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a b s t r a c t

In the paper dynamic electromechanical interaction between the rotating machine drive
system and the electric driving motor is considered. The investigations are performed by
means of the circuit model of the asynchronous motor as well as using an advanced
structural hybrid model of the drive system. Using the analytical solutions applied for the
electrical and the mechanical systems the electromagnetic stiffness and coefficient of
damping, both generated by the electric motor rotationally interacting with the mechan-
ical system of the given dynamic properties, were determined. By means of experimen-
tally validated computational responses obtained for torsional harmonic excitation
induced by the driven machine working tool, a modification of dynamic properties of
the mechanical system by the electromagnetic flux between the stator and the rotor has
been studied.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Torsional vibrations of drive systems usually result in a significant fluctuation of the rotational speed of the rotor of the
driving electric motor. Such oscillations of the angular speed superimposed on the average rotor rotational speed cause
more or less severe perturbation of the electromagnetic flux and thus additional oscillations of the electric currents in the
motor windings. Then, the generated electromagnetic torque is also characterized by additional variable in time
components which induce torsional vibrations of the drive system. According to the above, mechanical vibrations of the
drive system become coupled with the electrical vibrations of currents in the motor windings. Such a coupling is often
complicated in character and thus computationally troublesome. Because of this reason, till now majority of authors
simplify the matter regarding mechanical vibrations of drive systems and electric current vibrations in the motor windings
as mutually uncoupled. Then, the mechanical engineers applied the electromagnetic torques generated by the electric
motors as ‘a priori’ assumed excitation functions of time or the rotor-to-stator slip, e.g. in [1–3], usually based on numerous
experimental measurements carried out for the given electric motor dynamic behaviors. For this purpose, by means of
measurement results, proper approximate formulas have been developed, which describe respective electromagnetic
external excitations produced by the electric motor [2]. However, the electricians thoroughly modeled electric current flows
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in the electric motor windings, but they usually reduced the mechanical drive system to one or seldom to at most a few
rotating rigid bodies, as e.g. in [4]. In many cases, such simplifications yield sufficiently useful results for engineering
applications, but very often they can lead to remarkable inaccuracies, since many qualitative dynamic properties of the
mechanical systems, e.g. their mass distribution, torsional flexibility and damping effects, are being neglected. Thus, an
influence of drive system vibratory behavior on the electric machine rotor angular speed fluctuation, and in this way on the
electric current oscillations in the rotor and stator windings, cannot be investigated with a satisfactory precision.

Currently fast development of machinery driven by electric motors is observed which requires bigger and bigger knowledge
about dynamic interaction between the mechanical and electrical parts of the entire system. An importance of the electro-
mechanical coupling effects taken into consideration is particularly significant when possibly exact results are required for
investigation of extremely responsible drive systems or for analyses of their sufficiently precise and stable motions as well as in
order to elaborate proper active vibration control algorithms. This problem has been already studied for many years and by many
authors, but in majority of cases sufficiently accurate electromechanical models are not usually used, e.g. because of the above
mentioned far-reaching simplifications of themechanical system. For example, in [5] an influence of ‘a priori’ assumed rotor angular
speed oscillation on the electromagnetic torque fluctuations was investigated by means of the circuit model of the asynchronous
motors. In [6] rotor-shaft transient torsional vibrations in the turbogenerator sets caused by network disturbances were considered
as coupled with the electric current vibrations in the generator windings. Coupling effects between the geared drive system
torsional vibrations and the electric current oscillations in the synchronous motor windings were investigated in [7], where the
current flows in the electric machine windings were modeled using Park's equations. In the case of synchronous machines the
complex torque coefficients method is commonly applied in order to determine the torsional vibration frequency dependent
electromagnetic stiffness and damping coefficient, where negative value zones of the latter indicate a probability of dynamic
instabilities. Advantages and drawbacks of this approach are described in [8]. A practical application of the complex torque
coefficients method has been demonstrated in [9] for the coupled electromechanical vibration analysis of the multi-generator drive
system. In [10,11] the dynamic interaction between the asynchronous or synchronous motors and the drive system was studied,
where the motor electromagnetic flux was modeled using two-dimensional finite elements and the drive train was substituted by
means of the simple spring-mass model. In these papers the above mentioned electromagnetic stiffness and damping coefficient
have also been determined for the synchronous and various asynchronous motors, where the torsional perturbations were excited
by the use of ‘a priori’ assumed test impulses of the motor rotor angular speed.

Nowadays, a severity of the electromechanical interaction is commonly observed in the case of so called ‘variable speed
drives’ (VSD) of large rotating machines driven by synchronous or asynchronous motors controlled by the load commutated
inverters. In transient and steady-state operating conditions these devices are responsible for generating additional
fluctuating driving torque components which can be a source of unexpected dangerous resonance effects of torsional
vibrations. Some results of theoretical and experimental investigations in this field have been reported e.g. in [12,13].
Coupled electromechanical interactions were also studied in [14] using the circuit model of the stepping motor driving a
precise mechanism modeled by means of the advanced hybrid torsional train consisting of torsionally deformable
continuous structural macro-elements and discrete dynamic oscillators.

