RECENZJA

rozprawy doktorskiej mgr inż. Andrzeja Świercza

pt.: Identyfikacja defektów w konstrukcjach prętowych na postawie Metody Dystorsji Wirtualnych w domenie częstości

Podstawę formalną opracowania niniejszej recenzji stanowi Uchwała Rady Naukowej Instytutu Podstawowych Problemów Techniki PAN z dnia 25 października 2007 powołującą opiniującego na recenzenta rozprawy doktorskiej mgr inż. Andrzeja Świercza pt.: Identyfikacja defektów w konstrukcjach prętowych na postawie Metody Dystorsji Wirtualnych w domenie częstości.

1. OCENA ROZPRAWY DOKTORSKIEJ

Przedmiotem oceny jest praca mgr inż. Andrzeja Świercza pt.: Identyfikacja defektów w konstrukcjach prętowych na postawie Metody Dystorsji Wirtualnych w domenie częstości opublikowana w postaci zwartej (druk). Praca liczy 98 stron i zawiera 75 pozycji bibliografii.

OGÓLNA CHARAKTERYSTYKA PRACY

Praca pt.: Identyfikacja defektów w konstrukcjach prętowych na postawie Metody Dystorsji Wirtualnych w domenie częstości liczy 98 stron i składa się z sześciu rozdziałów, bibliografii i spisu treści.

W rozprawie przedstawiono Metodę Dystorsji Wirtualnych, która w tym przypadku została sformułowana w dziedzinie częstotliwości (metoda jest oznaczana w dalszej części recenzji przez VDM–F). Metodę VDM–F wykorzystano do identyfikacji uszkodzeń w konstrukcjach prętowych.
Cele prace zostały przedstawione w punkcie 1.4 rozprawy. Jak już wyżej wspomniano głównym celem rozprawy było opracowanie metody VDM–F bazującej na _Metodzie Dyspersji Wirtualnych_. Doktorant wychodząc ze sformułowania _Metody Impulsowych Dyspersji Wirtualnych_ (VDM–T), która jest skuteczna lecz czasochłonna, opracował bardziej skuteczne narzędzia analizy zagadnień odwrotnych, czyli właśnie metodę VDM–F.

Doktorant osiągnął cel pracy, ponieważ z jego obliczeń wynika, iż czas analizy zagadnień odwrotnych metodą VDM–T jest o dwa rzędy dłuższy w porównaniu z proponowaną w rozprawie metodą VDM–F. Jednakże jednocześnie stwierdził, że w przypadku stosowania proponowanej w rozprawie metody VDM–F wymagana jest większa liczba sensorów a ponadto sensory muszą być umieszczone w całym obszarze analizowanej konstrukcji.

Opracowana w rozprawie metoda VDM–F jest przystosowana do wykorzystywanych w analizie identyfikacji uszkodzeń algorytmów _Metody Dyspersji Wirtualnej_ oraz do _Metody Elementów Skończonych_. Algorytmy wspomnianych wyżej metod pozwalają na wyznaczanie pól dystorsji wirtualnych modelujących zmiany parametrów konstrukcji a także wrażliwości tych pól i identyfikacji różnych parametrów.

Ważnym celem pracy było rozwiązanie zagadnienia odwrotnego, które w tym przypadku służy do identyfikacji defektów. Cel ten został osiągnięty poprzez identyfikację parametrów strukturalnych i rozwiązanie problemu optymalizacji gradientowej.

Ważnym celem pracy była weryfikacja numeryczna a przede wszystkim eksperymentalna, proponowanej metody. Doktorant wyraźnie wskazał na zalety tej metody we wnioskach końcowych.

Ważna jest też motywacja podjęcia badań. Z informacji przedstawionej na str. 12 wynika, że opracowana metoda będzie wdrożona do systemu monitorowania stanu technicznego mostów stalowych a wstępne testowanie systemu nastąpi na obiekcie rzeczywistym (moście kolejowym w Nieporęcie).

