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In this paper an extension of the Rusinek–Klepaczko (RK) constitutive relation is presented. The new for-
mulation proposed, allows defining the phase transformation effect observed on macroscopic scale using
a phenomenological approach. The key point is to introduce in the original formulation of RK model a
new stress component based on evolution of martensite, which takes into account strain, strain rate
and temperature effects. Analytical predictions of the extended constitutive relation are compared with
experimental results for 301Ln2B steel. This material is chosen since the phase transformation is well
observed during quasi-static loading inducing a strong increase of strain hardening rate during plastic
deformation. Satisfactory agreement between analytical and experimental observations has been
obtained. The phenomenological extension of RK model allows to reduce substantially the computational
time in comparison with models based on physical background, for example [Papatriantafillou I, Agoras
M, Aravas N, Haidemenopoulos G. Constitutive modeling and finite element methods for TRIP steels.
Comput Methods Appl Mech Eng 2006;195:5094–114]. At the same time, the number of material con-
stants defining the extended RK model is reduced. Seven constants are needed to identify the RK model
in its original formulation and five are added for the description of phase transformation process.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Austenitic steels are of frequent use in several engineering
fields, like civil protections, naval structures and others, mostly
due to their excellent mechanical properties in terms of high hard-
ening rate, large ductility and toughness [2–8]. Under well defined
conditions in terms of stress, strain, strain rate and temperature,
these steels reveal phase transformation from austenite to mar-
tensite. When phase transformation is induced by plastic deforma-
tion, the process is known as TRIP (transformation induced by
plasticity) and it has recently achieved a great industrial interest,
as it is revealed by large number of papers recently published,
for example [9–16]. In order to model the phase transformation
phenomena, several constitutive relations can be found in the
international literature [17–25]. The most relevant seems to be
the approach by Olson and Cohen [9]. This model called OC was la-
ter generalized to take into account the stress state effect [10],
strain rate [11] and stress state for stacking fault energy [12]. A
use of these kind of physical models in FE codes results in long
computational time causing limiting industrial applications since
ll rights reserved.

: +34 91 624 9430.
ez-Martínez).
these constitutive relations are coupled with a homogenization
method as proposed by Aravas [26].

Thus, in the present paper a phenomenological extension of the
constitutive relation due to Rusinek and Klepaczko, called RK mod-
el [27] is proposed to take into account the phase transformation
phenomena. The model reported in the present paper allows
obtaining satisfactory agreement with experimental results. The
original version of the RK model coupled with the fully implicit
algorithm [28] has been previously used by solving numerically
several dynamic problems, for example [29–34]. Combination of
the extended RK model and the implicit algorithm allows for
reduction of computational time in comparison with OC model
coupled to the algorithm introduced by Aravas [26]. Those conclu-
sions were reported in [35] after comparison of both constitutive
relations, OC model coupled with an homogenization method
[26] and RK extended model coupled with a fully implicit algo-
rithm [28], using ABAQUS/explicit. Short computational time and
simple formulation makes the extended RK constitutive relation
very attractive for numerical applications in industry, where the
phase transformation in austenitic steels might be dominant, for
example perforation, crash box behaviour or high speed machin-
ing. However, the application of this approach does not provide
information about microstructure evolution during plastic
deformation.

mailto:<xml_chg_old>jarmarti@ing.uc3mes</xml_chg_old><xml_chg_new>jarmarti@ing.uc3m.es</xml_chg_new>
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2. Kinetics of phase transformation and application to modeling

The presence of the phase transformation in austenitic steels
during plastic deformation strongly depends on temperature,
Fig. 1a. In fact, only under certain loading conditions of strain rate
and initial temperature the phase transformation appears.

The phase transformation process can be decomposed in three
parts as a function of temperature, Fig. 1a. For temperatures low
enough, the phase transformation appears instantaneously with-
out plastic deformation (domain A). For intermediate range of tem-
peratures, the phase transformation is induced by plastic
deformation (domain B). For higher temperature levels, the resid-
ual austenite remains stable and no phase transformation is
observed.

But also the strain rate exercises a great influence in that pro-
cess. When austenitic steels are subjected to high strain rate load-
ing, the adiabatic conditions of plastic deformation induce a high
temperature increase in the material slowing down or completely
eliminating the phase transformation. It is shown in Fig. 1b that for
a moderate strain rate level, _�ep ¼ 500 s�1 the phase transformation
does not appear at room temperature.

