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In the paper the calculation of ultrasonic field generated by the transmitting transducer
and the pulse-echo amplitude received after beam reflection at the defect in tested material is
presented. The focus of the authors is directed on the specific transducer – defect configurations
where the common methods of determination of ultrasonic beam trajectory fails. The developed
analytical model is based on well-established principles of elastodynamic theory and forms the
basis for computer program for simulation of ultrasonic examination of railway rails.
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1. Introduction

The increase of the track loading due to traffic increment and introduction
of high speed trains results in the occurrence of significant number of rolling
contact fatigue (RCF) damages in exploited rails [1]. These faults may result in
expansive cracks and finally cause rail breakage. The models of damage creation
and growth in railway rails were described by Clayton et al. [2], Bolton
et al. [3], and Franklin et al. [4]. Worldwide implemented rail line testing
includes several non-destructive techniques, including: visual (VT), ultrasonic
(UT), eddy current (ET) and magnetic (MT) [5]. In the European Union the
standard EN 16729-3 [6] is observed in this respect.

One of the most difficult for detection rail defects are transversal cracks
located in the rail head and oriented nearly vertically to the running surface of
the rail head. Examples of rails broken due to the presence of aforementioned
defects are shown in Fig. 1.
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a) b)

Fig. 1. Examples of rail fractures caused by transversal fatigue cracks propagating
in nearly vertical direction.

According to EN 16729-1 for ultrasonic detection of transverse cracks in the
rail head the shear wave probes with refraction angle of 70◦ should be applied.
Conventionally, the testing system uses two T70◦ probes moved along the cen-
treline of the rail running surface and directed, respectively, in the forward and
backward direction. The aforementioned testing configuration (for one probe) is
shown in Fig. 2.

Fig. 2. The standard configuration of rail testing with T70◦ probe.
The image generated with use of Beam Tool 9 software package.

Unfortunately, this conventional testing method may be successful only in
detection of limited number of transversal cracks located in the central part
of the rail head. The cracks originating at the corner zones of the rail head
(as the one shown in Fig. 1b) are undetectable until they grow to the rail centre.
At that time they may already be big enough to cause a rail breakage resulting
in train derailment. Even if the transversal crack is located in the central part
of the rail head it is sometimes difficult to detect with standard T70°probes.
Such a problem occurs when the crack is nearly vertical and its surface is very
smooth (i.e. without kinks or folds). Relevant testing configuration is illustrated
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in Fig. 3 together with a ray tracing picture generated with ultrasonic modelling
software [8].

Fig. 3. Ray tracing modelling of ultrasonic beam interaction with vertical crack
in rail head for a standard T70◦ probe.

Within the framework of the basic ray tracing propagation model such
a crack geometry is completely undetectable with an angle beam probe, as all
the rays incident on its surface are reflected in the lower direction, missing the
testing probe. Fortunately, the ray tracing model is only the first approxima-
tion of the physical reality and, due to diffraction phenomena, some ultrasonic
energy still returns to the testing probe and gives certain ultrasonic echo.

Considering the importance of this single problem for the reliability of inspec-
tion and safe operation of the railway lines, the authors undertook the efforts to
increase the probability of detection of such defects by optimisation of ultrasonic
testing methodology. The first stage of these efforts was to develop a theoretical
model for adequate simulation of ultrasonic rail testing.

2. General description of modelling approach

As was already pointed out the basic ray tracing model [9], implemented
in some commercial ultrasonic simulation software [8, 10] is not sufficient for
adequate modelling of considered testing configuration due to ignoring diffrac-
tion in reflected beam. On the other hand the most accurate Finite Element
Model (FEM) requires prohibitively high amount of computing power (and re-
lated costs) for typical modelling works requiring hundreds of simulations for
different probes, defect positions and orientations [11, 12]. The FEM method
is ineffective in simulation of ultrasonic testing problems due to the transient
nature of the modelled phenomena (traveling pulses require hundreds of time
domain iterations) and a short wavelength of ultrasonic waves compared to the
typical sizes of tested objects. Because the FEM mesh step must be less than
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c.a. 1/10 of ultrasonic wavelength, the sizes of meshes necessary for accurate
simulations of 3D ultrasonic problems must be of the order of 109 or greater. So
the best way for efficient, yet enough accurate modelling of ultrasonic testing
problems seems to be semi-analytical model based on well-established theoretical
foundations such as Rayleigh-Somerfield integral and elastodynamic Kirchhoff
approximation [13]. The theoretical development of such simulation model is
described in this paper.

The described model can be helpful in the efforts leading to design of the
software aimed to simulate the interaction of ultrasonic beams and defects in
rails. Such software has to be customized to testing of rails in the track where
ultrasonic probes are moved over the top surface of the rail head. This is the only
rail surface available for ultrasonic scanning in case of field inspections carried
out nowadays with manual trolleys or inspection cars.