Do najważniejszych osiągnięć Doktoranta zaliczam:

(a) przystosowanie _Metody Dyspersji Wirtualnych_ do zagadnień drgań ustalonych konstrukcji (wraz z analizą wrażliwości pól dystorsji wirtualnych)

(b) sformułowanie problemu identyfikacji uszkodzeń konstrukcji obciążonej siłami harmonicznymi (po zastosowaniu gradientowych metod optymalizacji otrzymano rozkład modelowanych parametrów)
(c) opracowanie programów komputerowych na podstawie algorytmów uszkodzeń dla VDM–F (wykonano obliczenia ram płaskich i kratownicy przestrzennej z uwzględnieniem utraty masy i sztywności)

(d) pomyślnie przeprowadzenie weryfikacji doświadczalnej metody na przykładzie kratownicy przestrzennej.

Oceniając merytoryczną wartość pracy pragnę także wyrazić opinię, iż Autor w pełnym wymiarze zrealizował postawione we wstępię do rozprawy zadanie naukowe. Autor przeprowadził pogłębioną analizę wyników obliczeń numerycznych porównując wyniki z eksperymentem. Wnioski wskazują na prawidłowość funkcjonowania opracowanych przez Autora algorytmów i programów komputerowych.

UWAGI KRYTYCZNE

Na str. 16: Autor zapisał uwagę, że: *Zadanie modelowania układu MES staje się uciążliwe i pracochłonne Przykładowo, zmiana jednego lub kilku parametrów w elementach ustrój przedstawia w tradycyjnym podejściu konieczność budowy nowego modelu Jest to stwierdzenie dyskusyjne ponieważ w Metodzie Elementów Skończonych tez możliwa jest modyfikacja niektórych fragmentów macierzy charakterystycznych bez jak to Autor ujął: konieczności budowy nowego modelu.*

Str. 23 – Autor napisał, że *macierz wpływu $D_{\alpha\beta}$ w ogólności nie jest symetryczna*; – ten fakt stanowi pewien mankament w porównaniu z zaletami Metody Elementów Skończonych.

Autor używa w kilku miejscach rozprawy pojęcia *ramowego elementu skończonego* zamiast *belkowego elementu skończonego* (np. str. 26).

Podobnie Autor niepotrzebnie wprowadza pojęcie *kratowego elementu skończonego*, np. na str. 33.

Rozdz. 3: Niektóre fragmenty pracy można było pominąć z uwagi na to, że zawierają powszechnie znane z literatury pojęcia i wzory, np. większość rozdz. 3.1.1.

W podpisie pod rys. 3.5 jest zapis: *... układ sił działających na wycinek pręta dx.*

W rzeczywistości widoczne jest na rysunku obciążenie fragmentu belki (z udziałem sił osiowych).
Rozdz. 3.2.1 – Autor wprowadza bałagan w stosowaniu symboli W jednym miejscu używa symbolu $\tilde{u}_i(t)$ na oznaczenie przemieszczenia {w równaniu (3.27)} a w innym miejscu – parę wierszy dalej – $\tilde{u}_i(t)$ – patrz równanie (3.29).

Str. 75 – zdania w rozdziale 5.1 zawierają błędy gramatyczne i stylistyczne.

2. **Wniosek Końcowy**

W podsumowaniu pragnę podkreślić, iż zasadnicze założenia pracy zostały zrealizowane a jej teza udowodniona. Przedstawiona do oceny rozprawa dokumentuje umiejętność samodzielnego formułowania i rozwiązywania problemu naukowego przez jej Autora. Metoda Dystorsji Wirtualnych sformułowana w obszarze częstości okazała się skutecznym i efektywnym narzędziem w zastosowaniu do identyfikacji uszkodzeń w konstrukcjach. Wyniki badań są interesujące a przede wszystkim możliwe jest wykorzystanie opracowanej metody w zastosowaniach praktycznych. Autor wyraźnie nakreślił takie możliwości.

Autor wykazał się bardzo dobrym przygotowaniem do pracy naukowej, a w szczególności w zakresie znajomości teorii sprężystości, mechaniki konstrukcji, metody dystorsji wirtualnych, metody elementów skończonych oraz metod numerycznych i programowania. Dostrzeżone usterki w żadnym przypadku nie pomniejszają wartości naukowej pracy, która stanowi oryginalny i samodzielnny dorobek naukowy Autora.

W moim przekonaniu rozprawa spełnia wszelkie wymogi obowiązującej Ustawy z dnia 14 marca 2003 roku o stopniach naukowych i tytułach naukowych oraz o stopniach i tytułach w zakresie sztuki. Wnoszę o dopuszczenie rozprawy do publicznej obrony.