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This paper presents an original viscoelastic model of powder sintering developed within the discrete element
framework. The viscous model used by other authors has been enriched by adding a spring connected in se-
ries to the viscous rheological element. In this way elastic and viscous effects in the particle interaction during
sintering are treated using the Maxwell viscoelasticity. The new numerical model has been verified through
simulation of simple problems of free sintering and sintering under pressure. Sintering processes have been
treated as isothermic. In order to accelerate the analysis an algorithmic mass scaling has been used allowing
to use larger time steps in the explicit time integration scheme. The results obtained using the newmodel are
consistent with the standard viscous model. At the same time, a much better efficiency of the new model in
comparison to the standard viscous one has been found because the critical time steps required by the visco-
elastic model are much larger than those required by the viscous model. The new model has been applied to
the simulation of real process of sintering of NiAl powder. The kinetics of sintering indicated by the evolution
of density has been studied. The comparison of numerical and experimental results has shown a good perfor-
mance of the developed numerical model.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Sintering is a manufacturing process used for making various parts
from metal or ceramic powder mixtures. Sintering consists in consol-
idation of loose or weakly bonded powders at elevated temperatures,
close to the melting temperature with or without additional pressure.
Changes of the microstructure during sintering have been shown in
Fig. 1. In the initial stage (Fig. 1a) cohesive bonds are formed between
particles. When the sintering process is continued, the necks between
particles grow due to mass transport (Fig. 1b). Surface and grain
boundary diffusion are normally dominant mechanisms of mass
transport in a sintering. The main driving force of sintering is reduc-
tion of the total surface energy of the system. As a result of the stress-
es in the neck and the surface tension the particles are attracted to
each other, which leads to the shrinkage of the system. The described
processes – shrinkage and mass transport – lead to the reduction of
material porosity. Sintering is a complex process influenced by
many factors including technological ones such as temperature,
sintering time, pressure and atmosphere which determine the prop-
erties of sintered materials [9,32,65,8].

Modelling can be used to optimize and to understand the sintering
process better and improve the quality of sintered components.
Modelling of the sintering process is one of the most challenging
, jrojek@ippt.gov.pl (J. Rojek),
@poczta.fm (M. Chmielewski).
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problems in material modelling. There are different approaches in
modelling of sintering processes, ranging from continuum phenome-
nological models to micromechanical and atomistic ones. Different
sintering models have been reviewed in [44,49,16,20]. In the contin-
uum approach, the porous powder under compaction is treated as a
continuous medium at the macro-scale. Its deformation behavior is
described by constitutive equations based on modified theory of
solids. Constitutive equations of continuous media belong to the
class of phenomenological models in which model parameters are
obtained by fitting experimental data. Well-known phenomenologi-
cal sintering models are those developed by Abouaf et al. [1], Duva
and Crow [13], Cocks [11], Sofronis and McMeeking [58], and Ponte
[7]. Phenomenological approaches have been summarized by Olevsky
[45], Exner and Kraft [16], Cocks [12] and German [21,23].

Phenomenological theories do not take into consideration the mi-
crostructure of the material. Microstructural changes during sintering
are taken into account in micromechanical models. A number of
micromechanical models of sintering are based on a particle repre-
sentation of porous powder material undergoing the sintering pro-
cess. In particle models, the interaction of particles and the local
problems of particle necks are considered. Sintering is treated as a
collective result of thermally activated adhesion processes which re-
sult in the growth of contacts between particles. Sintering models at
the particle scale have been used in the classical works on sintering.
Frenkel [17] and Kuczynski [37] studied mechanisms of neck growth
and shrinkage for the early sintering stages (particle bonding) using a
two-sphere model. The two-particle model has been extrapolated for
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Fig. 1. Microstructure evolution during sintering of NiAl: a) early stage, b) final stage.
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the intermediate shrinkage state by Kingery and Berg [35]. Coble [10]
developed a cylindrical pore model, a spherical pore model for the
late sintering stages was developed by MacKenzie and Shuttleworth
[43]. More sophisticated models taking into account the superposi-
tion of various sintering mechanisms have been developed by
Ashby [4], Arzt [3], and Exner and Arzt [15].