As it follows from numerous observations, drive systems of several machines driven by the asynchronous motors
commonly indicate diverse sensitivity to resonance effects following from their mechanical eigenvibration properties. It is
suspected that for almost complete attenuation of resonance effects at resonant frequencies of excitation induced by the
driven machine retarding torque as well as for unexpected severe amplification of torsional vibration amplitudes forced by a
non-resonant excitation the above mentioned additional torsional elasticity and viscosity introduced into the mechanical
system by the electromagnetic flux generated in the electric motor are responsible. In order to explain such dynamic behavior
better, in this paper a qualitative analysis of the electromechanical coupling effects for several rotating machine drive systems
driven by various asynchronous motors during their steady-state operation are performed. The investigations are carried out
by means of the circuit model of the electric motor and using the advanced structural hybrid model of the rotating machine
drive system. Some theoretical results have been confirmed by measurements performed on the real objects.
2. Modeling of the mechanical system

In order to investigate a character of the electromechanical coupling, the possibly realistic and reliable mechanical model
of the drive system is applied. In this paper, similarly as e.g. in [14–16], dynamic investigations of the entire drive system are
performed by means of the one-dimensional hybrid structural model consisting of finite continuous visco-elastic macro-
elements and rigid bodies. In this model by the torsionally deformable cylindrical macro-elements of continuously
distributed inertial-visco-elastic properties the successive cylindrical segments of the stepped shafts and coupling disks are
substituted, as shown in Fig. 1. In order to obtain a sufficiently accurate representation of the real object, the visco-elastic
macro-elements in the hybrid model are characterized by the geometric cross-sectional polar moments of inertia JEi
responsible for their elastic and inertial properties as well as by the separate layers of the polar moments of inertia JIi
responsible for their inertial properties only, i¼1, 2, …, n, where n is the total number of macro-elements in the considered
hybrid model. The inertias of gear-wheels and driven machine working tools are represented by rigid bodies attached to the
appropriate macro-element cross-sections.



Fig. 1. Hybrid mechanical model of the drive system.
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Torsional motion of cross-sections of each visco-elastic macro-element is governed by the hyperbolic partial differential
equations of the wave type

GiJEi 1þτ
∂
∂t

� �
∂2θiðx; tÞ

∂x2
�ci

∂ θiðx; tÞ
∂t

�ρðJEiþ JIiÞ
∂2θiðx; tÞ

∂t2
¼ qiðx; tÞ; ð1Þ

where θi(x,t) is the angular displacement with respect to the shaft rotation with the average angular speed Ω, τ denotes the
retardation time in the Voigt model of material damping, Gi is the Kirchhoff (shear) modulus of the model i-th macro-
element material and ci denotes the coefficient of external (absolute) damping. In the considered case, this kind of damping
is caused by retarding torques due to friction forces in the bearings and aerodynamic forces. The active and the passive
external torques are continuously distributed along the respective macro-elements of lengths li. These torques are described
by the two-argument functions qi(x,t), where x is the spatial co-ordinate and t denotes the time.

Mutual connections of the successive macro-elements creating the stepped shaft as well as their interactions with the
rigid bodies are described by equations of boundary conditions. These equations contain geometrical conditions of
compliance for rotational displacements of the extreme cross sections for x¼Li¼ l1þ l2þ…þ li�1 of the adjacent (i�1)-th
and the i-th elastic macro-elements

θi�1ðx; tÞ ¼ θiðx; tÞ for x¼ Li: ð2aÞ
The second group of boundary conditions are dynamic ones, which contain linear equations of equilibrium for external
torques as well as for inertial, elastic and external damping moments. For example, the dynamic boundary condition
describing a simple connection of the mentioned adjacent (i�1)-th and the i-th elastic macro-elements has the following
form:

MiðtÞ� I0i
∂2θi
∂t2 �Gi�1JE;i�1 1þτ ∂∂t

� �∂θi� 1
∂x þGiJEi 1þτ ∂∂t

� �∂θi
∂x ¼ 0

for x¼ Li; i¼ 2;3; :::;n; ð2bÞ
where Mi(t) denotes the external concentrated torque and I0i is the mass polar moment of inertia of the rigid body.

In order to perform an analysis of natural elastic vibrations, all the forcing and viscous terms in the motion Eq. (1) and
boundary conditions (2b) have been omitted. An application of the solution of variable separation for Eq. (1) leads to the
following characteristic equation for the considered eigenvalue problem:

CðωÞ � D¼ 0; ð3Þ
where C(ω) is the real characteristic matrix and D denotes the vector of unknown constant coefficients in the analytical local
eigenfuctions of each i-th macro-element, as derived e.g. in [15]. Thus, the determination of natural frequencies reduces to
the search for values of ω, for which the characteristic determinant of matrix C is equal to zero. Then, the torsional
eigenmode functions are obtained by solving Eq. (3).

The solution for forced vibration analysis has been obtained using the analytical–computational approach described e.g.
in [15,16]. Solving the differential eigenvalue problem (1)–(3) and an application of the Fourier solution in the form of series
in the orthogonal eigenmode functions lead to the set of uncoupled modal equations for time coordinates ξm(t)

€ξmðtÞþ βþτω2
m

� �
_ξðtÞþω2

mξðtÞ ¼
1
γ2m

XS
m UTelðtÞ�XR

m UMrðtÞ
� �

; m¼ 1;2; ::: ð4Þ

where ωm are the successive natural frequencies of the drive system, β denotes the coefficient of external damping assumed
here as proportional to the modal masses γm

2
, Tel(t) denotes the external torque generated by the electric motor, Mr(t) is the

driven machine retarding torque and XS
m;X

R
m are the modal displacements scaled by proper maxima and corresponding to

the electric motor- and to the driven machine working tool-locations in the hybrid model, respectively. A mathematically
proven fast convergence of the applied Fourier solution enables us to reduce the number of the modal equations to solve in
order to obtain a sufficient accuracy of results in the given range of frequency. Here, it is necessary to solve only 6–10 modal
equations (4), even in cases of very complex mechanical systems, contrary to the classical finite element formulation leading
usually to large numbers of motion equations corresponding each to more than 100 or many hundreds degrees of freedom,
even in the case of one-dimensional beam element applications. Then, in order to minimize a numerical effort, the artificial
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and often error-prone model reduction algorithms have to be applied as an additional task in the entire computational
routines.

