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Abstract

The main idea of the paper is to apply the second order perturbation and stochastic second central moment tech-

nique to solve the homogenization problem. In order to determine the e�ective elasticity tensor, the prevailing com-

putational methodology discussed in the literature so far was the Monte-Carlo simulation providing appropriate

expected values and higher order probabilistic moments of the e�ective tensor components. The technique applied in

this paper aims at signi®cantly reducing the computational cost of the simulation without sacri®cing the solution ac-

curacy. The numerical example substantiates this claim in the case of a periodic ®ber-reinforced plane strain composite

with random ®ber and matrix YoungÕs moduli. Ó 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is widely known that the role of composite materials in modern engineering has been increasing in the last decades

at an enormously fast pace. The most important problem while designing structures made of such materials, ®ber-

reinforced composites in particular, is the description of overall material properties on the basis of material parameters

of the constituents. Such approach enable one to simplify signi®cantly the discretization process of a composite

[13,15,33,35] and, at the same time, to speed up computations even for deterministic models. To this purpose the ef-

fective parameters de®nition is introduced (i.e., e�ective elasticity tensor) which is derived for the given geometry of the

constituents directly or by the use of the upper and lower bounds for the volume fractions of the constituents

[11,20,24,32]. The ®rst of these methods needs an appropriate variational formulation together with the ®nite element

method (FEM) implementation and application of the special probabilistic tools analyzing the random ®elds of dis-

placements and stresses resulted. In the case of upper and lower bounds with signi®cantly shortened computational

algorithms (no need to use the FEM-based numerical procedures), the whole space of the e�ective parameters is

generated. From the engineering point of view, it seems to be very interesting to compare both of these methods

considering the e�ectiveness in the context of e�ective properties computed and the time costs. The most complete and

actual reviews of homogenization methods elaborated are done in Refs. [3,9,13,24].
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In general, the stochastic concepts which appeared in the homogenization theory can be divided into two groups.

The ®rst one assumes that the randomness occurs in the macro-geometry (unperiodic ®bers array) [10] or microge-

ometry (periodic array with stochastic interfaces) [25±27] of the composite structure considered. The existing numerical

algorithms are based generally on the geometrical tesselations approaches which are known as the Delaunay networks

approach [31], the Voronoi cell ®nite element method (VCFEM) [17] or using the Monte-Carlo simulation (MCS)

technique presented in Refs. [23,25,34]. The main reason for this approach is that composite geometry is obtained using

digital image analysis of its structure [38]. On the other hand, we consider composite materials assuming determinis-

tically de®ned internal (both macro- and micro-) geometry, but having randomized elastic (or generally material)

characteristics. Mechanical problems for the second group of composites are solved by the use of one of the following

computational methodologies: the Stochastic Finite Element Methods (SFEM) [28], stochastic spectral techniques [16]

or the MCS approach [12,21,24]. Furthermore, there are numerous purely mathematical concepts dealing with these

problems; however, they do not enable to provide the corresponding numerical implementations nor probabilistic

sensitivity studies [1,2,6,14,29,30].

The main idea of this article is to introduce the stochastic second order and second moment perturbation analysis for

homogenization of the two-phase periodic composite structure. The starting point for the stochastically perturbed

solution is the e�ective modules method derived deterministically in Ref. [36] and probabilistically with MCS com-

putational realization. It should be underlined that the probabilistic approach is very important considering the fact

that all elastic constants of composite constituents are statistically estimated by the respective mean values and standard

deviations. However, observing the time costs of MCS simulations, it was necessary to implement decisively faster

methods taking into account detailed, future stochastic sensitivity studies with elastic or thermoelastic properties as

design variables of the problem.

Considering this fact and expected complexity of homogenization equations, the stochastic second order and second

moment analysis has been proposed to get the mathematical description and computer code to analyze the ®rst two

probabilistic moments of the e�ective elasticity tensor components. The values of these moments are compared with

those obtained by using MCS technique that enable to verify the SFEA solution accuracy. Using the SFEM approach it

should be remembered that the approach has its limitations consisting in upper bounds on the coe�cient of variation of

input random variables which, due to numerous computational studies [28], should be generally smaller than 0.15.

However, neglecting stochasticity of the interface geometry, input random parameters (especially elastic) are approx-

imately in the range of 0.1 [26] of this coe�cient and can be properly analyzed by the use of the stochastic ®nite ele-

ments. Finally, it should be mentioned that this study can be further extended on homogenization of stochastic

dynamics of composites related to reliability studies being for now one of the most developed research ®elds [18].

2. Mathematical model of the problem

2.1. Periodic ®ber-reinforced two-phase composite

The main object of the considerations is the random periodic ®ber-reinforced composite structure in the plane strain.

Let us denote the representative volume element (RVE) of Y as X; Y � R2 denotes here the section of this composite

with x3 � 0 plane and is constant along the x3 axis being parallel to the ®bers direction (see Fig. 1).

Let us assume that the region X contains two perfectly bonded, coherent and disjoint subsets X1 (®ber) and X2

(matrix) and let the scale between corresponding geometrical diameters of X and Y be described by the small parameter

e > 0. The parameter e is indexing further all the tensors written for the geometrical scale of X and let oX denote the

external boundary of the X while oX12 the interface boundary between X1 and X2 regions.

Fig. 1. Periodic ®ber-reinforced composite.
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Further, it is assumed that the composite is periodic in a random sense if for an additional x belonging to a suitable

probability space there exists such a homothety that transforms X onto the whole composite Y. Next, let us introduce

two di�erent coordinate systems y � y1; y2; y3� � at the microscale of the composite and x � x1; x2; x3� � at the macroscale

and let us consider any periodic state function F de®ned on the region Y; this function can be expressed as

F e x� � � F
x

e

� �
� F y� �: �1�

This expression makes it possible to describe the macrofunctions (connected with the macroscale of a composite) in

terms of microfunctions and vice versa. The elasticity coe�cients can be de®ned, for instance, as

Ce
ijkl x� � � Cijkl y� �: �2�

To characterize elastic properties of the composite constituents let us assume that X1 and X2 contain linear elastic and

transversely isotropic materials, where the YoungÕs moduli are Gaussian random variables bounded to the nonnegative

values only. Practically, probabilistic distributions considered are to have such probabilistic moments that probability

of negative value occurrence (for YoungÕs moduli) is in®nitesimal (the so called cut-o� Gaussian distribution). The

expected values and the variances of these variables are given as follows:

0 < e x; x� � <1; �3�

E e x; x� �� � � e1; x 2 X1;
e2; x 2 X2;

�
�4�

cov ei x; x� �; ej x; x� �ÿ � � vare1 0
0 vare2

� �
; �5�

where correlations equal to 0 are assumed due to the lack of any appropriate experimental data. The PoissonÕs ratios are

assumed to be given deterministically so that

ÿ1 < m x� � < 1
2
; �6�

m x� � � m1; x 2 X1;
m2; x 2 X2:

�
�7�

The elasticity tensor components for both matrix and ®ber ful®ll the following conditions:

Cijkl 2 L1�R3�; for i; j; k; l � 1; 2; 3; �8�

Cijkl � Cklij � Cjikl; �9�

9 C0 > 0; Cijklnijnkl P C0nijnij 8i;j nij � nji: �10�
Moreover, for any of the composite constituents this tensor is de®ned as

Cijkl�e�x; x�; x� � e�x; x� dijdkl
m�x�

�1� m�x���1ÿ 2m�x��
�

� �dikdjl � dildjk� 1

2�1� m�x��
�
: �11�

By observing that the elasticity tensor coe�cients depend linearly on the YoungÕs modulus, the ®rst two probabilistic

moments of the tensor can be derived explicitly as

E�Cijkl�e�x; x�; x�� � Aijkl�x� � E�e�x; x��; �12�
and

cov Cijkl er x; x� �; x� �; Cmnpq

ÿ
es x; x� �; x� �� � Aijkl�x�Amnpq�x�cov er x; x� �; es x; x� �� �
�no sum on i; j; k; l;m; n; p; q�; �13�
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where

Aijkl�x� � dijdkl
m�x�

�1� m�x���1ÿ 2m�x�� � �dikdjl � dildjk� 1

2�1� m�x�� : �14�

Finally, the e�ective moduli tensor C�eff�
ijkl is introduced as such a tensor replacing Ce

ijkl with C�eff�
ijkl in the following

equilibrium equations:

Ce
ijkl ekl ue� � � fi � 0; x 2 X; �15�

eij ue� � � 1
2

ue
i;j

�
� ue

j;i

�
; x 2 X; �16�

Ce
ijkl � w�a��x� Ce�a�

ijkl ; �17�

where u0 is obtained as a solution being a weak limit of ue with e! 0. The characteristic function in Eq. (17) is de®ned

as

w�a��x� � 1; x 2 Xa;
0; elsewhere

�
a � 1; 2; �18�

while the boundary conditions

ue � 0; x 2 oX: �19�
Detailed mathematical considerations and especially the proof of existence and uniqueness of this system solution has

been provided in Refs. [22,24,36].

2.2. Variational formulation of the homogenization procedure

The homogenization problem is to ®nd the limit of solution ue with e tending to 0. To this purpose, let us consider a

bilinear form ae u; v� � de®ned as follows:

ae u; v� � �
Z

X
Cijkl

x

e

� �
eij�u� ekl�v� dX; �20�

and a following linear form

L v� � �
Z

X
fivi dX�

Z
oXr

pivi d oX� �: �21�

The variational statement equivalent to the equilibrium problem (15±19) is to ®nd ue ful®lling the following equation:

ae ue; v� � � L v� � �22�
for any kinematic admissible displacement v. To this purpose, let us de®ne a space of periodic functions P�X� so that the

trace of v is equal on the opposite sides of X. Let us denote for any u; v 2 P�X�

ay u; v� � �
Z

X
Cijkl�y�ekl�u�eij�v� dX; �23�

and introduce a homogenization function v�ij�k 2 P �X� as a solution for the local problem on a periodicity cell:

ay v�ij�k
��

� yjdki

�
nk ;w

�
� 0 �24�

for any w 2 P �X�, here dki denotes the Kronecker delta while nk is the unit coordinate vector. Now, we are looking for

the solution ue that converges weakly

ue ! u �25�
if the tensor Ce

ijkl y� � is X-periodic and its components ful®ll conditions (8±10). Solution u is the unique one for the

boundary value problem

u 2 V : D u; v� � � L�v� �26�
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for any admissible displacement v and

D u; v� � �
Z

Y
Dijklekl�u�eij�v� dY ; �27�

where

Dijkl � 1

Xj j ay v�ij�p
�

� yidpj

�
np; v�kl�q
�

� yldqk

�
nq

� �
: �28�

As a result, a homogeneous orthotropic elastic material is obtained as the tensor

C�eff�
ijkl �

1

Xj j
Z

X
Cijkl�y� � Cijmn�y�emn v�kl��y�

� �� �
dX: �29�

Homogenization functions v�pq�i for i, p, q� 1, 2 are computed as some speci®c elastostatic plane strain problems

displacement solutions. For this purpose, the RVE is considered under the displacement symmetry conditions imposed

on its external boundaries (zeroing of the displacements perpendicular to oX and rotational degrees of freedom). The

stress boundary conditions are applied along the interface (if only ®ber and matrix are perfectly bonded) in the fol-

lowing form (cf. Eq. (A.4), Appendix A):

rij v�pq�
� �

nj � Cijpq

� �
nj � F�pq�i; x 2 oX12; �30�

where nj is the component of the unit vector normal to the ®ber±matrix boundary and directed to the ®ber interior,

while [f] denotes the di�erence of the function f values

f� � � f �2� ÿ f �1�: �31�
The stress boundary conditions corresponding to di�erent homogenization problems are speci®ed in Table 1.

It should be underlined that taking into account the interface phenomena in engineering composites, the ®ber and

matrix boundaries may be partially di�erent contours (the lack of contact between the components) which may be the

result of composite processing thermal stresses.

Finally, neglecting the body forces vector and taking into account all equations posed above, the variational

statement for the homogenization problem can be formulated as follows:Z
X

dvi;jCijklv�pq�k;l dX � ÿ
Z

oX12

dviF�pq�i d�oX�: �32�

2.3. Stochastic second order perturbation of the homogenization equations

The homogenization model presented is combined now with the stochastic second order perturbation second central

probabilistic moment method. Let us denote the random variable vector of the problem as br x; x� �f g, and the prob-

ability density functions of random variable by g�br�x; x�� and the joint probability functions of random variables pair

br�x; x� and bs�x; x� by g�br�x; x�; bs�x; x��, respectively. Indices r, s running over 1 to R, where R denotes the total

number of input random vector components. Thus, the expected value of the vector br x; x� �f g can be expressed as

[28,39]

E�br� �
Z �1

ÿ1
brg�br� dbr �33�

while the covariance in the form

cov�br; bs� �
Z �1

ÿ1

Z �1

ÿ1
�br ÿ E�br���bs ÿ E�bs��g�br; bs� dbr dbs: �34�

Table 1

The components of homogenization boundary forces F�pq�i

v�11� v�12� v�22�

F�pq�1 C�2�1111 ÿ C�1�1111 C�2�1212 ÿ C�1�1212 C�2�1122 ÿ C�1�1122

F�pq�2 C�2�2211 ÿ C�1�2211 C�2�1212 ÿ C�1�1212 C�2�2222 ÿ C�1�2222
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The coe�cient of variation of the input random vector components is de®ned as

a b x; x� �� � �
�������������������������
var b x; x� �� �
E2 b x; x� �� �

s
: �35�

The variational principle (32) can be extended to the stochastic one by the use of the second order second moment

perturbation method based on the Taylor series expansion. According to the method described in Ref. [29] all functions

in the last equation are expressed in the form similar to the following extension of function G:

G�x� � G0�x� � hG;r�x� Dbr � 1
2
h2G;rs�x�Dbr Dbs; �36�

where h is given small perturbation, hDbr denotes the ®rst order variation of br about its expected value. Moreover,

symbols �:�0, �:�;r and �:�;rs
represent the expected value, the ®rst and the second partial derivatives with respect to the

random variables evaluated at the expected values of input random parameters. To rewrite the stochastic formulation

of the variational formulation (32), the interface forces following the stress interface conditions should be stochastically

perturbed ®rst. It is known from the classical theory of homogenization [9,24,36] that in the case of ideal bonding

between ®ber and matrix, the interface load components are obtained, as it was mentioned above, in the form of the

following di�erence:

F�pq�i � F �2��pq�i ÿ F �1��pq�i: �37�

Taking into account the Taylor series expansion given by Eq. (36) it is obtained that

F�pq�i � F�pq�i
ÿ �0 � h F�pq�i

ÿ �;r
Dbr � 1

2
h2 F�pq�i
ÿ �;rs

Dbr Dbs: �38�
Rewriting the forces F �t��pq�i for t � 0,1,2, comparing the respective terms of the zeroth, ®rst and second order and, at last,

dividing the last two equations by hDbr and 1
2
h2 Dbr Dbs, respectively, we obtain

F�pq�i
ÿ �0 � F �2��pq�i

� �0

ÿ F �1��pq�i

� �0

; �39�

F�pq�i
ÿ �;r � F �2��pq�i

� �;r
ÿ F �1��pq�i

� �;r
; �40�

F�pq�i
ÿ �;rs � F �2��pq�i

� �;rs

ÿ F �1��pq�i

� �;rs

: �41�

Thus, the stochastic version of the minimum potential energy principle for the homogenization problem has the fol-

lowing form:

· one zeroth order equation:X
a�1;2

Z
Xa

dvi;jC0
ijkl �v�pq�k;l�0 dX � ÿ

Z
oX12

dvi F�pq�i
ÿ �0

d�oX�; �42�

· R ®rst order equations:X
a�1;2

Z
Xa

dvi;jC0
ijkl �v�pq�k;l�;r dX � ÿ

Z
oX12

dvi F�pq�i
ÿ �;r

d�oX� ÿ
X
a�1;2

Z
Xa

dvi;jC
;r
ijkl v�pq�k;l
� �0

dX; �43�

· one second order equation:

X
a�1;2

Z
Xa

dvi;jC0
ijkl �v�pq�k;l�;rs

dX

 !
� cov br; bs� � � ÿ

Z
oX12

dvi F�pq�i
ÿ �;rs

d�oX�
� �

� cov br; bs� �

ÿ 2
X
a�1;2

Z
Xa

dvi;jC
;r
ijkl �v�pq�k;l�;s dX

 

�
X
a�1;2

Z
Xa

dvi;jC
;rs
ijkl �v�pq�k;l�0 dX

!
� cov br; bs� �: �44�
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Considering the nature of the problem (YoungÕs moduli of the ®ber and matrix are the components of the input

random variable vector) there holds

o Cijkl ea x; x� �; x� �ÿ �
oea

� w�a�A�a�ijkl�x�; a � 1; 2; �45�

where A�a�ijkl is the tensor given by Eq. (14) and calculated for the elastic characteristics of respective material indexed by

ÔaÕ while w�a� is the characteristic function given by Eq. (18). Thus, the ®rst order derivatives of the elasticity tensor with

respect to the input random variable vector are obtained as

o Cijkl ea�x; x�; x� �ÿ �
oea

� o Cijkl ea�x; x�; x� �ÿ �
oe1

;
o Cijkl ea�x; x�; x� �ÿ �

oe2

� �
: �46�

Hence, the second order derivatives have the form

o2 Cijkl x; x� �; x� �ÿ �
oe2

a

� w�a�
oA�a�ijkl�x�

oea
� 0; for a � 1; 2; �47�

while mixed second order derivatives can be written as

o2 Cijkl x; x� �; x� �ÿ �
oe1 oe2

� w�1�
oA�1�ijkl�x�

oe2

� w�2�
oA�2�ijkl�x�

oe1

� 0: �48�

Therefore, all components of the second order derivatives of the sti�ness matrices K�pq�
ab of the problem are equal to 0.

Moreover, since the assumption on uncorrelation of input random variables there holds

cov e1; e2� � � vare1 0
0 vare2

� �
�49�

and thus, the ®rst and the second partial derivatives of the vectors F �a��pq�i with respect to the random variables vector are

calculated as

oF �a��pq�i
oea

� oC�a�ijpq

oea
nj � A�a�ijpq nj; x 2 oXa; a � 1; 2; �50�

and

o2F �a��pq�i
oe2

a

� o2C�a�ijpq

oe2
a

nj �
oA�a�ijpq

oea
nj � 0; x 2 oXa; a � 1; 2: �51�

Considering all these simpli®cations, the set of Eqs. (42)±(44) can be written in the following form:

· one zeroth order equation:

X
a�1;2

Z
Xa

dvi;jC0
ijkl �v�pq�k;l�0 dX � ÿ

Z
oX12

dvi F�pq�i
ÿ �0

d�oX�; �52�

· R ®rst order equations:X
a�1;2

Z
Xa

dvi;jC0
ijkl �v�pq�k;l�;r dX � ÿ

Z
oX12

dvi Apqij

� �
nj d�oX� ÿ

X
a�1;2

Z
Xa

dvi;jA
�a�
ijkl �v�pq�k;l�0 dX �53�

· one second order equation:X
a�1;2

Z
Xa

dvi;jC0
ijkl �v�pq�k;l��2� dX � ÿ

X
a�1;2

Z
Xa

dvi;jA
�a�
ijkl �v�pq�k;l�;s dX � cov br; bs� �; �54�

where

�v�pq�k;l��2� � ÿ1
2
�v�pq�k;l�;rs � cov br; bs� �: �55�

M. Kami�nski, M. Kleiber / Computers and Structures 78 (2000) 811±826 817



It should be noted that Eqs. (52)±(55) give the set of fundamental variational equations of the homogenization

problem in the second order stochastic perturbation language. Next, these equations will be discretized by the use of

classical ®nite element technique and, as a result, the zeroth, ®rst and second order algebraic equations will be obtained.