The knowledge of the kinetics of the phase transformation is of
great interest in several industrial processes as those already men-
tioned, for example, crash box behaviour. Such structures are com-
monly used in the automotive industry. They allow absorbing a
large amount of energy during direct impacts or collisions.

The main role of phase transformation process in this kind of
application is to increase the yield stress level in comparison with
steels without phase transformation. Such technological operation
is carried out by introduction of a plastic pre-strain into the steel
sheet, Fig. 1a. The maximum effect of plastic pre-strain observed
in this kind of structure is close to �ep ¼ 0:1. This operation carried
out by an extra rolling allows avoiding failure in the sheet due to
an excessive plastic deformation. An analysis of this problem has
been conducted previously by Durrenberger et al. [36]. Due to qua-
si-static bending process applied to the steel sheet after pre-strain,
in order to form an ‘‘omega” shape, Fig. 2b, additional phase trans-
formation effect can appear.

For crash box application it is necessary to define correctly the
behaviour of austenitic steel in a range of strain rates varying in the
following limits: _�e � 10�3 s�1 to _�e � 1000 s�1. As previously re-
ported, during dynamic loading, due to high temperature increase
by adiabatic heating, the austenite remains stable and no phase
transformation is observed [12,37]. Thus, the phase transformation
must be introduced in modeling before the crash test application.
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Fig. 1. (a) Schematic description of phase transformation; (b) phase transformation with
[11].
3. Formulation of the constitutive relation and parametric
study of the phase transformation kinetics

The RK constitutive relation [27] is a semi-physical approach
taking into account the effects of work-hardening, �ep, strain rate,
_�ep and absolute temperature, T, on the flow stress �r. It has been
previously verified by identification of the thermo-visco-plastic
behaviour of several metals as reported in [29,31,34].

3.1. Formulation of the extended RK constitutive relation

In the original formulation of the model, Appendix A, the total
stress is decomposed into two terms. The internal stress
rlð�ep; _�ep; TÞ and the effective stress r�ð _�ep; TÞ, both components
are multiplied by temperature-dependent Young’s modulus
EðTÞ=E0 [38]. Such operation takes into account the temperature
softening of the crystalline lattice [39]. The original formulation
of the RK model is given in Appendix A, [27]. In the present work,
a third stress component rTð�ep; _�ep; TÞ is added to the RK constitu-
tive relation, which allows approximation of the phase transforma-
tion effect using a phenomenological approach. The third
component rTð�ep; _�ep; TÞ depends on plastic strain �ep, strain rate _�ep

and temperature, T.
Thus, the general form of the extended RK model is given by Eq.

(1)

�rð�ep; _�ep; TÞ ¼
EðTÞ
E0
½rlð�ep; _�ep; TÞ þ r�ð _�ep; TÞ� þ rTð�ep; _�ep; TÞ: ð1Þ

The third term in Eq. (1) is not normalized by the temperature-
dependent Young’s modulus.

In order to define the phase transformation effect observed in
experiments the following expression for rTð _�ep; �ep; TÞ is introduced,
Eq. (2)

rTð _�ep; �ep; TÞ ¼ r0 � f ð _�ep; �epÞ � gðTÞ: ð2Þ

The first multiplier r0 is a fitting parameter which allows defining
the maximum of stress increase due to phase transformation,
Fig. 3. The multiplier can be estimated by mechanical testing. The
value of r0 must be identified at the lowest temperature of interest
or the lowest temperature of experimental data available. The best
solution is performing mechanical testing at T < MS. Thus, it corre-
sponds to the maximum phase transformation observed and there-
fore to the maximum stress level exhibited by the material. The
stress components rTð _�ep; �ep; TÞ is split into two independent func-
tions, the effect of plastic strain and strain rate during phase trans-
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

Vo
lu

m
e 

fra
ct

io
n 

of
 m

ar
te

ns
ite

, f
 m

Nominal strain, ε

80 K

225 K

255 K

270 K

285 K

300 K
315 K
345 K

b

plastic deformation for different initial temperatures in dynamic loading, 500 s�1,



Fig. 2. Prestrain history; (a) specimen dimensions after pre-strain process [36], (b) omega box after bending [36].
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Fig. 3. Mechanical behaviour of different phases [12].