3. Modeling of the electric motor

From the viewpoint of electromechanical coupling investigation, in the introductory approach, the properly advanced
circuit model of the electric motor seems to be sufficiently accurate. The symmetrical three-phase asynchronous motor
electric current oscillations in its windings are described by the six circuit voltage equations transformed next into the
system of four Park's equations in the so called ‘αβ–dq’ reference system
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where U denotes the power supply voltage, ωe is the supply voltage circular frequency, L1, L'2 are the stator coil inductance
and the equivalent rotor coil inductance, respectively, M denotes the relative rotor-to-stator coil inductance, R1, R'2 are the
stator coil resistance and the equivalent rotor coil resistance, respectively, p is the number of pairs of the motor magnetic
poles, Ω(t) is the current rotor angular speed including the average and vibratory components and isα; i

s
β are the electric

currents in the stator windings reduced to the electric field equivalent axes α and β and ird; i
r
q are the electric currents in the

rotor windings reduced to the electric field equivalent axes d and q, [17]. Then, the electromagnetic torque generated by
such a motor can be expressed by the following formula:

Tel ¼
3
2
pMðisβird� isαi

r
qÞ: ð6Þ
4. Solution of the problem

From the form of Park's equations (5) as well as from formula (6) it follows that the coupling between the electric and the
mechanical systems is non-linear in character, particularly for significantly varying motor rotational speeds Ω(t). Such a
coupling leads to very complicated analytical description resulting in rather harmful computer implementation. Thus, this
electromechanical coupling can be realized here by means of the step-by-step numerical extrapolation technique, which for
relatively small direct integration steps for Eqs. (4) and (5) results in very effective, stable and reliable results of computer
simulation.

Nevertheless, for steady-state operating conditions with the constant average motor rotational speed Ωn, i.e. for
ΩðtÞ ¼ΩnþΘðtÞ, where jΘðtÞj{Ωn, in order to obtain more qualitative information about the character of electromechanical
coupling in the drive system, based on the harmonic balance method, an approximate analytical solution for currents in
Park's equations has been applied in the following form:

ivμ ¼ ðΦv
μþAv

μðtÞÞ sin ðωetÞþðΨ v
μþBv

μðtÞÞ cosðωetÞ; ð7Þ

where Av
μðtÞ; Bv

μðtÞ are the unknown time-functions to be determined, μ¼α, β for ν¼s and μ¼d, q for ν¼r. The symbols
Φν

μ; Ψ
ν
μ denote the constants, for which (7) satisfies Park's equations (5) for Av

μðtÞ; Bv
μðtÞ ¼ 0 and for Ω(t)¼Ωn¼const. It is to

emphasize here that for such Φν
μ; Ψ

ν
μ, by substituting (7) for Av

μðtÞ; Bv
μðtÞ ¼ 0 into (6), using the well known trigonometric

identities and upon neglecting small terms of higher order, values of the static component of the electromagnetic motor
torque for various constant rotational speeds Ωn are obtained. By means of these torque-to-speed relationships the
asynchronous motor static torque characteristics are determined.

For the assumed sinusoidal external excitation generated by the driven machine Mr(t)¼R sin (ωt), the fluctuating
component of the motor rotational speed Ω(t) is expected also in the harmonic form: Θ(t)¼G sin (ωt)þH cos (ωt), where
jGj; jHj{Ωn. Then, for the already determined constants Φν

μ;Ψ
ν
μ one can assume:

Av
μðtÞ ¼ Cv

μsinðωtÞþDv
μcosðωtÞ and Bv

μðtÞ ¼ EvμsinðωtÞþFvμcosðωtÞ; ð8Þ

where μ¼α, β for ν¼s and μ¼d, q for ν¼r. Next, by substituting (8) into (7), and (7) into Park's equations (5) and upon
proper grouping of the terms standing respectively in front of the sine and cosine functions and then upon evaluating the
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determined in this way sums to zero, the following system of 16�16 linear algebraic equations is obtained:

CðΩn;ωe;ωÞUD¼ EðB;G;HÞ; ð9Þ
where C denotes the matrix of circuit resistances and inductances, B¼col(…Φμ

ν…,… Ψμ
ν…), D¼col(…Cμ

ν…,… Dμ
ν…,…Eμ

ν…,…
Fμ
ν…,) and E is the input vector of the sine- and cosine-amplitudes of the fluctuating component of the motor rotational
speed Θ(t). By solving (9), substituting the elements of vector D first into (7) and then into (6) and upon neglecting small
terms of higher order, the sine- and cosine-amplitudes of the fluctuating component of the motor torque are obtained in the
following form:

Tvar
el ðtÞ ¼ SðωÞ sin ðωtÞþTðωÞ cos ðωtÞ; ð10Þ

where

SðωÞ ¼ 3
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2 pMðΨ s

βF
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β�Ψ s

αF
r
q�Ψ r

qF
s
αÞ:

In this way, the fluctuating component of the electromagnetic torque induced by the drive system torsional oscillations
has been separated from the average torque value. For the above mentioned harmonic retarding torque generated by the
driven machine and for the harmonic electromagnetic motor torque external excitations obtained in (10) a solution of modal
equations (4) becomes also harmonic. Then, by means of the well known analytical solutions of such ordinary differential
equations and using the mode superposition solution, dynamic responses of the considered mechanical system can be
determined. For example, the sine- and cosine-amplitudes G and H of the fluctuating component of the motor rotational
speed Θ(t) are obtained in the following form:

G¼ �ωUW ; W ¼ ∑
1

m ¼ 0

ðXS
mÞ2TðωÞU ðω2

m�ω2Þ�½ðXS
mÞ2SðωÞ�XS

mX
R
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mÞω
γ2m½ðω2

m�ω2Þ2þðβþτω2
mÞ2ω2�

;

and H¼ ωUU; U ¼ ∑
1

m ¼ 0

½ðXS
mÞ2SðωÞ�XS

mX
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mR�U ðω2

m�ω2ÞþðXS
mÞ2TðωÞU ðβþτω2

mÞω
γ2m½ðω2

m�ω2Þ2þðβþτω2
mÞ2ω2�

: ð11Þ

Then, by expressing S and T as in (10), substituting them into (11) and by inserting (11) into (9), upon proper
rearrangements one obtains the following system of 16�16 linear algebraic equations describing electromechanical
coupling effects in the drive system:

CðΩn;ωe;ω;ωm; γ
2
m; β; τÞUD¼ Fðωm; γ

2
m; β; τ;ω;RÞ: ð12Þ

Here, matrix C as well as input vector F became functions of the mechanical system dynamic parameters. It is to notice that
the system of algebraic Eq. (12) is linear with respect to the retarding torque amplitude R. Solutions of (12) for various
retarding torque fluctuation frequencies ω and amplitudes R enable us to determine the sine- and cosine-amplitudes of the
oscillating component of the asynchronous motor torque using (10). By projecting the sine- and cosine-components of the
electromagnetic torque and of the rotor rotation angle respectively on the complex plane real and imaginary axes and using
the proper definitions given e.g. in [11], the electromagnetic torsional stiffness ke(ω) and the coefficient of damping de(ω)
generated by the asynchronous motor are determined in the following form:

keðωÞ ¼ �U USðωÞþW UTðωÞ
U2þW2 ; deðωÞ ¼ �1

ω
U
U UTðωÞ�W USðωÞ

U2þW2 ; ð13Þ

where the sine- and cosine-angular displacement amplitudes U and W have been already defined in (11). The above
expressions (7)–(13) derived by means of the proposed analytical–computational approach enable us to determine dynamic
characteristics of the coupled electromechanical system. It is to remark that up till now the electromagnetic stiffness and
damping coefficient of the electric motors were usually determined as functions of ‘a priori’ assumed rotor angular speed
amplitudes corresponding to given excitation frequencies, as e.g. in [5] or [11]. In this way, these quantities are independent
of the mechanical system dynamic properties. But here, the rotor angular speed amplitudes G and H are expressed in the
form of mechanical system amplitude frequency characteristics (11) and thus the electromagnetic stiffness and damping
coefficient (13) became also functions of the drive system dynamic properties. These functions will be presented in the
following examples.

5. Computational and experimental examples

The above derived analytical solution for the electromechanical model will be illustrated by means of three examples of
various rotating machine drive systems driven by diverse asynchronous motors. Fundamental parameters of these motors
are provided in Table 1. In all cases the considerations are going to be focused on the interaction frequency ranges
containing the fundamental, first torsional eigenfrequencies. These systems will be studied in steady-state operating
conditions under sinusoidal external excitation generated by the driven machine with the assumed test amplitudes R in the
range between 0.15 and 0.50 of the nominal torque, which is quite common for crushers, mills, pulverizers, drilling devices,
pumps and others. First, the drive system start-ups into steady-state operation are going to be numerically simulated by the



Table 1
Fundamental parameters of the asynchronous motors.

Nominal power [kW] 22 932 2.1
Nominal rotational speed

[rpm]
1465 892 1680

Rated torque [Nm] 143 9977.5 12
Supplied voltage [V] 400 4000 390
Voltage frequency [Hz] 50 60 60
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use of modal equations (4), Park's equations (5) and expression (6). Then, the qualitative analyses will be carried out using
the analytical–computational approach expressed by relations (10)–(13). Moreover, in two cases the theoretical findings will
be compared with analogous results of measurements performed on the real objects.

5.1. Example I: coal pulverizer geared drive system

In the first example the drive system of the small power industrial coal pulverizer equipped with proper measurement
devices is considered, as shown in Fig. 2. This machine is driven by the 22 kW asynchronous motor by means of the
reduction planetary gear of the resultant ratio 1:5.33 as well as by the use of the spur gear of the ratio 1:31 reducing a
rotational speed of the pulverizer drum. The static torque characteristic of this motor, determined using relationships
(5)–(7), is shown in Fig. 3a. The drive system is equipped with two torque-meters installed respectively in the input shaft, i.
e. between the electric motor and the gear stage, and in the output shaft, i.e. between the gear stage and the coal pulverizer.
Since the torsional flexibility of the entire pulverizer drum is incomparably smaller than the torsional flexibilities of the all
drive system components, its huge mass moment of inertial has been reduced to the output-shaft axis and substituted in the
mechanical model by means of the rigid body attached to the end of this shaft.