The simulation program should work within a framework of generic rail ge-
ometry whose exact dimensions can be adjusted to the specific rail type (UIC60,
S49, etc.). It should enable simulation of ultrasonic beams generated by the
broad class of ultrasonic probes, including standard angle and normal beam
probes as well as dual element S and L-type probes. All basic parameters of the
modelled ultrasonic probes, including frequency, transducer size and refraction
angle should be freely adjusted as the input data. Except of a direct pulse-echo
technique, the software should simulate examinations carried out with ultrasonic
beam reflected off the bottom surface of the rail foot (corner effect) or the lower
surfaces of the rail head. The ultrasonic beams may be directed along the rail
axis or skewed to the rail side by defined angle.

Except the simulation and visualization of ultrasonic beams generated by
the testing probes the program should calculate the amplitudes of ultrasonic
echoes reflected from the standardized model defects. The standardized model
defect adapted in the program is the disk shaped reflector (DSR) commonly
used in ultrasonic testing as a reference reflector. The standard model defect
can be implemented anywhere in the rail volume and have user defined size
and orientation. It should be noted that such relatively simple idealization of
real defects is quite adequate for considered examinations, as majority of real
defects developing in railway rails during service are flat cracks of different size,
position and orientation. The shapes of real rail defects can vary to a great ex-
tent and may considerably deviate from the circular shape of assumed model
defect. Fortunately, this is not a major factor affecting the amplitude of received
ultrasonic echoes as long as the position, orientation and surface area of defects
are the same. The only characteristic of the real rail defects which cannot be
adequately simulated by the implemented model defect is the surface roughness
and unevenness. If the characteristic size of these features (e.q. Ra) is consider-
ably smaller than the ultrasonic wavelength its influence can be neglected but if
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it is comparable or greater than the ultrasonic wavelength the simulation results
may considerably differ from measured echo amplitudes. This only emphasizes
that simulation results must always be handled with great care and in depth
knowledge of the nature and characteristics of the defects sought.

In practical testing of railway rails ultrasonic probes are mounted under the
manual trolley or inspection car and moved along the rail with a certain speed.
During such movement a multichannel ultrasonic system is simultaneously moni-
toring echo amplitudes from all testing channels and recording echo envelopes
for all probes which receive signals exceeding the registration level. Based on the
careful analysis of registered echo envelopes an ultrasonic expert evaluates the in-
spection results. To mimic this inspection reality the simulation software should
allow for calculation of theoretical echo envelope for any implemented model
defect.

As with any other theoretical modelling of the real word phenomena the
simulation of ultrasonic testing is only a certain approximation of the reality. It
can give more or less accurate predictions depending on accuracy and relevance
of the theoretical model as well as on many side factors disturbing the real testing
process which cannot be included in a theoretical model. In considered case these
may be surface conditions of tested rails (deformed geometry, roughness, surface
defects), quality of acoustic coupling, quality of ultrasonic probes and scanners,
shadowing one defects by the another etc. The best evaluation of a theoretical
model for a given application is achieved when a comparison of its predictions is
done with well controlled experiments performed in conditions possibly close
to the actual application conditions.

3. Calculation of ultrasonic field generated
by the transmitting transducer

A theoretical model describing ultrasonic testing of a certain object must,
first of all, allow for calculation of ultrasonic fields generated by different ultra-
sonic probes attached to its surface. This functionality is essential for planning
testing procedures in such a way that all potential defects will be illuminated
by ultrasonic beam of appropriate intensity coming from at least one testing
probe. This is the first, but not the only, condition for successful ultrasonic
examination.

We will consider standard ultrasonic testing configuration commonly used
in ultrasonic testing of railway, shown in Fig. 4. The angle beam probe is cou-
pled, with a thin layer of coupling medium, to the flat surface of tested object.
The piezoelectric transducer attached to the refracting wedge made of plastic
material (PMM, polystyrene) vibrates in a thickness mode and generates longi-
tudinal wave in the wedge material. In line with common practice in ultrasonic



442 T. KATZ et al.

modelling we assume piston like transducer vibrations with angular frequency ω
and uniform particle velocity v0 over the whole surface. The ultrasonic wave
propagating in the wedge hits the boundary between wedge and tested material
at an angle α (see Fig. 4). From simple geometry consideration one can see that
this angle is just equal to the wedge angle. The wedge angle α is selected be-
tween the 1st and 2nd critical angle so, that in the tested material is generated
only one refracted, shear type wave.

Fig. 4. Ultrasonic testing configuration with an angle beam probe coupled
to the tested material.