3. Computational implementation

3.1. Stochastic ®nite element discretization of the homogenization procedure

Let us introduce the following discretization of the displacement function and its derivatives with respect to the

random variables using the shape functions uia�x�:

v�pv�i�x�
� �0

� uia�x� � q�pv�a
ÿ �0

; x 2 X; p; v � 1; 2; �56�

v�pv�i�x�
� �;r

� uia�x� � q�pv�a
ÿ �;r

; x 2 X; p; v � 1; 2; �57�

v�pv�i�x�
� �;rs

� uia�x� � q�pv�a
ÿ �;rs

; x 2 X; p; v � 1; 2; �58�

where i � 1; 2; r; s � 1; . . . ;R; a � 1; . . . ;N (N is the total number of degrees of freedom in the region X). By the

analogous way, the approximation of the strain tensor components is introduced as

e0
ij v�pv��x�
� �

� Bija�x� � q�pv�a
ÿ �0

; x 2 X; �59�

e;rij v�pv��x�
� �

� Bija�x� � q�pv�a
ÿ �;r

; x 2 X; �60�

e;rs
ij v�pv��x�
� �

� Bija�x� � q�pv�a
ÿ �;rs

; x 2 X; �61�

where Bija�x� is the typical FEM strain±displacement matrix [4]

Bija�x� � 1
2

uia;j�x�
� � uja;i�x�

�
; x 2 X: �62�

Introducing the equations stated above to the zeroth, ®rst and second order statements of the homogenization problem

represented by Eqs. (52)±(55), we arrive at the stochastic formulation of the problem which can be posed in the form of

the following algebraic linear equations:

K0�q�pv��0 � �Q�pv��0; �63�

K0�q�pv��;r � �Q�pv��;r ÿ K;r�q�pv��0; �64�

K0�q�pv���2� � ÿK;r�q�pv��;s; �65�

where

q�pv�ÿ ��2� � 1
2

q�pv�ÿ �;rs
cov�br; bs� �66�

and K, q�pv�, Q�pv� denote the global sti�ness matrix, discretized homogenization functions and external load vectors,

respectively. Considering the plane strain formulation of the problem, the global sti�ness matrix and its partial de-

rivatives with respect to the random variable of the problem can be rewritten as follows:

K0
ab �

XE

e�1

Z
Xe

C0
ijklBijaBklb dX �

XE

e�1

e�1ÿ m�
�1� m��1ÿ 2m�

Z
Xe

1 m
1ÿm 0

1 0

symm: 1ÿ2m
2�1ÿm�

264
375BijaBklb dX; �67�
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K ;r
ab �

XE

e�1

Z
Xe

C;r
ijklBijaBklb dX �

XE

e�1

�1ÿ m�
�1� m��1ÿ 2m�

Z
Xe

1 m
1ÿm 0

1 0

symm: 1ÿ2m
2�1ÿm�

264
375BijaBklb dX; �68�

K ;rs
ab �

XE

e�1

Z
Xe

C;rs
ijklBijaBklb dX � 0: �69�

Computing from the above equations successively the zeroth order displacement vector �q�pv��0 from Eq. (63), the ®rst

order displacement vector �q�pv��;r from Eq. (64) and the second order displacement vector �q�pv���2� from the last two

Eqs. (65)±(66), the expected values of the homogenization function can be derived as

E�q�pv�� � �q�pv��0 � 1
2
�q�pv��;rs

cov�br; bs�; �70�

and their covariance matrix in the form:

cov q�pv�a; q�pv�b
ÿ � � q�pv�a

ÿ �;r
q�pv�b
ÿ �;s

cov�br; bs�; �71�
where a, b are running over all the degrees of freedom of the system. Moreover, the expected values of the stress tensor

can be computed as

E r�f �ij �q�pv��
h i

� C0�f �
ijkl B�f �kla q

�f �
�pv�

� �0

� 1
2

2C;r�f �
ijkl q

�f �
�pv�

� �;sh
� C0�f �

ijkl q
�f �
�pv�

� �;rsi
B
�f �
kl cov br; bs� �; �72�

while its covariances from the following equation:

cov r�d�ij ; r
�f �
kl

� �
� C0�d�

ijmnC0�f �
klgh q

�d�
�pv�

� �;r
q
�f �
�pv�

� �;s�
� C;r�d�

ijmn C;s�f �
klgh q

�d�
�pv�

� �0

q
�f �
�pv�

� �0

� C;r�d�
ijmn C0�f �

klgh q
�d�
�pv�

� �;s
q
�f �
�pv�

� �0

� C0�d�
ijmnC;s�f �

klgh q
�d�
�pv�

� �;r
q
�f �
�pv�

� �0
�

B�d�mn B
�f �
gh cov�br; bs�; �73�

for i; j; k; l; g; h; p; m � 1; 2 and 1 6 d; f 6 E indexing the numbers of the ®nite elements in the discretized system.

3.2. Stochasticity of e�ective elasticity tensor

The objective of a homogenization procedure is to determine the e�ective elasticity tensor components ± Eq. (29) is

used to this purpose in deterministic problems. In accordance with the methodology adopted in this paper, the ®rst two

probabilistic moments (expected values and covariances) of the elasticity tensor components are to be found in the

corresponding stochastic problem. There holds

E C�eff�
ijpq

h i
� 1

Xj j
Z

X
E Cijpq

� �� E Cijklekl�v�pq��
h i� �

dX: �74�

The second term in the above integral can be extended as follows [28]:

E Cijklekl�v�pq��
h i

�
Z �1

ÿ1
C0

ijkl

�
� DbrC;r

ijkl � 1
2
Dbr DbsC;rs

ijkl

�
pR b�x�� � db

Z �1

ÿ1
�v�pq�k;l�0
�

� Dbu�v�pq�k;l�;u

� 1
2
DbuDbv�v�pq�k;l�;uv

�
pR b�x�� � db: �75�

By observing thatZ �1

ÿ1
pR b�x�� � db � 1; �76�

Z �1

ÿ1
DbrpR b�x�� � db � 0; �77�

Z �1

ÿ1
Dbr DbspR b�x�� � db � cov br; bs� � �78�
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there holds

E Cijklekl�v�pq��
h i

�
Z �1

ÿ1
C0

ijkl�v�pq�k;l�0pR b�x�� �db�
Z �1

ÿ1
DbrC;r

ijkl Dbu�v�pq�k;l�;upR b�x�� � db

� 1

2

Z �1

ÿ1
C0

ijkl Dbu Dbr�v�pq�k;l�;uvpR b�x�� � db

� C0
ijkl v�pq�k;l
� �0

� C;r
ijkl�v�pq�k;l�;s

n
� 1

2
C0

ijkl�v�pq�k;l�;rs
o
� cov br; bs� �: �79�

Averaging both sides of this equation over the region X and including it in statement (74) together with spatially

averaged expected values of elasticity tensor, the expected values of the homogenized elasticity tensor are obtained.