Growing capabilities of computational techniques increased the
possibilities to employ particle sintering models. Sintering models
have been implemented within the discrete element method which al-
lows us to model interaction of large collections of particles [50,42,41,
46,31,25,26,66]. Parhami and McMeeking [50] have implemented the
particle sinteringmodel derived by Coble [10] in the quasi-static formu-
lation of the lattice type discrete element method to study free and
pressure-assisted sintering. The concepts of Parhami and McMeeking
have been incorporated in the dynamic formulation of the discrete ele-
ment method by Martin et al. [42] and used for investigation of free
sintering of metallic powders. A similar model has been applied by
Henrich et al. [26] to simulate the free and pressure-assisted solid-
state sintering of powders with special attention to the grain
rearrangement during sintering. The effect of particle size distributions
on sintering has been studied by Wonisch et al. [66]. The two-particle
models of sintering implemented within the discrete element method
[50,42,66] can represent properly the microstructure of a sintered ma-
terial at early and intermediate stages of sintering. We can extend its
use very carefully to higher densities, but we must remember that for
compact solids these models lose their physical background, that is,
they no longer represent a microstructure and can be treated as a
mere way of discretization [60]. An interesting extension of the particle
model for the final stage of sintering has been presented in [31], where
the transformation of the particle model to a polyhedral one at a certain
level of the process was proposed.

The macroscopic behavior of sintered materials is a result of a com-
plex combination of elastic, viscous, plastic and thermal deformation
depending on the processes occurring at the microscopic and atomistic
levels [67,6]. Different deformation mechanisms dominate at different
stages of a powder metallurgy process [2]. Although deformation dur-
ing sintering itself is governed mainly by the viscosity, the material
does maintain certain elasticity [39,38]. Phenomenological sintering
models generally incorporate mechanisms of thermal and elastic defor-
mation along with the viscous creep flow [19,67,30,34] although there
is little knowledge of elastic properties during sintering. Experimental
data on elastic properties at high temperatures in most cases do not
cover the temperature ranges of sintering [40]. Due to insufficient
data, elastic deformation in sintering models in most cases has been
simply approximated in constitutive models of sintering [22,23]. Ac-
counting for elastic effects may be important for a proper evaluation
of stresses and reversible strains during sintering [34]. Experimental
measurements such as those presented in [39,38] show important
changes in the value of the Young's modulus during sintering and
allow us to hope that future experimental investigation will enable a
better understanding of elastic effects during sintering.

In the discrete element models of powder metallurgy process
cited above, cf. [50,26,66,46], the sintering stage has been modelled
assuming the viscous flow and neglecting elastic behavior. This
paper presents a consistent viscoelastic model of particle interaction
which allows us to keep elastic and viscous components of deforma-
tion. Accounting for elastic effects may influence the distribution of
forces in the heterogeneous particulate material and have some im-
portance to the evaluation of stresses during sintering and subse-
quent cooling.

The new sintering model has been implemented in the authors'
own discrete element code [53,56,48,55,54]. The numerical model is
verified by simple tests of two particle sintering as well as by more re-
alistic tests of sintering of a cylindrical specimen composed of several
hundred particles. The performance of the new viscoelastic model has
been compared with that of the standard viscous model. While gener-
al agreement in the results has been observed, it has been found that
the new model offers a much better numerical efficiency since it en-
ables the use of a much larger time step in an explicit time integration
of equations of motion. This is an important advantage of the newly
developed model.

2. Numerical model of sintering

Numerical model of sintering is developed within the framework
of the discrete element method which assumes that a particulate ma-
terial can be represented as a collection of spherical particles
interacting with one another. Following Martin et al. [42] the rota-
tional motion of the particles and tangential interaction has been
neglected in the present formulation. This should be favorable for
particle rearrangements. Nevertheless, further development of the
model should include tangential forces as well as the moment inter-
action between particles.

2.1. Discrete element formulation

The translational motion of rigid particles is described by means of
the Newton's equations of rigid body dynamics. For the i-th element
we have

miui ¼ Fi; ð1Þ

where ui is the element centroid displacement in a fixed (inertial) co-
ordinate frame, mi — element (particle) mass, and Fi — the resultant
force being the sum of all the forces applied to the i-th element due
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to the external load, Fiext, and contact interactions with neighboring
spheres and boundary surfaces Fijcont

Fi ¼ Fexti þ
Xnci
j¼1

Fcontij ; ð2Þ

where ni
c is the number of elements being in contact with the i-th dis-

crete element. Contact forces Fijcont are obtained using a constitutive
model formulated for the interaction of two particles. Below, we
present interaction models for powder compaction and sintering. In
further considerations, in order to simplify the notation the indices i
and ij are omitted.

2.2. Contact interaction model for powder compaction

Powder compaction prior to sintering is modelled using the cohe-
sionless contact model whose rheological scheme is shown in Fig. 2.
The contact interaction is represented by the Kelvin–Voigt element
consisting of a spring and a dashpot connected in parallel. The contact
force Fcont is a sum of the elastic force in the spring Fe and the viscous
component Fd

Fcont ¼ Fe þ Fd: ð3Þ

The elastic part of the contact force Fe can be evaluated assuming a
linear force–displacement relationship

Fe ¼ kurn; ð4Þ

where k is the contact stiffness and um is the penetration of the parti-
cles. No cohesion, and thus no tensile contact forces are allowed, i.e.
Fe ≤ 0.