The hybrid model of this drive system has been properly tuned-up in order to be characterized by the corresponding
fundamental torsional natural frequencies possibly close to these obtained experimentally. For this purpose the mechanical
system with the turned-off driving motor was induced to torsional vibrations by means of the hydraulic shaker. The
sinusoidal external signal generated by this device within the frequency range 0–50 Hz was successively imposed to various
points of the tested object in order to determine three fundamental torsional natural frequencies by the use of
Fig. 2. Coal pulverizer drive system: the scheme (a) and the real object with the measurement equipment (b).

Fig. 3. Static torque characteristic of the driving motor (a) and the first eigenform of the drive system (b).



Fig. 4. Calculated frequency response function of the mechanical system (a) and amplitude characteristic of the measured dynamic torque transmitted
by the system input shaft (b).
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measurements of the vibration amplitudes and signal-to-response phase angles. Apart from the rigid body mode of zero
frequency, naturally existing for rotating systems, the measured values of the first three ‘elastic’ natural frequencies are
equal to 2.1, 14.7 and 33.4 Hz. Despite a relatively complex structure of the real pulverizer drive system, characterized by
many parameters difficult to identify, the proper tuning of selected theoretical constants resulted in a quite good agreement
of the natural torsional vibration behavior between the hybrid mechanical model and the real object. Namely, the first three
calculated ‘elastic’ natural frequency values are equal to 2.1, 11.6 and 30.8 Hz. The first torsional eigenform of frequency
2.1 Hz, computationally obtained using the identified hybrid mechanical model, is depicted in Fig. 3b. In Fig. 4a, the
theoretically determined frequency response functions of this system, regarded as purely mechanical are shown. Their plots
are characterized by the significant peaks corresponding approximately to the above mentioned first three torsional natural
frequencies.

Simultaneously, in this model the mechanical damping level was identified. For this purpose the tuned-up hybrid model
was harmonically excited to forced, steady-state torsional vibrations within the above mentioned frequency range 0–50 Hz
in an analogous way as the real object by means of the hydraulic shaker. In order to adjust the computational vibration
amplitudes respectively to these registered using measurements, the damping coefficient β and the retardation time τ in the
modal equations (4) have been properly selected to obtain mutual relative differences not exceeding 3% for resonant
conditions, where damping usually plays a particularly significant role. By the use of this approach the mechanical
eigenvibration properties and damping level have been determined to establish a background for further dynamic
investigations with the turned-on driving motor generating the electromagnetic stiffness and electromagnetic damping.

Then, the real coal pulverizer drive system was experimentally tested in nominal, steady-state operating conditions for
the supply voltage frequency set-up to ωe/2π¼50 Hz, where on the rated torque the fluctuating sinusoidal component of
amplitude R¼0.15 of the constant value has been imposed by the hydraulic shaker within the excitation frequency range
ω/2π¼0–50 Hz, regarded as practically the most important. Here, in the case of rotating system the hydraulic shaker
was attached to the planetary gear housing flexibly suspended in the solid immovable frame which is visible in Fig. 2. In this
way, it was possible to introduce into the pulverizer drive system loading the harmonically fluctuating component, the
amplitude of which has been selected using the shaker performances as well as the geometrical dimensions and the gear
ratios of the planetary gear.

In Fig. 4b, the amplitude spectrum determined by means of FFT of the measured dynamic torque time histories and
registered using the torque-meter installed in the system input-shaft, i.e. between the driving motor and the gear stage is
presented, see Fig. 2. Apart from the peak observed at �5 Hz and of the peaks occurring in the vicinity of the anti-
resonance, i.e. within 18–25 Hz, see Fig. 4a, which can be interpreted as disturbances introduced by unexpected external
excitations, one can notice the significant peaks corresponding to ca. 14 and 32.5 Hz. These peaks are related to resonance
effects with the system's second and the third natural frequencies. Moreover, the first, predominant peak of frequency
�1.53 Hz seems apparently to indicate a resonance effect with the system fundamental, first ‘elastic’ eigenform. But from
the analogous amplitude spectra determined for the real system steady-state operating conditions for the supply voltage
frequencies set-up to ωe/2π¼40, 30, 20, 10 and 5 Hz it followed that these predominant peaks were corresponding to the
excitation frequencies ω/2πffi1.20, 0.533, 0.44, 0.133 and 0.067 Hz, while the frequency values related to the significant
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peaks resulting from resonance effects with the second and the third natural frequencies remained unchanged, i.e. they
differed not more than 70.15 Hz. For the above listed supply voltage frequencies the average rotational speed values of the
input and output shafts were appropriately proportional to these supply frequencies. Moreover, the supply voltages were
properly selected to keep in each case the average torque values in the input and output shafts approximately the same as
those for 50 Hz. The complete set of results of the measurements performed in this way is provided in Table 2. According to
the above, these predominant, the most severe, low-frequency vibration amplitudes are not an effect of classical mechanical
resonances, but they seem to be induced by the dynamic interaction with the driving asynchronous motor. In order to
explain this phenomenon, the qualitative analysis of the considered electromechanical system has been carried out.