J.A. Rodríguez-Martínez et al. / Materials and Design 30 (2009) 2513–2520 2515
formation, f ð _�ep; �epÞ and the thermal reduction of the rate of phase
transformation g(T).

In case of adiabatic condition the constitutive relation is cou-
pled with heat equation, Eq. (3),

Tð�ep; �rÞ ¼ T0 þ
b

qCp

Z
�rð�ep; _�ep; TÞd�ep; ð3Þ

where b is the Taylor–Quinney coefficient, q is the density of the
material, Cp is the specific heat and T0 is the initial temperature.
Transition from isothermal to adiabatic conditions in steels is as-
sumed at _�ep ¼ 10 s�1 [40]. However, it is possible to include the
thermodynamics of phase transformation process as it is reported
in details in [37] in order to describe more precisely the tempera-
ture increase.

3.2. The effect of plastic strain and strain rate on the phase
transformation kinetics

To define the influence of strain and strain rate in the phase
transformation, the following function f ð _�ep; �epÞ is applied, Eq. (4).
The expression for f ð _�ep; �epÞ is similar to the relation with logistic
function used in [41,42] to propose phenomenological description
of plastic softening of material during the development of multi-
scale shear banding. Therefore, the proposed phenomenological
description of the plasticity and strain rate effects is given by

f ð _�ep; �epÞ ¼ ½1� expð�hð _�epÞ�epÞ�n: ð4Þ

One function, hð _�epÞ, and one material parameter, n, are introduced
to approximate behaviour of an austenitic steel during the process
of phase transformation. Thus, hð _�epÞ is defined as being strain-rate
dependent in agreement with experimental observations. A de-
crease of hð _�epÞ with plastic strain, Eq. (4), allows reducing the rate
of the phase transformation by diminishing its intensity and delay-
ing its starting point, Fig. 4a. Concerning the coefficient n, it controls
the strain level where the phase transformation is observed on the
macroscopic scale by r–e form. The phase transformation starts at
determined initiation point of strain, Fig. 4b.

A parametric study is shown in the following curves to define
how the shape of hð _�epÞ changes with k and the influence of n value
on the kinetics of the phase transformation, Fig. 4a and b.

In order to define the influence of strain rate in the phase trans-
formation process, the following relation in the form of Eq. (5) is
proposed. It is observed that an increase of k, Fig. 5, decreases
the strain rate level where the phase transformation is annihilated.
This coefficient can be identified using the experimental data in
terms of macroscopic behaviour on the form of r–e curve

hð _�epÞ ¼ k0 expð�k _�epÞ; ð5Þ

where k0 and k are two shape fitting parameters which define the
strain rate dependency on the phase transformation.

The effect of adiabatic temperature increase in dynamic condi-
tions is taken into account in the model via the strain rate depen-
dency of the flow stress.

In the following section the relation which defines the effect of
initial temperature on the kinetics of phase transformation is
discussed.

3.3. Definition of the effect of temperature in the phase transformation
kinetics

Two formulations are proposed to define the influence of initial
temperature on the phase transformation phenomena, Eqs. (6) and
(7).

3.3.1. Temperature function based on MS and MD values
The first expression proposed g1(T), Eq. (6), is based on the rela-

tion proposed by Johnson and Cook [43] and similar to the formu-
lation used to describe phase transformation process, for example,
by Papatriantafillou et al. [1]

g1ðTÞ ¼ 1�Hn if T � MS ! g1ðTÞ ¼ 1;

H ¼ T�Ms
MD�MS

� �
if T � MD ! g1ðTÞ ¼ 0;

(
ð6Þ

where H ¼ ðT �MSÞ=ðMD �MSÞ is the normalized temperature. The
current temperature is T, MS is the martensite-start temperature
and MD is the temperature at which the martensite cannot be in-
duced, no matter how much the austenite is deformed [2]. The val-
ues of MS and MD must be obtained from experiments in quasi-
static conditions. Moreover, g is the temperature sensitivity of the
phase transformation.