The viscous component is assumed to be a linear function of the
normal relative velocity vrn

Fd ¼ cvrn: ð5Þ

The value of the viscosity coefficient c can be taken as a fraction ξ
of the critical damping Ccr for the considered system

c ¼ ξCcr: ð6Þ

The critical damping for the system of two rigid bodies with the
masses of mi and mj, connected with a spring with the stiffness k
can be calculated as, cf. [61]:

Ccr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mimjk
mi þmj

s
: ð7Þ

2.3. Viscous model of sintering

Themodel of particle interaction during free sinteringmust take into
account adhesion between grains of a sintered material. The model
k

c

Fig. 2. Rheological scheme of the contact interaction for powder compaction.
adopted for free sintering is based on the classical models developed
at particle level [10,27,28] and used in previous implementations in
the discrete element method, cf. [50,42,46]. The particle interaction
force, F, during sintering is given by the equation derived considering
mass transport and stresses at the grain boundary between two
sintered particles, cf. [28,50,42]:

F ¼ πa4

8Db
vrn þ πγS 4r 1−cos

Ψ
2

� �
þ asin

Ψ
2

� �
ð8Þ

where vrn— the normal relative velocity, r— the particle radius, a— the
radius of the interparticle grain boundary,Ψ— the dihedral angle, γs —

the surface energy andDb— the effective grain boundary diffusion coef-
ficient. The geometrical parameters of the model are defined in Fig. 3.
The dihedral angle Ψ can be determined from the balance of surface
tensions at the grain boundary tri-junction at the phase equilibrium
[64]. The effective diffusion coefficient is given by the following equa-
tion, cf. [50]:

Db ¼ DgδgΩ
kT

ð9Þ

where Dg — diffusion coefficient, δg — thickness of the grain boundary,
Ω— atomic volume, k—Boltzmann constant, T— sintering temperature.

The initial neck radius a0 depends on the initial penetration urn
0 in-

duced by the compaction. From simple geometrical considerations we
have

a0 ¼
ffiffiffiffiffiffiffiffiffi
rurn

2

r
: ð10Þ

The growth of the radius of the interparticle grain boundary is
governed by the following evolution law:

_a ¼ − rvrn
a

: ð11Þ

The grain boundary radius a grows until the sintering process is
stopped. Its maximum at the equilibrium state is given by the follow-
ing geometric relationship:

amax ¼ rsin
Ψ
2
: ð12Þ

The model described by Eq. (8) has been derived for identical par-
ticles. Following [42] it can be generalized to the sintering of different
size particles by replacing the radius r in Eqs. (8)–(12) with the
equivalent particle radius r given by the following formula:

r ¼ 2rirj
ri þ rj

: ð13Þ

On the right-hand side of Eq. (8) we have two terms, the first one
has a character of viscous resistance to the particle approaching
2

a

r

Fig. 3. Two-particle model of sintering.
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Fig. 5. Rheological scheme of the viscoelastic model of sintering under pressure.
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caused by the sintering attracting force represented by the second
term. These force components denoted as, Fv and Fsint, respectively,
can be expressed, accordingly, as:

Fv ¼ ηvrn ð14Þ

where the viscosity η is given by

η ¼ πa4

8Db
ð15Þ

and

Fsint ¼ πγS 4r 1−cos
Ψ
2

� �
þ asin

Ψ
2

� �
: ð16Þ

The decomposition of the interaction force in the sintering model
can be represented by the rheological scheme shown in Fig. 4.

2.4. Viscoelastic model of sintering

The rheological model of sintering presented above can be
enriched by adding an elastic component. This allows us to account
better for material properties which are characterized by a certain
elasticity during sintering, as well. The elastic component allows us
to consider more accurate redistribution of the forces in the particle
assembly with large changes of configuration during sintering. Seeing
an analogy of a sintered material with a fluid, whose viscoelastic
properties are commonly modelled with the viscoelastic Maxwell
model, we introduce the elastic component in series with the viscous
element. In this way, the rheological scheme presented in Fig. 5 is
obtained.

For the Maxwell element we have the following relationships for
forces and velocities:

Fv ¼ Fe ð17Þ

vrn ¼ vvrn þ vern: ð18Þ

Equation (17) means that the forces transferred through the
spring and viscous component, Fe and Fv, respectively, are equal.
Equation (18) expresses the additive decomposition of the relative
normal velocity between particles vrn into the elastic and viscous
parts, vrne and vrn

v , respectively. Expressing the viscous and elastic
forces analogously to Eqs. (14) and (4), and substituting these rela-
tionships into (18), we obtain the evolution equation for the force
in the Maxwell branch

vrn ¼
_F e

k
þ Fv

η
: ð19Þ
F sint

F v

Fig. 4. Rheological scheme of the viscous model of free sintering.
2.5. Transition between Kelvin–Voigt and Maxwell models

In the process in question, we deal with different material behav-
ior, changing in time. During powder compaction the material has a
solid-like behavior while during sintering it attains fluid-like behav-
ior. A certain analogy to this change of properties can be seen in
solid–liquid transitions occurring during melting [33] or in polymers
undergoing the glass transition [52,36,18].