The refraction angle of the shear wave β is related to the incidence angle of
longitudinal wave α through the well-known Snell’s law:

(3.1)
sinα

sinβ
=
VL1

VT2
,

where VL1 is velocity of longitudinal (L-type) wave in wedge material, VT2 –
velocity of transversal (T-type) wave in tested material.

Before we start calculation of ultrasonic field in the tested material we in-
troduce certain simplifying assumption concerning wedge material. Because in
the wedge we generate only longitudinal type of wave we will treat this material
as an ideal fluid with the same mass density and velocity of longitudinal waves as
the real wedge material. This way we neglect the wedge material shear stiffness
which plays a marginal role in the analysed problem but would considerably
complicate mathematical treatment. This assumption is also compatible with
the fact that the probe wedge is coupled to the tested material with a thin layer
of liquid which does not transmit shear stresses.

With this simplification we can use Rayleigh-Sommerfeld integral [13], known
from fluid acoustics, for calculation of ultrasonic field in the wedge material.
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The Rayleigh-Sommerfeld equation express the acoustic pressure p at point x
in the fluid medium in terms of integral over the radiating transducer surface:

(3.2) p(x) =
−iωv0ρ1

2π

ˆ

St

eikr

r
dS,

where ρ1 is mass density of wedge material, ω is angular frequency of ultrasonic
vibration, St is surface of the transmitting transducer, v0 is normal particle
velocity at the transducer surface, k is wavenumber of ultrasonic wave in the
wedge, r is distance between the field point x and current integration point on
the transducer surface.

The Rayleigh-Sommerfeld integral is a rigorous, mathematical formulation of
the historical Huygens-Fresnel principle, which says that every point of vibrating
surface (in our case the surface driven by transmitting transducer) is a source
of secondary spherical wave and the interference of all these waves determines
the form and amplitude of the primary wave at any subsequent time.

Using integral (3.2) we could easily calculate ultrasonic field in the wedge
material, but this is not our final purpose. Actually, we want to calculate ultra-
sonic field in the tested material, i.e. after ultrasonic beam is refracted at the
wedge-material boundary. In order to solve this more difficult problem we will
use so called ‘pencil model’ first introduced by Deshamps [14] for calculations
of electromagnetic beams generated by radars. This concept was later trans-
ferred to modelling of ultrasonic waves by Calmon at al. [15], Raillon and
Lecoeur-Täıbi [16], and Gengembre [17] and proved to be very effective in
terms of calculation accuracy and computing efficiency. It is also quite intuitive
and easy to understand for ultrasonic testing practitioners without in-depth
knowledge of elastodynamic theory.

Consider certain fixed observation point P in tested material and arbitrary
point source on the transducer surface (see Fig. 5). According to Fermat’s prin-

Fig. 5. Cone of rays (a pencil) located around the Fermat’s path between an arbitrary point
on the transducer surface and evaluation point P in the tested material.
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ciple the acoustic energy generated by the source travels towards the observation
point P along a particular trajectory, called the Fermat’s path. The central ray
of this path satisfies the Snell’s law at the wedge-material border and the time of
flight of ultrasonic wave along this path is the shortest of all possible paths. In
more rigorous mathematical treatment this path is also called stationary phase
path.

As was already noticed we will assume that the refracted wave is of the
transversal type (T-type), as this is the most common configuration used in
non-destructive testing. However, very similar reasoning could be performed for
refracted longitudinal wave as well.

In order to evaluate the amplitude of an elementary wave going from the
point source to the material point P , we will consider evolution of a wave cone
starting at the source. Following the mentioned original works we will call this
cone a pencil. The pencil is defined as a bunch of paraxial rays located infinitesi-
mally close around the Fermat’s central ray (see Fig. 5). Assuming that the total
acoustic energy traveling in the pencil is constant, the change of the wave ampli-
tude in the pencil may be determined by the evolution of its cross section area.
Additionally, we have to take into consideration reduction of ultrasonic energy
due to partial reflection at the wedge-material boundary. This is a fundamental
assumption of the pencil’s theory which holds well in all cases where the ultra-
sonic wavelength is much smaller than the curvature radii of the surfaces which
refract or reflect ultrasonic beam.

Using the above assumptions of the pencil model we can derive an analogue
of the Rayleigh-Sommerfeld integral valid in the tested material after refrac-
tion of the ultrasonic beam on the wedge-material border.