Next, the covariances of the e�ective elasticity tensor components can be derived similarly as

cov C�eff�
ijkl ;C

�eff�
mnpq

� �
� cov Cijkl;Cmnpq

ÿ �� cov�Cijkl;Cmnuvv�pq�u;v� � cov�Cijrsv�kl�r;s;Cmnpq�
� cov�Cijrsv�kl�r;s;Cmnuvv�pq�u;v�: �80�

Taking into account all mathematical transformations provided in Appendix B, the ®nal form of this covariance is

obtained as

cov C�eff�
ijkl ; C�eff�

mnpq

� �
� C;r

ijklC
;s
mnpq

n
� C;r

ijtw�v�kl�t;w�0C;s
mnpq � C;r

ijtw�v�kl�t;w�;sC0
mnpq � C;r

ijklC
;s
mnuv�v�pq�u;v�0

� C;r
ijklC

0
mnuv�v�pq�u;v�;s � C;r

ijtwC;s
mnuv�v�kl�t;w�0�v�pq�u;v�0 � C;r

ijtwC0
mnuv�v�kl�t;w�0�v�pq�u;v�;s

� C0
ijtwC;r

mnuv�v�kl�t;w�;s�v�pq�u;v�0 � C0
ijtwC0

mnuv�v�kl�t;w�;r�v�pq�u;v�;s
o

cov br; bs� � �81�

and it should be underlined that the above equations give complete description of the e�ective elasticity tensor com-

ponents in the stochastic second moment and second order perturbation approach. Finally, let us note that many

simpli®cations resulted here thanks to the assumption that the input random variables of the homogenization problem

are the YoungÕs moduli in the ®ber and matrix only. If the PoissonÕs ratios were treated as random, the second order

derivatives of the constitutive tensor would generally be di�erent from zero and the stochastic ®nite element formu-

lation of homogenization procedure would be much more complicated.

4. Numerical illustration

The procedure has been implemented in the homogenization-oriented computer program MCCEFF [24±26] used

previously for computations of the e�ective elasticity tensor components probabilistic moments by the use of the MCS

technique [2,3,25]. For the periodicity cell and its discretization shown in Fig. 2, the elastic properties of the glass ®ber

and resin matrix are adopted as follows: the YoungÕs moduli expected values E�e1� � 84 GPa, E�e2� � 4:0 GPa while the

deterministic PoissonÕs ratios are taken as equal m1 � 0:22 for ®ber and m2 � 0:34 for matrix.

Four di�erent sets of the YoungÕs moduli coe�cients of variation have been analyzed as it is speci®ed in Table 2.

Di�erent combinations of the values 0.10 and 0.05 have been tested to analyze the in¯uence of the component data

Fig. 2. Periodicity cell tested.
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randomness on the respective probabilistic moments of the homogenized elasticity tensor (simpli®ed probabilistic

sensitivity studies).

The homogenization of the same composite has been previously considered in Ref. [27] (deterministic analysis) and

[23] (probabilistic analysis). The area of the ®ber cross-section is about 50% of the total periodicity cell area. The results

in the form of expected values and coe�cients of variation of the homogenized tensor components obtained from four

computational tests are shown in Table 3 and compared against the corresponding values obtained by using the MCS

technique. The direct simulation method has been used in Monte-Carlo experiments with Box±M�uller randomization

technique where the total number of random trials is taken as 103; the numerical illustration of su�cient statistical

estimators convergence can be found in Ref. [25].

It is seen that all the SFEM-based expected values are slightly higher than those obtained by MCS while the co-

e�cients of variation show an opposite property. This e�ect may be caused by the fact that the expected values of

homogenization function as well as the e�ective elasticity tensor include the second order terms of the respective

random ®elds in the SFEM approach, while the Monte-Carlo results do not include any higher order terms and at the

same time vary on the total number of assumed random trials only.

However, the main reason for numerical implementation of the SFEM equations modeling the homogenization

problem was the decisive decreasing of computation time in comparison to that needed by MCS technique. It should be

noticed that the time of Monte-Carlo sampling can be approximated here as a multiplication of the following times: (a)

single deterministic cell problem, (b) the total number of the homogenization required (three functions v�11�, v�12� and

v�22� in plane strain carried out), (c) the total number of random trials performed. There are some time consuming

procedures in the MCS programs as random numbers generation [7], post-processing estimation procedure [5] and the

subroutines for averaging of needed parameters within the RVE. However, their times are negligible small in com-

parison with the routines described previously.

On the other hand, the time of stochastic ®nite element analysis can be approximated by multiplication of the

following procedures times: (a) the SFEA of the cell problem (with the same order of the cost considered as the de-

terministic analysis) and the total number of homogenization functions. Taking into account the remarks posed above,

the di�erence in computational time between MCS and SFEM approaches to the homogenization problem is of about

10nÿ1 order assuming 10n as the total number of MCS random samples. Observing this and considering negligible

di�erences between the results of both of these methods, the stochastic second order and second moment computational

analysis of composite materials should be preferred in most of engineering problems. The only one disadvantage is the

complexity of problem equations which have to be implemented in the respective program as well as the bounds dealing

with randomness of input variables (the coe�cients of variation should be generally smaller than about 0.15).

5. Conclusions

It has been demonstrated that the ®rst and the second order probabilistic moments of the homogenized elasticity

tensor components resulting from the SFEM technique proposed in the paper may be quite useful in assessing the

Table 3

Expected values and coe�cients of variation for the e�ective elasticity tensor components

Test no E C�eff�
1111�x�

h i
a C�eff�

1111�x�
� �

E C�eff�
1122�x�

h i
a C�eff�

1122�x�
� �

E C�eff�
1212�x�

h i
a C�eff�

1212�x�
� �

SFEM MCS SFEM MCS SFEM MCS SFEM MCS SFEM MCS SFEM MCS

1 14.92 14.77 0.084 0.087 5.06 4.94 0.092 0.094 18.21 18.07 0.092 0.096

2 14.95 14.78 0.043 0.045 5.08 4.95 0.044 0.047 18.21 18.07 0.092 0.096

3 14.95 14.78 0.082 0.086 5.08 4.95 0.092 0.094 18.17 18.06 0.045 0.048

4 14.99 14.79 0.040 0.043 5.08 4.95 0.044 0.047 18.17 18.06 0.045 0.048

Table 2

The coe�cient of variation of the input random variables

Test number a e1� � a e2� �
1 0.10 0.10

2 0.10 0.05

3 0.05 0.10

4 0.05 0.05
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overall elastic properties of elastic composites. The results match quite well those obtained by using the Monte-Carlo

simulation.