According to the main characteristics of the material different vis-
coelastic models have been adopted here for the two types of material
behavior of powder material during the manufacturing process in-
volving pressing and sintering. The powder material during pressing
is modelled with the Kelvin–Voigt element (Section 2), which is bet-
ter suited to describe the nature of a solid material. The irreversible
flow during sintering is represented better using the model with the
nonlinear Maxwell element presented in Section 4.

Transition from the solid-like to fluid-like behavior and simulta-
neous change of the model type are associated with a sharp change
of viscoelastic properties. In order to smoothen the transition we in-
troduce a gradual smooth change of parameters at a certain time in-
terval (t0,t0 + trel), where t0 is the time when sintering is initiated.
At this interval the viscosity coefficient η in the Maxwell element
changes according to the following function:

η ¼ η∞ 1−εð Þ þ εηteor ð20Þ

where η∞ is the viscosity coefficient in the Maxwell element before
sintering, ηteor is the theoretical viscosity calculated according to the
formula (15), and ε a b 0,1 > is a coefficient ensuring gradual change
of η from η∞ at t = t0 to ηteor at t = t0 + trel. The smooth transition is
obtained by the following definition of ε:

ε ¼ 1−cosα
2

; where α ¼ t−t0
trel

π; t∈bt0; t0 þ trel > : ð21Þ

If we assume that the Maxwell element is used before sintering
when we deal with an elastic material, its viscosity coefficient
would have a very high value. In our model we prescribe this value
arbitrarily taking a certain value based on numerical tests.

In order to avoid step-type loading the sintering force is also
scaled with a smoothly increasing function from 0 to 1 at the time
interval b t0,t0 + trel>:

Fsint ¼ εFsintteor ð22Þ

where ε is defined by Eq. (21) and Fteor
sint is evaluated according to

Eq. (16).
If simulation of the process is continued after the condition of

equilibrium given by Eq. (12) is achieved, we have also a sharp
change of properties. We keep using the Maxwell model, but we
change properties setting a higher value of the viscosity parameter
η and set to zero the sintering force Fsint. In order to smoothen the
changes of the model parameters, we use a similar scaling of the
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viscosity coefficient and the sintering force at a certain time interval
after the end of sintering:

η ¼ ε′η∞ þ 1−ε′
� �

ηteor ð23Þ

Fsint ¼ 1−ε′
� �

Fsintteor ð24Þ

with

ε′ ¼ 1−cosα′

2
; where α′ ¼ t−tend

trel
π; t∈btend; tend þ trel > ð25Þ

and tend is the time when the condition of equilibrium given by
Eq. (12) is achieved.

2.6. Time integration scheme

The Eqs. ofmotion (1) are integrated in time using an explicit central
difference type algorithm, the so-called leap-frog method:

un
i ¼ Fni

mi
; ð26Þ

unþ1=2
i ¼ un−1=2

i þ un
i Δt; ð27Þ

unþ1
i ¼ un

i þ unþ1=2
i Δt; ð28Þ

where accelerations, ui
n, and positions,ui

n andui
n + 1, are defined at time

instants tn and tn + 1 (tn + 1 = tn + △t), while velocities ui
n − 1/2 and

ui
n + 1/2 are shifted by a half-step.
Eqs. (26)–(28) give a new configuration at time instant tn + 1. In

order to pass to the next step, forces at this configuration must be
evaluated. First step in the calculation of force interactions in
sintering for both presented models is updating the radius of the
interparticle grain boundary according to the evolution law given by
Eq. (11). We take Eq. (11) at the midpoint at time instant tn + 1/2

_anþ1=2 ¼ − rvnþ1=2
rn

anþ1=2 ð29Þ

in which we employ the following central difference schemes:

_anþ1=2 ¼ anþ1−an

Δt
ð30Þ

anþ1=2 ¼ anþ1 þ an

2
: ð31Þ

The new radius an + 1 can be solved in terms of known parameters
as:

anþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anð Þ2−2rvnþ1=2

rn Δt
q

: ð32Þ

In the convention adopted, the relative velocity in a sintering pro-
cess is negative when the two particles are getting closer, so the sec-
ond term under square root in Eq. (32) is positive.

Substituting the new radius an + 1 into Eq. (16) we evaluate the
sintering driving force (Fsint)n + 1 at time instant tn + 1 for both the
viscous and viscoelastic model.