First, we will calculate the amplitude of the partial spherical wave generated
by a point source on the transducer surface based on the pencil theory. According
to Eq. (3.2) the ultrasonic energy emitted by a point source into the pencil cone
with infinitesimal opening angle dθ is equal:

(3.3) dE1 =
p2

1

2z1
π( dθ)2 =

ω2v2
0ρ

2
1

8π2z1
π( dθ)2,

where z1 = ρ1VL1 – acoustic impedance of the wedge material.
This energy is transferred within the pencil, without any losses, to the border

between wedge and tested material. On the border plane the pencil is refracted
according to the Snell’s law (see Fig. 5) but part of its energy is reflected off,
reducing the amount transmitted to the second medium.

The energy transmission coefficient at the border can be given by:

(3.4) TE12 =
v2

2z2

v2
1z1

cosβ

cosα
= (T v12)2 z2

z1

cosβ

cosα
,
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where z2 = ρ2VT2 is acoustic impedance of the tested material, α is incidence
angle of the pencil central ray, β is refraction angle of the pencil central ray, v1 is
particle velocity of the partial wave near the border in the first material, v2 is par-
ticle velocity of the partial wave near the border in the second material, T v12(α)
is transmission coefficient of particle velocity at the wedge-material border for
a plane waves.

According to our previous assumptions the transmission coefficient T v12(α)
should be the one relating longitudinal wave in the first fluid medium and
transversal wave in the second solid medium. The mathematical formula for
such transmission coefficient for plane waves can be found in many textbooks
on ultrasonic wave theory, e.g. [13].

Combining Eqs (3.3) and (3.4) we can say that the acoustic energy traveling
in the pencil after refraction is:

(3.5) dE2 = TE12 dE1 = (T v12)2 z2

z1

cosβ

cosα

ω2v2
0ρ

2
1

8π2z1
π( dθ)2.

Now, we should calculate the pencil cross section area dΣ at evaluation
point P in the tested material using 3D geometry. The pencil starts at the point
source on the transducer and initially forms a cone with a circular cross section
and opening angle dθ. The pencil gradually increases its diameter, and at the
wedge boundary reaches the value a = 2r1 dθ, where r1 is the path of the central
ray in the wedge material.

At the wedge-material boundary, the central ray is refracted, together with
all semi axial rays surrounding it. As a result the vertical cross section of the
pencil changes (see Fig. 5) and can be expressed by the following formula:

(3.6) a′ =
cosβ

cosα
a =

cosβ

cosα
2r1 dθ.

The pencil cross section in the plane perpendicular to the incidence plane (in
the so called lateral plane) doesn’t change and can be expressed as:

(3.7) a′′ = a = 2r1 dθ.

Geometrical analysis indicates that also divergence angles of the pencil change
due to refraction. The new divergence angle in the incidence plane is given by:

(3.8) dθ′ =
VT2

VL1

cosα

cosβ
dθ

and in the lateral plane by:

(3.9) dθ′′ =
sin

sinα
dθ =

VT2

VL1
dθ.
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We see, that after refraction the pencil is no longer a regular cone with cir-
cular cross-section but becomes more complex and characterized by elliptical
cross-section. Nevertheless, knowing its dimensions at the border (a′ and a′′)
and new divergence angles (θ′ and θ′′) we can easily calculate its dimensions
(b′ and b′′) and cross-section area dΣ at evaluation point P in the tested mate-
rial:

(3.10) dΣ =
π

4
b′b′′ =

π

4

(
cosβ

cosα
2r1 +

VT2

VL1

cosα

cosβ
2r2

)
dθ
(

2r1 +
VT2

VL1
2r2

)
dθ.

After a few mathematical manipulations we obtain:

(3.11) dΣ =

(
cosβ

cosα
r1 +

VT2

VL1

cosα

cosβ
r2

)(
r1 +

VT2

VL1
r2

)
π(dθ)2 .

As it was assumed in Eq. (3.2), x is a vector designating the position of the
evaluation point P in the tested material. Now, combining Eqs (3.5) and (3.11)
we obtain expression for the ultrasonic energy intensity I(x) at the evaluation
point P :

(3.12) I(x) =
dE2

dΣ
=

ω2v20ρ
2
1

8π2z1
(T v12)2 z2

z1
cosβ
cosα(

cosβ
cosαr1 + VT2

VL1

cosα
cosβ r2

)(
r1 + VT2

VL1
r2

) .
But, the energy intensity I of a plane or a quasi-plane ultrasonic wave is directly
related to the amplitude of partial velocity of that wave by the standard formula:

(3.13) I =
1

2
z2v

2
2.