From results of the numerical simulation performed for the above mentioned resonant frequency ω/2π¼2.1 Hz of the
retarding torque fluctuation it follows that completely no resonance effects are obtained, which indicate the plots in Fig. 5a
and b. In Fig. 5a, the black and gray lines respectively demonstrate the time histories of the electromagnetic motor torque
and of the driven machine retarding torque reduced to the motor axis. In Fig. 5b the respective time histories of dynamic
torques transmitted by the input (black line) and output (gray line) shafts during start-up and steady-state operation are
depicted. This comment follows from the direct amplitude comparisons of the corresponding time histories of the both
external excitation torques with those of the response dynamic torques transmitted by the above mentioned shaft
segments. Namely, if time-histories of external excitations overlay with analogous response time-histories, then any so
called dynamic amplification is observed and such responses can be regarded as quasi-static. This interpretation will be
further applied for variable in time severe external excitations caused by the electromechanical interaction between the
electric motor and the driven mechanical system. Here, no dynamic amplifications are observed, even the response
amplitudes are smaller than the respective ones characterizing the external excitations. Thus, one can conclude that for this
excitation frequency ω/2π¼2.1 Hz any resonance effect does not occur. However, the maximal amplitudes of the system
dynamic response have been obtained for the retarding torque fluctuation frequency 1.67 Hz, which indicate the analogous
results in Fig. 5c and d presented respectively in an identical way as these in Fig. 5a and b. From the analogous as mentioned
above direct comparisons of the corresponding external excitation and dynamic response amplitudes it follows that here
also no dynamic amplification is observed, but the electromagnetic torque fluctuation amplitudes significantly increased,
contrary to the case of previously considered excitation frequency ω/2π¼2.1 Hz. In the retarding torque fluctuation
frequency domain ω in Fig. 6a the plots of steady-state dynamic response fluctuation amplitudes determined by successive
numerical simulations performed for the analogous system nominal operating conditions as these realized during
measurements, i.e. for the supply voltage frequency set-up to ωe/2π¼50 Hz are shown. In this figure the black and gray
lines, respectively, there are the plotted amplitudes of the motor-torque and of the dynamic torque transmitted by the input
shaft in the vicinity of the torque-meter position in the real object. Both the curves are characterized by three peaks
corresponding to the excitation frequencies ω/2πffi1.67, 11.6 and 30.8 Hz. Similarly as in the plot in Fig. 4b, the theoretically
Fig. 5. Simulated dynamic response of the coal-pulverizer drive system: for the resonant mechanical frequency (a, b) and for maximal vibration amplitudes (c, d).

Table 2
Results of measurements performed for the coal pulverizer drive system.

Supply voltage frequency [Hz] 50 40 30 20 10 5

Average input shaft rotat. speed [rpm] 1482 1192 886 580 281 128
Average output shaft rotat. speed [rpm] 282 219 166 100 49 16
Average torque in the input shaft [Nm] 78 77 76 74 71 70
Average torque in the output shaft [Nm] 386 382 381 370 356 353
Excitation frequency of the first, predominant vibration peak [Hz] 1.53 1.20 0.533 0.44 0.133 0.067



Fig. 6. Amplitude characteristics of the electromagnetic torque (solid black and dashed line) and of the mechanical torque in the input shaft (gray line)
obtained using simulations (a) and by means of the analytical solution (b).
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obtained second and the third peaks indicate resonance effects with the system torsional vibration respective eigenforms.
The first, predominant peak of frequency 1.67 Hz corresponds to the above mentioned experimentally registered low-
frequency vibration amplitudes. It is noted that in the case of this peak the amplitude of excitation generated by the driving
motor is almost identical with the amplitude of the dynamic torque transmitted by the adjacent input-shaft. This fact
substantiates a quasi-static character of these low-frequency oscillations, contrary to the above mentioned third, typical
resonant peak, where a severe dynamic response amplification is observed. The result depicted in Fig. 6a and determined by
successively repeated simulations performed each for constant excitation frequency values ω/2π within 0–50 Hz has been
very precisely confirmed by the analogous plots in Fig. 6b obtained using the analytical relationships (10)–(12) and
illustrated in the same way as in Fig. 6a. The electromagnetic torque amplitude characteristics depicted in Fig. 6a and b by
means of the solid black lines have been determined as functions of the motor rotor angular speed fluctuation followed from
the dynamic properties of the driven mechanical system excited to torsional vibrations with various frequencies ω in steady-
state operating conditions. In Fig. 6b, for a comparison, using the black dashed line, an additional electromagnetic torque
amplitude characteristic obtained for the arbitrarily assumed constant motor rotor angular speed fluctuation amplitude is
presented, i.e. by means of solving Eq. (9) and using formula (10) for constant input sinusoidal and co-sinusoidal
components G and H of the angular speed amplitude within the entire considered range of the excitation frequency ω. This
characteristic demonstrates an asynchronous motor sensitivity to generation of the fluctuating component of the
electromagnetic torque in the given range of rotor torsional vibration frequency. From this plot it follows that the greatest
fluctuation of the driving torque is observed at the smallest rotor vibration frequencies, to decrease gradually with an
increase of the frequency ω. This feature will be applied in the further explanation of the qualitative character of the
electromechanical coupling between the asynchronous motor and the driven, torsionally vibrating mechanical system.

In addition, the analogous amplitude characteristics of the measured and theoretically obtained dynamic torque
transmitted by the system output shaft, i.e. between the gear stage and the coal pulverizer, are presented in Fig. 7. In Fig. 7a
the experimentally determined amplitude characteristic is shown. However, Fig. 7b presents two theoretically obtained
amplitude characteristics, which almost mutually overlay each other, i.e. determined by the successive numerical
simulations by means of modal equations (4), Park's equations (5) and expression (6) (gray line) as well as using the
analytical formulae (10)–(12) (black line).