The viscous part of the interaction force in the viscous model is
computed taking Eq. (14) at time instant tn + 1/2

Fv
	 
nþ1=2 ¼ ηnþ1=2vnþ1=2

rn : ð33Þ
Using the midpoint rule

Fv
	 
nþ1=2 ¼ Fv

	 
nþ1 þ Fv
	 
n

2
ð34Þ

we obtain the expression for the viscous resistance at time instance tn + 1

Fv
	 
nþ1 ¼ 2ηnþ1=2vnþ1=2

rn − Fv
	 
n

: ð35Þ

For the viscoelastic sintering model we take Eq. (19) at the time
instant tn + 1/2:

vnþ1=2
rn ¼

_F e
� �nþ1=2

k
þ Fv
	 
nþ1=2

ηnþ1=2 : ð36Þ

Accounting for the equality (17) and substituting the following fi-
nite difference expressions:

_F e
� �nþ1=2 ¼

_F e
� �nþ1− _F e

� �n

Δt
¼ ΔFe

Δt
ð37Þ

Fe
	 
nþ1=2 ¼ Fe

	 
n þ ΔFe

2
ð38Þ

into Eq. (36) we obtain the expression for the new value of the force
in the Maxwell element

Fe
	 
nþ1 ¼

vnþ1=2
rn Δt þ Fe

	 
n 1
k
− Δt

2ηnþ1=2

� �
1
k
þ Δt
2ηnþ1=2

: ð39Þ

The integration scheme given by Eq. (39) corresponds to the trape-
zoidal or two-stage Lobatto IIIAmethod of integration [59]. Other possi-
ble integrationmethods of the viscoelasticMaxwellmodel can be found
in [59].

2.7. Numerical stability and mass scaling

Explicit time integration scheme given by Eqs. (26)–(28) is char-
acterized by a high efficiency of the solution at each time step. The
equations are decoupled and there is no need to solve a system of al-
gebraic equations or perform iterations. The known drawback of the
explicit time integration scheme is its conditional numerical stability
which imposes the limitation on the time step △t, i.e.

Δt≤Δtcr ð40Þ

where △tcr is the critical time step. For a system of two masses m
connected by a springwith the stiffness k the critical time step is given by:

Δtcr ¼
2
ω

ð41Þ

where

ω ¼
ffiffiffiffiffiffi
2k
m

r
ð42Þ

is the angular eigenfrequency of the considered system.
The critical time for the system of two masses m connected by a

Kelvin element (a spring k in parallel with a damper c) corresponding
to two particles during compaction is given by

Δtcr ¼
2
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

q
−ξ

� �
ð43Þ

where ξ is the damping ratio introduced in Eq. (6).



Table 1
Material data for copper sintering (T = 1300 K) according to [50].

Material constant Parameter value

Diffusion coefficient, Dgδg 3.832 · 10−29 m3/s
Atomic volume, Ω 1.18 · 10−29 m3

Surface energy γs 1.72 J/m2

Dihedral angle Ψ 146°

Fig. 6. Simulation of sintering of two particles: a) initial configuration, b) end of
sintering.
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The critical time step for the system of two masses m connected
with a damper with the viscosity η is determined from the following
formula:

Δtcr ¼
2m
η

: ð44Þ

The stability of discrete systems with Maxwell elements has been
studied in [24]. The critical step for the system of two masses m
connected by a Maxwell element consisting of a spring with the stiff-
ness k and a damper with the viscosity η can be evaluated in a simple
way, cf. [51], as the minimum

Δtcr ¼ min τω; τMrf g ð45Þ

of the critical time step τω resulting from undamped vibrations with
the angular frequency ω determined from Eq. (42)

τω ¼ 2
ω

ð46Þ
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Fig. 7. Simulation of sintering of two particles using the viscous model. Evolution of displac
and the Maxwell relaxation time τMr defined as:

τMr ¼
η
k
: ð47Þ

Evaluation of the critical time step for a multi-body discrete sys-
tem requires the consideration of the whole set of differential equa-
tions. This is not efficient for large models of discrete elements,
therefore simpler methods to calculate the stability limit are neces-
sary [47]. In practice, the critical time step in discrete element models
is taken as the minimum of the values obtained for all the connections
considered separately and multiplied by a certain safety factor β

Δt ≤ βΔtcr ð48Þ

where 0 b β b 1. The value of β has been studied by different authors.
A good review can be found in [47], where the value close to 0.17 is
recommended for 3D simulation and 0.3 — for a 2D case.