Making use of that formula we can obtain an expression for the amplitude of
particle velocity of a partial wave at the point P with the coordinate vector x:

(3.14) |v2(x)| =
√

2I/z2 =
ωv0

2πVL1
T v12

√√√√ cosβ
cosα(

cosβ
cosαr1 + VT2

VL1

cosα
cosβ r2

)(
r1 + VT2

VL1
r2

)
=

ωv0

2πVL1
T v12

1√(
r1 + VT2

VL1

cos2α
cos2β

r2

)(
r1 + VT2

VL1
r2

) .
The phase of the partial wave at the point P results from the passage of the pen-
cil central ray through the section r1 in the wedge material and section r2 in the
tested material and equals: k1r1 + k2r2. Additionally we add a factor −i to en-
sure phase continuity with Eq. (3.2) at the wedge-material boundary. As a result
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the final complex expression for the amplitude of the partial wave at the field
point P takes the form:

(3.15) v2(x) =
−iωv0

2πVL1

T v12(α)ei(k1r1+k2r2)√(
r1 + VT2

VL1

cos2α
cos2β

r2

)(
r1 + VT2

VL1
r2

) .
In Eq. (3.15), we indicated that transmission coefficient T v12 depends on the
incidence angle α of the pencil central ray and thus it is different for each point
source on the transducer surface.

Now, we can calculate the total ultrasonic field at the point P by summing
up amplitudes of all partial waves coming from all point sources distributed
over the transmitting transducer surface. The resulting integral over transducer
surface St takes the form:

(3.16) v(x) =
−iωv0

2πVL1

ˆ

St

T v12(α)ei(k1r1+k2r2)(
r1 + VT2

VL1

cos2α
cos2β

r2

)1/2 (
r1 + VT2

VL1
r2

)1/2
dS,

where v(x) is the complex partial velocity amplitude of ultrasonic wave gener-
ated by the whole transmitting transducer.

It should be noted that in Eq. (3.16) we sum up particle velocities of partial
waves as simple scalars, without regarding its true vector nature. It is simpli-
fication typical for all scalar theories of diffraction. The scalar value describing
the ultrasonic field amplitude is quite suitable and adequate for presentations of
ultrasonic field distributions on 2D maps or cross-sections. But, for some other
applications we need the full vector value of particle velocity which completely
describes the ultrasonic field.

We can estimate the missing direction of particle vibrations in the far field
of transmitting transducer in the following way. First of all, in the far field the
generated wave can be approximated by a divergent beam of quasi-plane waves
with virtual centre located at the centre of the transmitting transducer (see
Fig. 6). So, the ray starting at the transducer centre and reaching the evaluation
point P is perpendicular to the wave front at this point. Consequently, the
directional versor of the wave at this point ei is determined by the direction
of this central ray and polarity versor diSH by the cross section of the plane
perpendicular to ei and the plane of incidence of the aforementioned ray on the
wedge-material border.

Comparing Eq. (3.16) to the original form of Rayleigh-Sommerfeld integral
(3.6) one may notice that we have changed the physical quantity which describes
the ultrasonic field. The acoustic pressure p(x) is not well defined for solid
medium so we have changed it for the particle velocity v(x) which is well defined
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for both fluids and elastic solid media. Second difference compared to the formula
(3.2) is replacement of a simple divergence factor 1/r with a more complex
expression combining r1 and r2. It follows from the fact that partial waves in
the second medium are no longer simple spherical waves, but form more complex
wave fronts. The presence of the transmission coefficient T v12 is rather obvious
as the partial waves pass through the boundary of materials.

The last important consideration is connected with the fact that in ultrasonic
modelling for non-destructive testing we actually do not need the absolute values
of ultrasonic amplitudes but only its relative values and space distributions. In
practice, we always compare received echoes with some reference echoes obtained
from predefined artificial reflectors (FBH, SDH, BW). So, we can further simplify
formula (3.16) by replacing all constant values before integral with 1 to obtain
integral expression for normalised value of ultrasonic wave amplitude

(3.17) v(x) =

ˆ

St

T v12(α)ei(k1r1+k2r2)(
r1 + VT2

VL1

cos2α
cos2β

r2

)1/2 (
r1 + VT2

VL1
r2

)1/2
dS.

All factors included in integral (3.17) can be readily calculated if we can deter-
mine α, β, r1, and r2 for any combination of a source point on the transducer
surface and evaluation point in the tested material (see Fig. 5). This problem is
equivalent to determining the Fermat path between two given points. It can be
easily solved using a numerical algorithm looking for minimum time of flight of
ultrasonic wave between two such points.

4. Calculation of ultrasonic echo amplitude

Determination of ultrasonic field generated by the transmitting transducer is
the first step in numerical simulation of ultrasonic inspection. Using this possi-
bility we can check if the ultrasonic beam actually illuminates defects positioned
in different parts of the tested object with sufficient amplitude. However looking
at Fig. 3 we can immediately conclude that the proper illumination of defect
with ultrasonic beam does not guarantee its detection. This heavily depends on
defect orientation and size.