A parametric study concerning g has been conducted in order to
show the effect it has on the kinetics of phase transformation,
Fig. 6a. As it is shown, Fig. 6a, it allows for description of the inten-
sity and level of phase transformation depending on the initial
temperature, T0, in qualitative agreement with experimental
observations, Fig. 6b, [11].
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3.3.2. Temperature function based on exponential function
The second expression proposed g2(T), Eq. (7), is an exponential

type equation similar to that reported by Mahnken et al. [25] and
originally proposed in [44]
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experimental results [11].
g2ðTÞ ¼ exp � T
MD � To

� �a� �
ð7Þ

where T is the current temperature, To and a are material constants.
The expression proposed is depending on MD but not on MS as pre-
viously. The MD value must be obtained from experiments in quasi-
static condition. For a given MD there is just one possible combina-
tion of To and a values which fit the requirements of the phase
transformation process, ðif T � MD ! g2ðTÞ ¼ 0Þ. For example in
the case of MD = 300 K, the parameters To and a take the values
80 K and 5, respectively, Fig. 7.

Thus, this type of function g2(T) is less flexible in comparison
with g1(T) to define temperature effect. However, it allows defining
temperature effect in the whole range of initial temperatures with-
out imposing any restriction. It facilitates numerical computation.
4. Validation of the constitutive relation and comparison with
experimental results

Analytical results of generalized model are compared with
experiments for 301Ln2B steel [45]. This steel has been chosen
since the process of phase transformation is well exposed by r–e
curves at different initial strain rates, Fig. 8.
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Considering the results shown in Fig. 8, it is observed a satisfac-
tory agreement between experimental results and analytical pre-
dictions for a wide range of strain rates within the range:
0:006 � _�ep � 920 s�1. However, no comparison of the constitutive
modeling with experimental results is conducted in terms of tem-
perature sensitivity due to the lack of data for the material
considered.
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5. Analytical predictions of the modified RK constitutive
relation

Using the phenomenological approach introduced in this paper,
it is possible to approximate the influence of strain, strain rate and
temperature on flow stress during plastic deformation together
with phase transformation. Comparison between analytical predic-
tions using original and generalized formulation of RK constitutive
relation is shown in Fig. 9a and b. The results obtained using gen-
eralized formulation for different initial strain rate levels demon-
strate the annihilation of phase transformation with strain rate
increase, Fig. 9b.

In the following plot, Fig. 10a and b, is shown the response of
the constitutive relation when a jump on strain rate is imposed
at room temperature. In the case of a jump of strain rate from qua-
si-static to dynamic loading the model predicts correctly the anni-
hilation of the phase transformation process when adiabatic
conditions are reached.

In the opposite case, if the jump is conducted from dynamic to
quasi-static strain rates, the model predicts the appearance of
phase transformation process due to isothermal conditions.

The analytical predictions of the model in quasi-static condi-
tions for several initial temperatures T0, in the case of g1(T) using
g = 1, and g2(T) using To = 80 K and a = 5 are shown in Fig. 11a
and b. A qualitative agreement was found with the experimental
observations for several austenitic steels, Fig. 11c, [46]. When a cer-
tain value of initial temperature is high enough, the phase transfor-
mation is annihilated, Fig. 11a. The level of phase transformation
increases when the temperature is close to MS, Fig. 11a and b.

In the case g1(T) using g = 1, evolution of the rate of strain hard-
ening hð�epÞ ¼ o�r=o�ep with plastic deformation for different normal-
ized temperatures H is shown in Fig. 11d. An increase of strain
hardening rate is observed during the phase transformation until
a maximum is reached. This maximum is lower with an increase
of the initial temperature. When the maximum is exceeded, the
strain hardening rate starts to decrease continuously. Finally, it
reaches a value close to the one which corresponds to strain hard-
ening curves which previously have not shown the phase
transformation.

6. Identification of material constants

It should be noticed that the functions gi(T) have not been cali-
brated for the material considered due to the absence of experi-
mental data at different initial temperatures, gi(T) = 1. In further
analyses gi(T) should be taken into account in order to obtain a
complete fitting of the material behaviour. The following values
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of material constants, determined to account for the phase
transformation in 301Ln2B at room temperature using experimen-
tal results [45], are given in Table 1. Those constants were imple-
mented into the modified RK model. The constants used to
define the original formulation of RK model are given in Table 2.
In order to determine the material constants cited in Table 1,
the first stage is to suppose absence of phase transformation dur-
ing plastic deformation. Next, the stress level is artificially in-
creased with plastic deformation step by step after the point of
initiation of the phase transformation, Fig. 12, by using a strain



Table 1
Additional material constants defining phase transformation for 301Ln2B steel.

r0 (MPa) n k0 k

500 17 10 4

Table 2
Values of material constants in the original RK constitutive relation for 301Ln2B steel
without phase transformation.