The values of critical time steps are usually relatively small, so
simulation with an explicit time integration usually requires the use
of large number time steps. Therefore, this approach is most suitable
for transient and high speed problems. Simulation of longer and low
speed processes could be too expensive. A possible way around con-
sists in artificial density or mass scaling in order to increase the criti-
cal time step

m′ ¼ αmm ð49Þ
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where m is the real mass, αm is the mass scaling factor and m′ is the
scaled mass. This method is widely used in explicit finite element
simulations [29] as well as in the discrete element analyses [62,63].

In general, scaling of equations describing different physical phe-
nomena is performed in such a way that the similarity between the
original and scaled models defined by certain dimensionless numbers
is satisfied [5]. Employing the notions from fluid dynamics, we can
notice that the mass scaling performed according to Eq. (49) with
other quantities unchanged does not ensure the dynamic similarity
governed by the ratio of the inertial to viscous forces. However, it is
assumed that inertial effects (inertial terms in equations of motion)
in the considered problem are so small that even a large upscaling
of mass and the resulting increase of the inertial terms will not signif-
icantly affect the solution. The value of the scaling factor depends on
the problem. It is indicated in [63] that mass can be scaled by factors
greater than 1010 in quasi-static DEM simulations.

Sintering processes are very slow and time steps allowed in explicit
simulation are very short because of small particle inertia [26]. Sintering
can be analyzed efficiently only employing a scaling procedure in the
discrete elementmodel. It has been shown in [26] that the particle iner-
tia in a DEM sintering model can be scaled by several orders of magni-
tude without affecting particle positions. The DEM solution with mass
scaling has been verified there by comparison with the solution
obtained assuming the zero inertial terms in the governing equations.
Similarly, in thiswork,mass scaling is used. The effect of scaling and cor-
rectness of the solution is verified through comparing the solutions
with different mass scaling. The convergence of the scaled solution to
the solution with real parameters proves that scaling is acceptable.
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Fig. 10. Evolution of velocity and acceleration at the initial stage of free sintering of two
grains of Cu (mass scale factor 1014).
3. Numerical examples

3.1. Simulation of free sintering

Free sintering of two copper particles of 22.5 μm at temperature
1300 K has been simulated using the model parameters given in
Table 1 taken from [50]. Both viscous and viscoelastic models have
been used. Fig. 6 shows the particles before and after sintering. The pur-
pose of this numerical test is to: (i) verify the performance of themodel
for an elementary system, (ii) check mass scaling, (iii) compare results
obtained using the viscous and viscoelastic models, (iv) compare the
efficiency of the viscous and viscoelastic model, and (v) calculate corre-
sponding relative density evolution of a regular particle assembly and
compare it with experimental results from [14].

3.1.1. Simulation of free sintering by means of the viscous model
Figs. 7–9 show the results obtained using the viscous model. Fig. 7

presents the displacement normalized with respect to the particle diam-
eter plotted as functions of time for different mass scaling factors. Except
for a very short initial period (Fig. 7a), displacements for different mass
scaling practically coincide during most of the sintering period (Fig. 7b).
The displacements at the initial stage are small and not significant
when compared to the total displacements during sintering. This proves
that mass scaling factors employed in the analysis are acceptable.

Fig. 8 presents the evolution of the viscosity coefficient η calculat-
ed according to Eq. (15). It can be seen that the value of η is growing
due to the growth of the neck which has an adverse effect on the crit-
ical time step length evaluated according to Eq. (44). The growth of η
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Fig. 11. Evolution of relative density — comparison with numerical results from [50]
and experimental ones from [14].
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results in a larger viscous resistance. The viscous resistance and
sintering forces are plotted as functions of time in Fig. 9a and b for
the initial stage of sintering and for the whole sintering process, re-
spectively. It can be observed that initially the sintering force has a
higher value, and this explains a fast increase of the absolute value
of relative velocity at this time which is shown in Fig. 10. The viscous
resistance is growing due to the increase of the velocity and viscosity.
When the viscous resistance becomes higher than the sintering driv-
ing force, the velocity starts to decrease. A decreasing velocity in turn
causes a decrease in the viscous resistance. Finally, the two forces get
very close. Due to a very small difference between these forces the re-
sultant force is very small, which explains a slow rate of changes oc-
curring during sintering.

The relative displacement plotted in Fig. 7a and b is identical with
the linear strain

e ¼ ΔL
L0

ð50Þ

where L0 is the initial length of a body subjected to deformation. Let
us consider a regular body centered cubic (BCC) packing of identical
spheres. The average density ρ0 of the BCC packing is π

ffiffiffi
3

p
=8≈0:68

[57]. If such an assembly undergoes sintering considered above, we
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Fig. 13. Evolution of relative elastic displacement at free sintering of two grains of C
have an isotropic deformation characterized with the strain e in any
direction. The corresponding volumetric strain can be calculated as:

ev ¼
ΔV
V0

¼ L30 1þ eð Þ3−L30
L30

¼ 1þ eð Þ3−1: ð51Þ

The relative density during sintering ρ can be easily calculated as:

ρ ¼ ρ0
1

1þ eð Þ3 : ð52Þ

Using the formula (52) we can determine the evolution of the rela-
tive density during isotropic sintering characterized with linear strain
(shrinkage) plotted in Fig. 7a. The result is presented in Fig. 11 in com-
parison with the simulation results from [50] and experimental data
from [14]. It can be seen that in a simple waywe have obtained the evo-
lution of the relative density which is in quite a good agreement with
the reference results.