So, the next important step in modelling efforts is calculation of the height of
ultrasonic echo received after reflection/scattering at the model defect. To solve
this rather difficult task we will make use of the electromechanical reciprocity
theorem [17, 18] which considerably simplifies the mathematical treatment. The
reciprocity concept allows us to assume that the sensitivity field of the receiving
transducer is the same as the actual ultrasonic field of the same transducer when
working as a transmitter. This way, we can use the equations derived in the
previous chapter to calculate the sensitivity fields of the receiving transducers.
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The subject of detection are secondary sources generated on the defect surface
by the incident ultrasonic wave.

The secondary point sources on the defect surface generate partial spherical
waves the same way as point sources distributed over the transmitting trans-
ducer surface. The problem is, that the amplitudes and directions of their vibra-
tions are not known a priori, as it was in the case of transmitting transducer.
They must be calculated based on the amplitude and direction of the incident
wave and its interaction with the defect surface.

In general solving this type of problem is very difficult but under some sim-
plifying assumptions we can treat it using quite effective semi analytic approach.
First of all, we define our model defect as a disc shape reflector (DSR) with an
ideally flat and traction free surfaces. We will allow the model defect to have
any diameter and orientation within the tested object. The general scheme of
interaction of incident wave with our model defect is depicted in Fig. 6.

Fig. 6. Interaction of incident transversal ultrasonic wave with a model defect.

The transversal wave generated by the transmitting transducer hits the sur-
face of the model defect of diameter D and normal versor n. The wave striking
certain small element dS on the defect surface can be characterised by its direc-
tion ei, polarisation di and amplitude of particle velocity vi. The result of this
wave interaction with the surface element depends on incidence angle, as well
as, on the orientation of its polarisation versor di with respect to the plane of
incidence on the defect surface. Generally, any incident shear wave can be de-
composed into two standard polarities called SV (shear vertical) and SH (shear
horizontal). These polarities are considered in relation to the reflecting surface,
that is the surface of the model defect. The interaction of both types of waves
with stress free plane is illustrated in Fig. 7.

To go further we must introduce very important assumption known as the
elastodynamic Kirchhoff approximation [18]. It states that the ultrasonic wave
hitting the defect surface at a certain point reflects from it in the same way
as an ideal plane wave from the infinite plane, parallel to the defect surface at
that interaction point. As the surface of our model defect is flat and its surfaces
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a) b)

Fig. 7. Interaction of SV and SH waves with a stress free plane.

are stress free, it seems a quite reasonable assumption. The only difference is
that our defect is not infinite (has diameter D) and our ultrasonic beam is not
a plane wave. So, we can expect that Kirchhoff approximation will work well,
only if defect is located in the far field of transmitting transducer (where the
incident ultrasonic wave becomes a semi plane wave) and its size is considerably
greater than the ultrasonic wavelength. Those conditions are generally met in
ultrasonic testing of railway rails but the actual degree of compliance can only
be confirmed in experimental verification. By adopting Kirchhoff approximation
we can use in our model the well-known canonical solutions obtained for plane
waves.

First, we consider the case when incident wave is of SV type. For such a case
there are generally two types of reflected waves, SV-type and L-type. The SV
wave reflects at an angle equal to the incidence angle: θrSV = θi. Its direc-
tion versor erSV and polarisation versor drSV can be calculated based on the
knowledge of ei and diSV for the incidence wave

erSV = ei − 2(ei · n)n,(4.1)

drSV = 2(diSV · n)n− diSV.(4.2)

The L-type wave reflects at an angle θrL resulting from the Snell’s law and
have polarization direction drL parallel to the propagation direction erL. These
versors can be calculated in the following way.

From the Snell’s law it follows that the component of erL parallel to the
reflecting plane is equal:

(4.3) e
‖
rL =

VL2

VT2
[ei − (ei · n)n] .

Consequently, the versor component perpendicular to the reflecting plane must be

(4.4) e⊥rL =

√
1−

∣∣∣e‖rL∣∣∣2n.
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Finally, the full versor erL is given by

(4.5) erL = e
‖
rL + e⊥rL.

The polarisation versor of longitudinal wave is parallel to its direction and given by:

(4.6) drL = erL.

To fully characterize reflected waves we need not only their directions and
polarisations but also their amplitudes. Thanks to the Kirchhoff approximation
they can be easily calculated using reflection coefficients R(SV,SV) and R(L,SV)

for the plane waves. Using these coefficients we ultimately get the expression
for the particles velocity on the defect surface caused by SV component of the
incident wave:

(4.7) v
(1)
SV = vSV

(
diSV +R(SV,SV)drSV +R(P,SV)drL

)
.