The next developments of the approach presented will be to improve another thermal and elastic constants included

usually in the elasticity tensor components ± the PoissonÕs ratios and thermal expansion coe�cients. It will complicate

some of the equations ± there will appear the second order partial derivatives of the elasticity tensor; however, it will

enable the full thermoelastic homogenization of the two-phase composite in terms of the second order perturbation

second central probabilistic moment approach.

As it can be seen (cf. Refs. [19,20]), the stochastic computations of the e�ective elasticity tensor homogenized are

very important considering the technical applications of the composite materials. The probabilistic approach worked

out is important taking into account the fact that most of the elastic characteristics are measured experimentally where

the mean values and the standard deviations are estimated as resulting values. The approach proposed above, as well as

the Monte-Carlo simulation technique implemented previously [25], allow the engineers to include these parameters

into the FEM analysis and to obtain the second order variations of the e�ective elasticity tensor as the output.

Considering the possibilities of modeling of the stochastic interface defects phenomena appearing frequently in the

®ber-reinforced composite materials, it should be mentioned that the starting point to the relevant formulation is Eq.

(A.2) with the appropriate stress boundary conditions on the oX12 (in the form of the presence or the lack of friction, for

instance). On the other hand, the stochastic formulation of the structural defects problem introduced in Refs. [25±27]

can be successively linked with the stochastic ®nite element formulation of the homogenization problem approach

proposed above and may be used even for viscoplastic localization problem in composites [19].

Finally, it should be mentioned that the approach proposed should turn out to be useful in generating material data

for the e�cient FEM analysis of various composites ± because of its relatively low computational cost it should also ®nd

applications in the optimization area (see Ref. [33] for instance) as well as probabilistic numerical modeling of com-

posite materials non-linear behavior [8], strength, fracture and fatigue [13,37].
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Appendix A

To derive the expressions for the e�ective elasticity tensor components let us rewrite the principle of virtual work for

the boundary problem de®ned on the periodicity cell X as followsZ
X

Cijklekl u� � eij v� � dX �
Z

X
fivi dX; �A:1�

where v is any kinematically admissible periodic displacement function and u is the periodic displacement ®eld to be

determined. The left-hand side of the Eq. (A.1) can be divided in the terms for regions X1 and X2 as well as for the

boundaries oX1 and oX2, which in the general case need not be coherent, however both must be su�ciently smooth.

Hence, there holdsZ
X1

Cijklekl�v�pq�� eij v� � dX�
Z

X2

Cijklekl�v�pq�� eij�v� dX ÿ
Z

oX1

r�1�ij njvi d�oX� �
Z

oX2

r�2�ij njvi d�oX� �
Z

X
fivi dX;

�A:2�
where r�1�ij , r�2�ij describe the stresses on the contours oX1 and oX2. This formulation is adequate for the composite

structures where the components have discontinuous bonds along the respective interfaces. Considering the simpli®-

cation oX1 � oX2 � oX12 and neglecting body forces it is obtained thatZ
X1

Cijklekl�v�pq�� eij v� � dX�
Z

X2

Cijklekl�v�pq�� eij v� � dX �
Z

oX12

r�1�ij

�
ÿ r�2�ij

�
njvi d�oX�: �A:3�

As it has been described in Section 2.2, the following stress boundary conditions are applied

rij�v�pq��nj � Cijpq

� ���
oX12

nj � F�pq�i
��
oX12

; x 2 oX12; �A:4�
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where nj is the component of the unit vector normal to the ®ber±matrix interface contour and directed to the ®ber

interior while v�pq� denotes the components of the homogenization function. Moreover, function �Cijpq�joX12
denotes the

di�erence of the elasticity tensor values for ®ber and matrix. Thus, Eq. (A.3) becomesZ
X1

Cijklekl�v�pq�� eij�v� dX�
Z

X2

Cijklekl�v�pq�� eij�v� dX � ÿ
Z

oX12

Cijpq

� ���
oX12

njvi d�oX� �A:5�

which makes it possible to compute the v�11�, v�12� and v�22� displacement ®elds. Next, it will be shown thatZ
oX12

Cijpq

� ���
oX12

njvi d�oX� �
Z

X
Cijpq eij v� � dX: �A:6�

There holdsZ
X

Cijpq eij v� � dX �
Z

X
Cijpqvi

ÿ �
;j dXÿ

Z
X

Cijpq

ÿ �
;jvi dX

�
Z

oX
Cijpqnjvi d oX� � ÿ

Z
oX12

Cijpq

� ���
oX12

njvi d oX� � ÿ
Z

X
Cijpq

ÿ �
;j
vi dX: �A:7�

Considering the periodicity of the elasticity tensor, it can be written thatZ
oX

Cijpqnjvi d oX� � � 0; �A:8�

Z
X

Cijpq

ÿ �
;jvi dX � 0; �A:9�

which gives as a result Eq. (A.6). Including this in the formulation (A.5) it is obtained thatZ
X

Cijklekl v�pq�
� �

eij v� � dX � ÿ
Z

X
Cijpq eij v� � dX; �A:10�

hence,Z
X

Cijpq

�
� Cijklekl v�pq�

� ��
eij v� � dX � 0: �A:11�

Thus, the e�ective elasticity tensor components are equal toZ
X

C�eff�
ijpq dX �

Z
X

Cijpq

�
� Cijklekl v�pq�

� ��
dX �A:12�

which gives Eq. (29) as a result.

Appendix B

The components of the covariance matrix of the e�ective elasticity tensor components are calculated below. First,

the covariance of the ®rst component in Eq. (80) is derived as

cov Cijkl;Cmnpq

ÿ � � Z �1

ÿ1
Cijkl

ÿ ÿ E Cijkl

� ��
Cmnpq

ÿ ÿ E Cmnpq

� ��
pR b�x�� � db

�
Z �1

ÿ1
C0

ijkl

�
� DbrC

;r
ijkl ÿ C0

ijkl

�
C0

mnpq

�
� DbsC;s

mnpq ÿ C0
mnpq

�
pR b�x�� � db

� C;r
ijklC

;s
mnpq

Z �1

ÿ1
DbrDbspR b�x�� � db � C;r

ijklC
;s
mnpq � cov br; bs� �: �B:1�
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Next, the covariances of the second component are calculated. There holds

cov�Cijtwv�kl�t;w;Cmnuvv�pq�u;v� �
Z �1

ÿ1
�Cijtwv�kl�t;w ÿ E�Cijtwv�kl�t;w���Cmnuvv�pq�u;v ÿ E�Cmnuvv�pq�u;v��pR�b�x�� db � �B:2�

which, by introducing the simplifying notation, becomes

�
Z �1

ÿ1
�C0v0 � C;r Dbrv

0 � C0v;u Dbu � C;r Dbrv
;u Dbu � 1

2
C0v;uv Dbu Dbv ÿ fC0v0 � �C;rv;s � 1

2
C0v;rs� � cov�br; bs�g�

� pR�b�x�� db

�
Z �1

ÿ1
�D0u0 �D;a Dbau

0 �D0u;c Dbc �D;a Dbau
;c Dbc � 1

2
D0u;cd Dbc Dbd ÿ fD0u0 � �D;au;c � 1

2
D0u;ac�

� cov�ba; bc�g� � pR�b�x�� db � �B:3�

and, ®nally, it is obtained

�
Z �1

ÿ1
�C0v0 � C;r Dbrv

0 � C0v;u Dbu � C;r Dbrv
;u Dbu � 1

2
C0v;uv Dbu Dbv

ÿ fC0v0 � �C;rv;s � 1
2
C0v;rs� � cov�br; bs�g� � pR�b�x�� db

�
Z �1

ÿ1
�D0u0 �D;a Dbau

0 �D0u;c Dbc �D;a Dbau
;c Dbc � 1

2
D0u;cd Dbc Dbd

ÿ fD0u0 � �D;au;c � 1
2
D0u;ac� � cov�ba; bc�g� � pR�b�x�� db

�
Z �1

ÿ1
C;r Dbrv

0D;a Dbau
0pR�b�x�� db�

Z �1

ÿ1
C;r Dbrv

0D0u;c DbcpR�b�x��db

�
Z �1

ÿ1
C0v;u DbuD;a Dbau

0pR�b�x�� db�
Z �1

ÿ1
C0v;u DbuD0u;c DbcpR�b�x�� db: �B:4�

By integrating over the probability domain, it can be written thatZ �1

ÿ1
C;r Dbrv

0D;a Dbau
0pR b�x�� � db�

Z �1

ÿ1
C;r Dbrv

0D0u;c DbcpR b�x�� � db

�
Z �1

ÿ1
C0v;u DbuD;a Dbau

0pR b�x�� �db�
Z �1

ÿ1
C0v;u DbuD0u;c DbcpR b�x�� � db

� C;rD;sv0u0
� � C;rv0D0u;s � C0v;rD;su0 � C0v;rD0u;s

	 � cov br; bs� � �B:5�
or, in a more explicit way, as

cov�Cijtwv�kl�t;w;Cmnuvv�pq�u;v� � C;r
ijtwC;s

mnuv�v�kl�t;w�0�v�pq�u;v�0
n

� C;r
ijtwC0

mnuv�v�kl�t;w�0�v�pq�u;v�;s

� C0
ijtwC;r

mnuv�v�kl�t;w�;s�v�pq�u;v�0 � C0
ijtwC0

mnuv�v�kl�t;w�;r�v�pq�u;v�;s
o
� cov�br; bs�: �B:6�

Finally, the third component of Eq. (80) is calculated as follows:

cov�Cijkl; Cmnuvv�pq�u;v� � cov�C; Dv�

�
Z �1

ÿ1
�C0 � C;r Dbr ÿ C0� � pR�b�x�� db

Z �1

ÿ1
D0v0
ÿ �D;a Dbav

0 �D0v;c Dbc

�D;a Dbav
;c Dbc � 1

2
D0v;cd Dbc Dbd ÿ fD0v0 � D;av;c� � 1

2
D0v;ac

� � cov�ba; bc�g�
� pR b�x�� � db

�
Z �1

ÿ1
C;r DbrD

;a Dbav
0pR b�x�� � db�

Z �1

ÿ1
C;r DbrD

0v;c DbcpR b�x�� � db

� C;rD;sv0
� � C;rD0v;s

	 � cov br; bs� �: �B:7�
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Introducing the symbolic summation notation for the tensor function considered above, it can be written that

cov�Cijkl; Cmnuvv�pq�u;v� � cov C; Dv� � � C;rD;sv0
� � C;rD0v;s

	 � cov br; bs� �
� C;r

ijklC
;s
mnuv�v�pq�u;v�0

n
� C;r

ijklC
0
mnuv�v�pq�u;v�;s

o
� cov br; bs� �: �B:8�

By the analogous way it can be derived that

cov�Cijtwv�kl�t;w; Cmnpq� � cov Cv; D� � � C;rv0D;s
� � C0v;rD;s

	
cov br; bs� �

� C;r
ijtw�v�kl�t;w�0C;s

mnpq

n
� C;r

ijtw�v�kl�t;w�;sC0
mnpq

o
� cov br; bs� �: �B:9�

Next, covariances of the e�ective elasticity tensor components are to be found. Starting from the classical de®nition it is

shown that

cov C�eff�
ijkl ;C

�eff�
mnpq

� �
� cov�Cijkl � Cijtwv�kl�t;w;Cmnpq � Cmnuvv�pq�u;v�

�
Z �1

ÿ1
�Cijkl � Cijtwv�kl�t;w ÿ E Cijkl

� �ÿ E�Cijtwv�kl�t;w��
� �Cmnpq � Cmnuvv�pq�u;v ÿ E Cmnpq

� �ÿ E�Cmnuvv�pq�u;v�� � pR b�x�� � db: �B:10�

Transforming the respective integrands and using FubiniÕs theorem applied to the integrals of random functions, we

further obtain thatZ �1

ÿ1
Cijkl

ÿ ÿ E Cijkl

� ��
Cmnpq

ÿ ÿ E Cmnpq

� �� � pR b�x�� � db

�
Z �1

ÿ1
Cijkl

ÿ ÿ E Cijkl

� ���Cmnuvv�pq�u;v ÿ E�Cmnuvv�pq�u;v�� � pR b�x�� � db

�
Z �1

ÿ1
�Cijtwv�kl�t;w ÿ E�Cijtwv�kl�t;w�� Cmnpq

ÿ ÿ E Cmnpq

� �� � pR b�x�� � db

�
Z �1

ÿ1
�Cijtwv�kl�t;w ÿ E�Cijtwv�kl�t;w���Cmnuvv�pq�u;v ÿ E�Cmnuvv�pq�u;v�� � pR b�x�� � db; �B:11�

which, using the classical de®nition of the covariance, is equal to

cov Cijkl;Cmnpq

ÿ �� cov�Cijkl;Cmnuvv�pq�u;v� � cov�Cijtwv�kl�t;w;Cmnpq� � cov�Cijtwv�kl�t;w;Cmnuvv�pq�u;v�: �B:12�

Introducing the statements (B.1), (B.6) and (B.8) into the last one, it can be ®nally written that

cov C�eff�
ijkl ;C

�eff�
mnpq

� �
� C;r

ijklC
;s
mnpq

n
� C;r

ijtw�v�kl�t;w�0C;s
mnpq � C;r

ijtw�v�kl�t;w�;sC0
mnpq � C;r

ijklC
;s
mnuv�v�pq�u;v�0

� C;r
ijklC

0
mnuv�v�pq�u;v�;s � C;r

ijtwC;s
mnuv�v�kl�t;w�0�v�pq�u;v�0 � C;r

ijtwC0
mnuv�v�kl�t;w�0�v�pq�u;v�;s

� C0
ijtwC;r

mnuv�v�kl�t;w�;s�v�pq�u;v�0 � C0
ijtwC0

mnuv�v�kl�t;w�;r�v�pq�u;v�;s
o

cov br; bs� � �B:13�

which completes the considerations.