3.2. Simulation of free sintering by means of the viscoelastic model

The problem of sintering of two copper particles previously de-
fined has also been analyzed using the viscoelastic model. The set of
material data given in Table 1 has been completed with the spring
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Fig. 14. Evolution of the viscous resistance at free sintering of two grains of Cu (mass scale factor 1014): a) initial period of the process, b) the whole process.
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stiffness k = 7.105 N/m. Taking a cylindrical bar of length and diam-
eter both equal 2r as an equivalent element to the considered
two-particle system, we can determine the Young's modulus E corre-
sponding to the stiffness k

E ¼ 2kr
πr2

¼ 2k
πr

¼ 2⋅7⋅105

π⋅22:5⋅10−6 Pa≈2⋅1010Pa

which is a reasonable value for copper at elevated temperature [40].
Fig. 12 shows displacement curves as functions of time obtained

using the viscous and viscoelastic models for the same mass scaling.
It can be seen that the curves from both models practically coincide.
It is understandable because the elastic part of displacements is very
small (Fig. 13) while the viscous part in the viscoelastic model should
be similar to the displacements in the viscous model. The coincidence
of the curves in Fig. 12a and b confirms the correctness of the imple-
mentation of the viscoelastic model. The correctness is also verified
by the agreement of the curves in Fig. 14a and b representing viscous
resistance obtained using both models.

A large difference between the two models can be seen when the
computational efficiency is considered. Simulation using the visco-
elastic model requires much less time than the one performed by
means of the viscous model. The time integration of the viscoelastic
model allows the use of much larger time steps, which is illustrated
in Fig. 15 showing the evolution of critical time steps in both models
0

0.5

1

1.5

2

2.5

0 50 100 150 200

cr
iti

ca
l t

im
e 

st
ep

 [
s]

time [s]

5.66e-5

viscous model - 2m/η
viscoelastic model - relaxation time - η/k

viscoelastic model - 2sqrt(m/k)

a)

Fig. 15. Comparison of critical time steps for the viscous and viscoelastic models at the initial
1016.
for mass scaling factors 1014 and 1016. The process is characterized
with variable viscosity, therefore the critical time step varies during
the simulation. The critical time step for the viscous model estimated
according to Eq. (44) is compared with time step limitations for the
viscoelastic models used in the formula (45). It can be observed that
the time integration of the viscous model allows larger time steps at
the very beginning, but the critical time step decreases rapidly due
to the increase of viscosity, cf. Fig. 8. The time integration of the visco-
elastic model requires smaller time steps in the initial stage when the
time step is limited by the relaxation time of the Maxwell element
calculated according to Eq. (47). With the growing relaxation time
the critical time step increases until the relaxation time becomes larg-
er than the limitation imposed by undamped vibrations. From this
moment the critical time step is controlled by Eq. (42) and it is con-
stant until the end of sintering. The interval when the critical time
step in the viscoelastic model is restricted by the relaxation time is
short in comparison with the rest of the process time. Therefore the
efficiency of the process depends primarily on the value obtained
from Eq. (42). As it can be observed this value is larger than the crit-
ical time step for the viscous model. This guarantees much better ef-
ficiency of the viscoelastic model in comparison with the viscous one.
Analysis data for two values of mass scaling factor are summarized in
Tables 2 and 3. In both cases the number of time steps required for the
viscous model and resulting computation times are much larger than
respective values for the viscoelastic model. Computation effort at a
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Table 2
Summary of the analysis data for the mass scaling factor 1016.

Model Sintering
time [s]

Number of time
steps

Time step
1length [s]

CPU
[s]

CPU/step
[s]

Viscous 2.61 · 106 2.61 · 108 10−1÷10−2 17 6.5 · 10−8

Viscoelastic 2.61 · 106 9.73 · 105 4.10−5÷4 0.12 1.2 · 10−7

Table 4
Material data for NiAl sintering (T = 1573 K).

Material constant Parameter value

Diffusion coefficient, Dgδg 2.013 · 10−9 m3/s
Atomic volume, Ω 1.21 · 10−29 m3

Surface energy, γs 1.58 J/m2

Dihedral angle, Ψ 150°
Density, ρ 5910 kg/m3

Fig. 16. Sintered NiAl specimens.