Moreover, in Fig. 8, also in the retarding torque fluctuation frequency domain ω, the black and gray lines, respectively,
present the plots of electromagnetic stiffness and damping coefficient determined using formula (13). It is to emphasize that
both curves in Fig. 8 are qualitatively similar to analogous electromagnetic stiffness and damping characteristics obtained in
[11] by means of the above mentioned spatial flux model dynamically perturbed by the ‘a priori’ applied rotor angular speed
impulses assumed as entirely independent of the drive system properties and loadings. In order to estimate the mechanical
system stiffening generated by the asynchronous motor, the electromagnetic stiffness values should be compared with
mechanical model successive modal stiffness ωi

2
γi
2
, i¼1, 2,…, regarded here as approximate reference measures. For all

torsional eigenfunctions normalized to unity the modal mass of the rigid body mode is equal to the entire mass moment of
inertia of the considered drive system model, whereas the successive modal masses of the ‘elastic’ eigenmodes become
respective fractions of this realistic value. Under this assumption the modal stiffness corresponding to successive torsional



Fig. 8. Electromagnetic stiffness (black line) and damping coefficient (gray line).

Fig. 7. Amplitude characteristics of the dynamic torque in the output shaft determined by means of measurements (a) and computations using simulations
(gray line) and the analytical solution (black line) (b).
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natural frequencies can be compared with respective electromagnetic stiffness values determined by the characteristic
shown in Fig. 8.

From the stiffness characteristic in Fig. 8 it follows that for the first system natural frequency 2.1 Hz the electromagnetic
stiffness introduced by the asynchronous motor is equal to ca. 0.180 kNm/rad which exceeds the mechanical system first modal
torsional stiffness ω1

2
γ1
2¼0.169 kNm/rad, to reach much greater values for higher interaction frequencies. Thus, the considered

drive system is not a so called ‘free–free’ one, but it becomes visco-elastically clamped by the electromagnetic flux between the
motor rotor and the stator. In general, this feature can significantly change system natural frequency values and corresponding to
them torsional eigenforms. But in the considered case such electromagnetic visco-elastic spring has completely attenuated the
resonance effect with the first eigenfrequency because of extremely high electromagnetic damping generated at low interaction
frequencies, see Fig. 8. Moreover, it should be noted that the dynamic response amplification caused by the resonance effect with
the second eigenform is very small, as a result of the very high electromagnetic damping in the range 0–20 Hz, see Figs. 6–8. In a
contradistinction, as mentioned above, the dynamic response amplification caused by the resonance effect with the third
eigenform becomes very severe, since the electromagnetic damping tends to zero for excitation frequencies ω/2π greater than
30 Hz. The natural frequency values of the second and the third ‘elastic’ eignenmodes have not been remarkably influenced by a
stiffening caused by the electromagnetic spring. Namely, the second eigenform is characterized by the modal stiffness
ω2
2
γ2
2¼1.368 kNm/rad comparable with the electromagnetic stiffness ca. 1.2 kNm/rad for ω/2πffi10.6 Hz, see Fig. 8. But this

eigenform is hardly excitable by the electric motor torque because of almost zero values of its eigenfuction at the motor location,
contrary to e.g. the first ‘elastic’ eigenfunction shown in Fig. 3b. However, the third eigenform has the modal stiffness
ω3
2
γ3
2¼50.491 kNm/rad which is much greater than the electromagnetic one, equal to ca. 1.9 kNm/rad for ω/2πffi30.8 Hz, to be

remarkably influenced. Moreover, it is to remember that according to the fundamentals of mechanical system vibration theory,
eventually the slight increases of natural frequencies due to the electromagnetic stiffening effect become compensated by a
common action of mechanical and electromagnetic damping. However, the maximum dynamic response at 1.67 Hz, without any
dynamic amplification, is of a quasi-static character, induced by very high electric motor torque amplitudes occurring at low
interaction frequencies. This fact follows from the above described additional motor-torque characteristic depicted by the dashed
line in Fig. 6b and determined using relationships (9) and (10) for the arbitrarily assumed constant rotor angular speed



Fig. 9. The centrifugal blower driven by the asynchronous motor.

Fig. 10. Static torque characteristic of the driving motor (a) and the first eigenform of the drive system (b).
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fluctuation amplitudes G and Hwithin the entire considered frequency domain. Such electromechanical low-frequency dynamic
behavior is also interpreted in the literature as rotational vibrations of the mechanical system rigid body mode, zero natural
frequency of which is being increased by the stiffening caused by the electromagnetic spring generated by the driving motor.

It is also to emphasize that the plot of the electromagnetic damping shown in Fig. 8 indicates a negative damping zone in
the range between 35 and 50 Hz, which for very small drive system mechanical damping can lead to operational
instabilities. But in the considered case the experimentally identified level of shaft material and external damping protects
the entire electromechanical system against instabilities and severe resonance effects.

The investigated, measurement available coal-pulverizer drive systemwith three elastic couplings is characterized by the
above mentioned small first torsional ‘elastic’ natural frequency 2.1 Hz. It turned out that in this particular case the
quantitative influence of the asynchronous motor interaction on the system low-frequency dynamic response seems to be
negligible from the practical engineering viewpoint. Actually, the difference between the fundamental torsional ‘elastic’
resonant frequency and the excitation frequency ω corresponding to the predominant dynamic response low-frequency
peak reaches only ca. 0.5 Hz. But it is to emphasize that, as described above in detail, the reason of these low-frequency
oscillations is qualitatively of a completely different character than a typical ordinary ‘elastic’ resonance usually expected in
a purely mechanical system. Nevertheless, the phenomenon investigated here of the drive system–asynchronous motor
dynamic interaction should be additionally demonstrated by means of the more spectacular computational example
described below.