Reflection coefficients R(SV,SV) and R(L,SV) depend on the incident angle θi of
ultrasonic wave at the surface element dS. Also the amplitude of SV component
of incident wave vSV changes over the defect surface.

Next, we consider the case when an incident wave is of SH type. For such
a case there is only one reflected wave of SH-type (see Fig. 7b). The SH wave
reflects at an angle equal to the incidence angle θrSH = θi. Its direction and
polarisation versors can be calculated based on the ei and diSH versors of the
incidence wave:

erSH = ei − 2(ei · n)n,(4.8)

drSH = diSH.(4.9)

In this case all the incident ultrasonic energy reflects as SH wave so the re-
flection coefficient R(SH,SH) = 1. Using this we get an expression for the particles
velocity of surface vibrations caused by SH component of the incident waves:

(4.10) v
(1)
SH = vSH

(
diSH+R(SH,SH) drSH

)
=2vSH diSH.

Having calculated particle velocity amplitudes for both components (SV and
SH) of the incident wave we can calculate the total particles velocity of ultrasonic
vibrations at the defect surface. It is equivalent to the amplitude of secondary
point sources at infinitesimal surface elements dS:

(4.11) v(1) = v
(1)
SV + v

(1)
SH.
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Now we may recall the strict mathematical formulation of the reciprocity
theorem applicable directly to our problem, developed by Schmerr [13]:

(4.12) FB =
1

v
(2)
0

ˆ

Sd

(
τ

(1)
ji v

(2)
i − τ

(2)
ji v

(1)
i

)
nj dS,

where FB is blocked force exerted on the receiving transducer by ultrasonic wave
reflected from the defect, v(1)

i are components of particle velocity amplitude for

solution (1), v(2)
i are components of particle velocity amplitude for solution (2),

τ
(1)
ji are components of stress tensor for solution (1), τ (2)

ji are components of stress

tensor for solution (2), v(2)
0 is amplitude of receiving transducer vibrations for

solution (2), nj are components of versor n normal to the model defect.
Fields marked with superscript (1) in the above equation refer to the so-

lution of the problem we considered before, where the transmitting transducer
generates ultrasonic field which interacts with model defect. Fields marked with
superscript (2) refer to an auxiliary solution where the receiving transducer acts

as a piston like source vibrating with velocity v(2)
0 and generating in the tested

material an ultrasonic field which do not interact with the model defects. This
field can be interpreted as sensitivity field of the receiving transducer. We can
calculate it in the same way as regular fields generated by transmitting trans-
ducers, using formula (3.17). The blocked force on the left side of Eq. (4.12) is
the total force exerted on the face of receiving transducer by the ultrasonic wave
reflected from the model defect, under assumption that this face is held rigidly
fixed (is blocked). The amplitude of ultrasonic echo displayed by ultrasonic flaw
detector connected to the receiving transducer is proportional to this blocked
force value [19].

Considering that our model defect is crack like, we assume that it has stress
free surfaces τ (1)

ji = 0 what simplifies Eq. (4.12) to the form:

(4.13) FB =
−1

v
(2)
0

ˆ

Sd

τ
(2)
ji v

(1)
i nj dS.

It should be noted that τ (2)
ji is not zero on the defect surface as the solution (2)

neglects the presence of the model defect in the tested material.
Now, we have to calculate stress components τ (2)

ji of solution (2) based on ul-
trasonic field amplitude calculated from Eq. (3.17) and additional considerations
concerning particle velocity direction. We start with a standard stress-strain re-
lation for elastic solid:

(4.14) τ
(2)
ij = Cijkle

(2)
kl = Cijkl

1

2

(
∂u

(2)
k

∂xl
+
∂u

(2)
l

∂k

)
= Cijkl

∂u
(2)
k

∂xl
,
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where u(2)
k are components of displacement vector for solution (2), e(2)

kl are com-
ponents of strain tensor for solution (2), Cijkl are components of stiffness tensor
for tested material.

Stiffness tensor Cijkl for the isotropic solid can be given by [20]:

(4.15) Cijkl = λδijδkl + µ (δikδjl + δilδjk) ,

where λ, µ is Lame constants for the tested material, δkl is delta Kronecker
symbol.