Table 3
Summary of the analysis data for the mass scaling factor 1014.

Model Sintering
time [s]

Number of time
steps

Time step
length [s]

CPU
[s]

CPU/step
[s]

Viscous 2.61 · 106 2.61 · 1010 10−3÷10−4 1355 5.2 · 10−8

Viscoelastic 2.61 · 106 6.63 · 106 10−5÷0.4 0.9 1.3 · 10−7
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single step for the viscous model is two times smaller than for the vis-
coelastic model but this does not compensate a much higher number
of time steps. This demonstrates clearly the advantage offered by the
newly developed viscoelastic model.
3.3. Validation of the model of sintering under pressure

The viscous and viscoelastic models of sintering have been validat-
ed using the results of laboratory tests of sintering of NiAl powder.
Fig. 17. Numerical simulation of sintering: a) before pressing, b) under p
Sintering has been performed at the temperature 1300 °C (1573 K)
under the pressure of 5 and 30 MPa. The sintered specimens are
shown in Fig. 16. The process was interrupted at different time in-
stants to perform microscopic observations (Fig. 1) and to measure
bulk density. The density evolution, strictly related to sintering kinet-
ics, has been used in the validation of the developed numerical
models of sintering.

Maintaining the original grain size (mean radius 11.98 μm), a cy-
lindrical container of diameter 200 μm has been filled with 650 parti-
cles (Fig. 17a). It has been assumed that such a reduced geometric
model represents correctly sintering process in a real specimen with
the diameter of 120 mm. This assumption is justified provided the pa-
rameters characterizing sintering are uniformly distributed in a real
specimen volume.

The particles in equilibrium under gravity (Fig. 17a) have been
subjected to a linearly rising compressive pressure of the rigid punch
until the final load has been achieved (Fig. 17b). Then sintering process
has been activated and further reduction of the specimen height has
been obtained (Fig. 17c).

The problem has been analyzed using the viscous and viscoelastic
models. The model has been calibrated for the pressure of 5 MPa and
then applied to the simulation of sintering under the pressure of
30 MPa. The model parameters are given in Table 4. In the calibration
procedure, the effective diffusion coefficient, Dgδg, has been treated as
a fitting parameter in similar way as in [66]. Other parameters have
been kept constant during calibration. Their values have been esti-
mated based on literature data.

The relative density evolution obtained in the numerical simula-
tion has been compared with experimental measurements in Fig.
18a and b (please note that the time in these figures is measured
from the sintering activation skipping the compaction stage). A rea-
sonably good correspondence between the numerical results and ex-
perimental data can be observed. Fig. 18a and b also shows a very
good agreement between the viscous and viscoelastic solutions. The
coincidence of the viscoelastic solutions obtained for different mass
scaling factors confirms the acceptability of mass scaling procedure.
Table 5 contains the analysis data showing again the superiority of
the viscoelastic model over the standard viscous one.
ressure, before sintering, c) under pressure, at the end of sintering.



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40

re
la

tiv
e 

de
ns

ity

re
la

tiv
e 

de
ns

ity

time [min]
0 5 10 15 20 25 30 35 40

time [min]

numerical results of viscoelastic model (αm = 1013)
numerical results of viscoelastic model (αm = 1014)
numerical results of viscoelastic model (αm = 1015)

numerical results of viscous model (αm = 1015)
experimental results

numerical results of viscoelastic model (αm = 1013)
numerical results of viscoelastic model (αm = 1014)
numerical results of viscoelastic model (αm = 1015)

numerical results of viscous model (αm = 1015)
experimental results

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
a) b)

Fig. 18. Evolution of relative density for sintering temperature 1300 °C: pressure 5 MPa, b) pressure 30 MPa.

Table 5
Summary of the analysis data — simulation of sintering of the cylindrical specimen
with the mass scaling factor 1015.

Model Sintering
time [s]

Number of
time steps

Time step
length [s]

CPU [s] CPU/step
[s]

Viscous model 6 · 103 1.97 · 107 3 · 10−4 1.24 · 104 6.3 · 10−4

Viscoelastic model 6 · 103 1.12 · 105 5.33 · 10−2 79 7 · 10−4
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4. Concluding remarks

The new viscoelastic model implemented in the discrete element
method has been obtained by adding a spring to the two-particle vis-
cous model of sintering commonly used in the literature. The model
reproduces correctly the mechanism of free sintering and sintering
under pressure. The results presented in the paper show a big poten-
tial of the newly developed viscoelastic model in the simulation of
powder sintering processes. While the results obtained using the
new model are consistent with the viscous model, the new model of-
fers much better efficiency for the explicit time integration scheme
thanks to larger critical time steps. The performance of both models
has been compared for similar mass scaling factors. Further exten-
sions of the viscoelastic model are under development.
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