References

[1] Arminjon M. Limit distributions of the states and homogenization in random media. Acta Mech 1991;88:27±59.

[2] Avellaneda M. Optimal bounds and microgeometries for elastic two-phase composites. SIAM J Appl Math 1987;47:1216±28.

[3] Bahei-El-Din YA. Finite element analysis of viscoplastic composite materials and structures. Int J Comp Mat Struct 1996;3:1±28.

[4] Bathe KJ. Finite element procedures. Engelwood Cli�s, NJ: Prentice-Hall; 1996.

[5] Bendat JS, Piersol AG. Random data: analysis and measurement procedures. New York: Wiley; 1971.

[6] Beran MJ. Application of statistical theories for the determination of thermal, electrical and magnetic properties of heterogeneous

materials. In: Broutman LJ, Kroch RH, editors, Mechanics of composite materials. New York: Academic Press; 1974.

[7] Boswell MT, et al. The art of computer generation of random variables. In: Rao CR, editor, Handbook of statistics,

Computational Statistics, vol. 9. Amsterdam: Elsevier; 1991. p. 662±721.

[8] Braides A, Piat VC. Remarks on the homogenization of connected media. Nonlinear Anal Theor Meth Appl 1994;22(4):391±407.

M. Kami�nski, M. Kleiber / Computers and Structures 78 (2000) 811±826 825



[9] Castaneda PP, Suquet PM. Nonlinear Composites. In: Van Der Giessen E, Wu TY, editors, Advances in Applied Mechanics, vol.

34. Academic Press, 1998.

[10] Chang S, Chao SJ, Chang Y. Estimates of elastic moduli for granular material with anisotropic random packing structure. Int J

Solids Struct 1995;32:1989±2008.

[11] Christensen RM. Mechanics of Composite Materials. New York: Wiley-Interscience; 1979.

[12] Cruz ME, Patera AT. A parallel Monte-Carlo ®nite element procedure for the analysis of multicomponent media. Int J Num

Meth Engng 1995;38:1087±121.

[13] Fish J, editor. Computational advances in modeling composites and heterogeneous materials. Comput Meth Appl Mech Engng

1999;172.

[14] Francfort G, Murat F, Tartar L. Fourth-order moments of nonnegative measures on S2 and applications. Arch Rational Mech

Anal 1995;131:305±33.

[15] Frantziskonis G, Renaudin P, Breysse D. Heterogeneous solids. Part I: analytical and numerical 1-D results on boundary e�ects.

Eur J Mech A/Solids 1997;16(3):409±23.

[16] Ghanem RG, Spanos PD. Spectral techniques for stochastic ®nite elements. Arch Comput Meth Engng 1997;4(1):63±100.

[17] Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi

cell ®nite element method. Int J Solids Struct 1995;32:27±62.

[18] Grigoriu M. Stochastic mechanics. Int J Solids Struct 2000;37:197±214.

[19] Gutierrez MA, de Borst R. Numerical analysis of localization using a viscoplastic regularization: in¯uence of stochastic materials

defects. Int J Num Meth Engng 1999;44:1823±41.

[20] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Sol

1963;11:127±40.

[21] Hurtado JE, Barbat AH. Monte-Carlo techniques in computational stochastic mechanics. Arch Comput Meth Engng 1998;5(1):

3±30.

[22] Kalamkarov AL, Kolpakov AG. Analysis, Design and Optimization of Composite Structures. New York: Wiley; 1997.

[23] Kaminski M. Homogenization in random elastic media. Comput Ass Mech Engng Sci 1996;3(1):9±22.

[24] Kaminski M. Homogenized properties of n-component composite materials. Int J Engng Sci 2000;38(4):405±27.

[25] Kaminski M, Kleiber M. Numerical homogenization of n-phase composites including stochastic interface defects. Int J Num Meth

Engng 2000;47:1001±25.

[26] Kaminski M, Kleiber M. Stochastic ®nite element method in random non-homogeneous media. In: Desideri JA, et al., editor,

Numerical Methods in Engineering'96. New York: Wiley; 1996, p. 35±41.

[27] Kaminski M, Kleiber M. Stochastic structural interface defects in composite materials. Int J Solids Struct 1996;33(20±22):3035±56.

[28] Kleiber M, Hien TD. The stochastic ®nite element method. Basic perturbation technique and computer implementation. New

York: Wiley; 1992.

[29] Kohn RV. Recent progress in the mathematical modeling of composite materials. In: Sih G, et al., editors. Composite materials

response. Constitutive relations and damage mechanisms. Amsterdam: Elsevier; 1988. p. 155±77.

[30] Kr�oner E. E�ective moduli of random elastic media- uni®ed calculation of bounds and self-consistent values. Mech Res Comm

1977;4:389±93.

[31] Ostoja-Starzewski M, Jasiuk I. Micromechanics of random media. Proc Symp ÔMicromechanics of Random MediaÕ MEETÕNÕ93.

Appl Mech Rev 1994;47(1).

[32] Pedersen J, editor. Optimal design with advanced materials. Amsterdam: Elsevier; 1993.

[33] Renaudin P, Breysse D, Frantziskonis G. Heterogeneous solids. Part II: numerical 2-D results on boundary and other relevant

phenomena. Eur J Mech A/Solids 1997;16(3):425±43.

[34] Sab K. On the homogenization and the simulation of random materials. Eur J Mech Sol 1992;11:585±607.

[35] Schellekens JCJ. Computational strategies for composite structures. Delft University of Technology, 1990.

[36] Suquet P. A dual method in homogenization: application to elastic media. J Mech Theor Appl 1992;79±98.

[37] Taliercio A, Sagramoso P. Uniaxial strength of polymeric-matrix ®brous composites predicted through a homogenization

approach. Int J Solids Struct 1995;32(14):2095±123.

[38] Terada K, Miura T, Kikuchi N. Digital image-based modeling applied to the homogenization analysis of composite materials.

Comput Mech 1997;20:331±46.

[39] Vanmarcke E. Random ®elds. Analysis and synthesis. Cambridge, MA: MIT Press; 1983.

826 M. Kami�nski, M. Kleiber / Computers and Structures 78 (2000) 811±826


