dk	b ¼ dK	b. (30)

Let dk	ð�Þ be constant in time spherically symmetric solutions to
Eq. (19):

dk	ðrÞ ¼ 	dk	bfðr;a�Þ. (31)

We will prove that ð�dr�; dk�Þ and ðdrþ; dkþÞ defined in (30) and
(31) are, respectively, the sub- and supersolution pairs for system
(19)–(21). So, after putting dr ¼ �dr� in Eq. (20) we infer that the
right hand side is positive if dkbX� dk�b. In the similar way, after
putting dr ¼ drþ in Eq. (20) we infer that the right hand side is
negative if dkbpdkþb. It follows that if dkþXdkðx; tÞX� dk� at the
boundary, then drðx; tÞ 2 ð�dr�; drþÞ. We have thus to prove the
corresponding properties of the functions dk� and dkþ with
respect to Eqs. (19)–(21). First, as we said, the functions dk	ðrÞ
satisfy Eq. (19). So, to prove that dk�, defined in (22) is a
subsolution it suffices to show, as ðdk�Þ0jB ¼ wð1� �=dÞð�dk�bÞ,
that for all drðx; tÞ 2 ð�dr�; drþÞ we have

drðx; tÞð1� eKb þ dk�bÞX�
eRdk�b � a�1w

1� �
d

� �
dk�b. (32)

(See Pao, 1992, Chapter 2. Note that the coefficient by dkb in (21) is
positive.) Here

wðsÞ ¼ f;rðr ¼ 1; sÞ

is smooth and monotonically increasing function of s for sXð2dÞ�1.
As dk�b ¼ dK�boeKb then, putting drðx; tÞ ¼ �dr�, we conclude
that inequality (32) is implied by the inequality:

ð1� eKb þ dK�bÞ
qðP � eRÞ

qeKb � qdK�b þ b� �
þ �

" #
oeRþ a�1w

1� �
d

� �
,

where we used (27). Now, due to (28), ðP � eRÞ=eR ¼ b=ðqeKbÞ. Hence,
we obtain the condition:

bð1� eKb þ dK�bÞ=ðqeKb � qdK�b þ b� �Þ þ O1ð�Þ

oeKb þ
eKbeR a�1w

1� �
d

� �
.

As the spherically symmetric solution satisfies the equality

aeRð1� eKbÞ ¼ w
1

d

� �eKb (33)

then

bð1� eKb þ dK�bÞ=ðqeKb � qdK�b þ b� �Þ þ O1ð�Þ

oeKb þ ð1� eKbÞw
1� �

d

� �
w

1

d

� �� ��1

peKb þ ð1� eKbÞð1� nð�ÞÞ

for some given smooth function n. Using (25) we arrive at the
inequality

bð1�cð�ÞÞ
ðqcð�Þ þ b� �Þ

þ O1ð�Þo1� ð1� eKbÞnð�Þ.

This inequality can be satisfied if only cð�ÞXCð�þ nð�ÞÞ with C40
sufficiently large.

In the last step we have to prove that drðx; tÞð1� eKbÞpðeRþ
drðx; tÞ expð��tÞÞdkþb þ a�1wð1� �=dÞdkþb for all drðx; tÞ 2
ð�dR�; dRþÞ. As dkþb ¼ dKþb40 and dR�oeR then dKþbð
eRþ

drðx; tÞÞ40 for drðx; tÞ 2 ð�dR�; dRþÞ. Thus we have only to prove
that drðx; tÞð1� eKbÞpa�1wð1� �=dÞdKþb. Obviously, it suffices to
show it for dr ¼ drþ. Let us recall that

drþ ¼ dKþbðWR þ �Þ ¼ dKþb
qðP � eRÞ

qcð�Þ þ b� �
þ dKþb�.

Hence we have to prove that

qðP � eRÞ
qcð�Þ þ b� �

þ �

" #
ð1� eKbÞoa�1w

1� �
d

� �
.

Using (28) and (33) we obtain as before that we have to satisfy the
condition

b

qcð�Þ þ b� �
þ Oð�Þo

w
1� �

d

� �
w

1

d

� � .

This is implied by the inequality:

b

qcð�Þ þ b� �
þ Oð�Þo1� nð�Þ,

where nð�Þ ! 0 as �! 0. As before, this condition can be satisfied,
if only cð�ÞXCð�þ nð�ÞÞ with C40 sufficiently large. Finally, taking
into account what we have shown and using Theorem 2.1.2 from
Pao (1992), we come to a conclusion that �dr�odrðx; tÞodrþ and
dk�ðrðxÞÞpdkðx; tÞpdkþðrðxÞÞ for all t 2 ð0;1Þ.

So, due to definition (18) we conclude that dKðx; tÞ and dRðx; tÞ
tend to zero in the supremum norm as t!1.

We have thus shown that, if the initial data Kðx;0Þ and Rð0Þ are

positive, then the solution ðKðx; tÞ;RðtÞÞ to system (4)–(6) tends to the

unique spherically symmetric solution ðeK; eRÞ as t!1.
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