B0 (MPa) n0 (–) m (–) D2 (–) e0 (–) r�0 (MPa) m* (–) D1 (–)

1380 0.41 0.1 0.05 0.018 488.33 1.66 0.52
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Fig. 12. Schematic representation of the method to determine the values of
material constants in modified RK model using experimental results published in
[45].
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hardening initial curve obtained in quasi-static loading. This first
step allows defining the hardening rate of material via the internal
stress rlð�ep; _�ep; TÞ .

Subsequently, it is defined the dependency presented by yield
stress Bð _�ep; TÞ and hardening coefficient nð _�ep; TÞ on strain rate. This
process is performed using stress–strain curves obtained for a
strain level lower than phase transformation initiation point as
shown in Fig. 12. Details concerning the process to obtain the val-
ues of material constants entering in the original formulation of
the RK model can be found in [34]. Finally, the phase transforma-
tion effect is found by a quantitative analysis of the new stress
component rTð�ep; _�epÞ, Fig. 12. This is performed by subtracting
the total stress �req from the contribution of the internal stress
rlð�ep; _�ep; TÞ and the effective stress r�ð _�ep; TÞ .

The number of material constants for the generalized model is
not large. The total number is 12. It is also possible to determine
explicitly the mathematical forms of the first derivatives of each
stress components, Appendix B, which is useful for implementa-
tion of the constitutive relation into a FE code as reported in
[30,31].

7. Conclusions

A phenomenological generalization of the RK model is reported
in this paper. It includes behaviour of materials with phase trans-
formation during plastic deformation as a function of strain, strain
rate and temperature, rTð _�ep; �ep; TÞ. The key point of this general-
ized model is introduction of the shape function f ð _�ep; �epÞ which
approximates extra stress variations due to the phase transforma-
tion. The strain hardening and strain rate effects during phase
transformation agree with experimental observations. To take into
account the effect of initial temperature two different expressions
have been defined, gi(T), based on expressions available in the open
literature and in agreement with experimental observations.

An advantage in comparison with more sophisticated models
for phase transformation process is the reduced number of con-
stants. Another advantage is a simple way to determine all values
of those material constants, the total number is twelve. In addition,
the implementation into a FE code of this kind of phenomenologi-
cal approach is relatively simple. It also allows for reduction of the
computational time.
Appendix A. Complete formulation of the extended RK
constitutive relation

�rð�ep; _�ep; TÞ;¼ EðTÞ
E0
½rlð�ep; _�ep; TÞ þ r�ð _�ep; TÞ� þ rTð�ep; _�ep; TÞ ; ðA:1Þ

	 EðTÞ ¼ E0 1� T
Tm

exp h� 1� Tm

T

� �� �� 	
; ðA:2Þ

	 rlð�ep; _�ep; TÞ ¼ Bð _�ep; TÞðe0 þ �epÞnð
_�ep ;TÞ; ðA:3Þ


 Bð _�ep; TÞ ¼ B0
T

Tm

� �
log

_emax

_�ep

 ! !�m

; ðA:4Þ


 nð _�ep; TÞ ¼ n0 1� D2
T

Tm

� �
log

_�ep

_emin

* +
; ðA:5Þ

	 r�ð _�ep; TÞ ¼ r�0 1� D1
T

Tm

� �
log

_emax

_�ep

 !* +m�

; ðA:6Þ

	 rTð _�ep; �ep; TÞ ¼ ra
0 � f ð _�ep; �epÞ � gðTÞ; ðA:7Þ


 f ð _�ep; �epÞ ¼ ½1� expð�ðk0 expð�k _�epÞÞ � �epÞ�n; ðA:8Þ


 g1ðTÞ ¼ 1� T �MS

MD �MS

� �g

; ðA:9Þ


 g2ðTÞ ¼ exp � T
MD � To

� �a� �
: ðA:10Þ
Appendix B. Derivatives of the new stress component for
implementation into FE code
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