Now, we need expressions for u(2)
k and its spatial derivatives:

u
(2)
k =

1

−iω
v(2)d

(2)
k ,(4.16)

∂u
(2)
k

∂xl
=

ikt
−iω

v(2)d
(2)
k e

(2)
l =

−1

VT2
v(2)d

(2)
k e

(2)
l ,(4.17)

where kt is wavenumber for shear wave in tested material, v(2) is amplitude of
ultrasonic particle velocity for solution (2), d(2)

k are components of the polar-

isation versor for solution (2), e(2)
l are components of the direction versor for

solution (2).
The scalar amplitude v(2) of particle velocity can be calculated from modified

Rayleigh-Sommerfeld integral (3.17) by replacing transmitting transducer with
the receiving one. The directional versor e(2) of the ray coming from the centre
of the receiving transducer to the integration point on the defect surface can
be calculated based on the position of the receiving probe on the tested object.
The polarisation versor d(2) is perpendicular to direction versor e(2) and is lying
in the plane of incidence of this central ray on the material surface. It can be
determined from the equation:

(4.18) d(2) =
e(2) × s∣∣e(2) × s

∣∣ × e(2),

where s is the versor normal to the tested material surface (see Fig. 6).
Substituting Eq. (4.17) to the integral (4.13) we obtain:

(4.19) FB =
−1

v
(2)
0

ˆ

Sd

τ
(2)
ji v

(1)
i nj dS

=
−1

v
(2)
0

ˆ

Sd

[λδijδkl + µ (δikδjl + δilδjk)]
−1

VT2
v(2)d

(2)
k e

(2)
l v

(1)
i nj dS.
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This, rather complex expression can be considerably simplified using properties
of delta Kronecker symbols present in the integrand.

(4.20) FB =
1

v
(2)
0 VT2

ˆ

Sd

v(2)λ
[
(v(1) · n)(d(2) · e(2))

]

+ v(2)µ
[(
v(1) · d(2)

)(
n · e(2)

)
+
(
v(1) · e(2)

)(
n · d(2)

)]
dS.

The scalar product d(2) ·e(2) appearing in the above integral is identically equal
to zero in the far field of receiving transducer, where the generated field approx-
imates a semi plane wave. Accordingly, we can rewrite Eq. (4.20) in the shorter
form:

(4.21) FB =
1

v
(2)
0 VT2

ˆ

Sd

v(2)µ
[(
v(1) · d(2)

)(
n · e(2)

)
+
(
v(1) · e(2)

)(
n · d(2)

)]
dS.

Lame constant µ is given by the formula µ = ρ2V
2
T2 and the product of v(2)d(2)

is just equal the vector v(2). Using this we can further transform Eq. (4.20)
bringing it to the form:

(4.22) FB=
z2

v
(2)
0

ˆ

Sd

[(
v(1) · v(2)

)(
n · e(2)

)
+
(
v(1) · e(2)

)(
n · v(2)

)]
dS.

All factors appearing in the Eq. (4.21) can be calculated from already de-
rived formulas based on modified Rayleigh-Sommerfeld integral, Kirchhoff ap-
proximation and geometrical considerations. To this end we need parameters of
transmitting and receiving transducer and position, size and orientation of the
model defect implemented in the material.

Integral (4.22) provides a workable solution for numerical calculations of
amplitudes of ultrasonic signals reflected from model defects of any size and
orientation. It should be underlined that it has been derived using the Kirchhoff
approximation and assumption that model defect is located in the far field of
both transmitting and receiving transducer.

5. Conclusions

This article describes the theoretical model developed for computer sim-
ulation of ultrasonic testing of railway rails. The approach is based on well-
established principles of elastodynamic theory such as Rayleigh-Sommerfeld in-
tegral, pencils model, Kirchhoff approximation, plane waves refraction and re-
flection formulas and reciprocity theorem. These major theoretical concepts were
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put together to give workable solution for modelling of ultrasonic inspections of
railway rails in real conditions. The approximations made in model development
were carefully checked against the real testing circumstances. The relations be-
tween ultrasonic wavelength, tested object dimensions and defects sizes as well
as the real nature of the sought defects (cracks) were taken into account in for-
mulation of model assumptions and derivation of its main calculation formulas.
Due to this the model is well adjusted to the practical reality of railway rails
inspections.

The obtained solutions allow for computer simulation of several important
aspects of ultrasonic inspection. First of all they enable effective calculation of
ultrasonic fields generated in the rail material by typical ultrasonic probes used
in non-destructive testing. This possibility is in itself very useful in planning
of ultrasonic inspections but it is also a first step in calculation of ultrasonic
echo amplitude obtained after interaction of ultrasonic wave with an internal
defect. The possibility of calculation of amplitude of ultrasonic echo reflected
from model defect of specified size and orientation positioned anywhere in the
rail volume is the most important feature of the developed model. It enables
computation of ultrasonic echo envelopes of specified model defects in the same
form as it is done during practical ultrasonic inspections carried out with manual
trolleys or inspection cars.

The derived formulas can be used in the modelling software being in prepa-
ration. The comparison of this software operation and the real measurements
will enable formulation the final conclusions concerning the accuracy and limita-
tions of developed theoretical model and practical usability of related inspection
simulation software.
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