5.2. Example II: centrifugal blower drive system

The character of electromechanical interaction studied above can be confirmed in the following example of the industrial
centrifugal blower driven by the 932 kW asynchronous motor. In order to illustrate a structure of the considered machine, in
Fig. 9 a smaller unit belonging to its entire type-series is presented. The static torque characteristic of this motor, determined
in an identical way as that in the above example, is shown in Fig. 10a.

The first torsional ‘elastic’ eigenform of natural frequency 24.7 Hz of the considered drive system hybrid model is
presented in Fig. 10b. Similarly as in the previous case, harmonic excitation caused by the retarding torque of the mentioned
resonant frequency does not result in any remarkable response amplification in the steady-state operating conditions,
which follows from that demonstrated in Fig. 11a and b simulation results of the system start-up into the nominal operation.
However, the most severe electromechanical response is observed at the retarding torque fluctuation frequency 6.4 Hz, as
shown in Fig. 11c and d in an identical way as in Fig. 5. Here, upon the passage through the transient resonance effects
during run-up, the drive system becomes significantly affected by the low-frequency torsional oscillations. This fact has
been confirmed by the analogous results of qualitative analysis presented in Fig. 12. Nevertheless, in this case, contrary to
the previous example, the resonance effect with the first, fundamental torsional eigenmode has not been entirely
suppressed, but ‘shifted’ into higher frequency 29.2 Hz, which follows from the comparison of the corresponding frequency
response function of this mechanical system shown in Fig. 12a with the corresponding dynamic response amplitude
characteristics obtained using numerical simulations and the proposed analytical–computational approach. The plots of



Fig. 12. Calculated frequency response function of the mechanical system (a), amplitude characteristics of the electromagnetic torque (solid black and
dashed line) and of the mechanical torque in the shaft (gray line) obtained using simulation (b) and by means of the analytical solution (c).

Fig. 11. Simulated dynamic response of the centrifugal blower drive system: for the resonant mechanical frequency (a, b) and for maximal vibration
amplitudes (c, d).
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these characteristics are depicted in Fig. 12b and c. This fact has been additionally confirmed by the results of simulation in
time domain performed for the above mentioned resonant frequency 29.2 Hz. These results are presented in Fig. 13a and b
in an identical way as those in Figs. 5 and 11. In Fig. 13a, the black and gray lines respectively demonstrate time histories of
the electromagnetic motor torque and of the driven machine retarding torque. In Fig. 13b the mutually overlying time
histories of dynamic torques transmitted by the input shaft connecting the motor with the rigid coupling (black line) and by
the output shaft connecting the rigid coupling with the driven machine working tool (gray line) are depicted, see Fig. 13.



Fig. 13. Simulated resonant dynamic response of the centrifugal blower drive system.

Fig. 14. Electromagnetic stiffness (black line) and damping coefficient (gray line).

Fig. 15. Laboratory drive system of the rotating machine.
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In the considered example the character of the dynamic interaction between the drive system and the asynchronous
motor can be also explained by means of the motor electromagnetic stiffness and damping coefficient characteristics
demonstrated in Fig. 14 in the same way as the analogous functions in Fig. 8. On the one hand, the shift of the fundamental
torsional vibration ‘elastic’ resonant frequency from 24.7 to 29.2 Hz can be substantiated by the additional stiffening of the
investigated torsional train by the driving motor electromagnetic flux. Here, this rotor-to-stator electromagnetic stiffness for
interaction frequencies bigger than 15 Hz reaches 500 kNm/rad, where the first eigenmode torsional stiffness of the purely
mechanical system ω1

2
γ1
2¼1325.2 kNm/rad is significantly greater, but still comparable to be remarkably influenced. On the

other hand, as shown in Fig. 14, the electromagnetic damping coefficient in this interaction frequency range is already not
high enough to completely attenuate the resonance effect. Similarly as in the previous example, the maximum dynamic
response occurring at 6.4 Hz is also of a quasi-static character, since it does not indicate any dynamic amplification, too.
These severe low-frequency torsional vibrations are either induced by the very high electric motor torque amplitudes
occurring at low interaction frequencies, which follow from the motor-torque characteristic depicted by the dashed line in
Fig. 12c and determined using Eqs. (9) and (10) for the constant rotor angular speed fluctuation amplitudes G and H
arbitrarily assumed within the entire studied frequency domain. Moreover, the considered asynchronous motor is also
characterized by a dangerous negative electromagnetic damping zone observed here in the range between 40 and 60 Hz, see
Fig. 14.

Upon analyzing the results obtained in both considered examples one can ask a question, if all drive systems co-
operating with the asynchronous motors indicate such a character of mutual dynamic interaction as that described above.
The negative answer to this question is going to be substantiated in the following computational–experimental example.
5.3. Example III: laboratory test-rig drive system

The static torque characteristics of the asynchronous motors applied in both the previous examples and presented in
Figs. 3 and 10a are characterized by very high driving torque gradients in the vicinity of nominal rotational speed value and
by the relatively narrow rotational speed ranges of a stable operation. It is to remark that these features seem to be quite
common for larger asynchronous motors. In this computational example for the laboratory drive system of a rotating
machine presented in Fig. 15 the 2.1 kW asynchronous motor is used, where its static torque characteristic is characterized



Fig. 16. Static torque characteristic of the driving motor (a) and the first eigenform of the drive system (b).

Fig. 17. Calculated frequency response function of the mechanical system (a) and amplitude characteristic of the measured dynamic torque registered by
torque-meter I (b).
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by the relatively small driving torque gradient in the neighborhood of nominal rotational speed and by the wider stable
operation zone, as shown in Fig. 16a. The considered laboratory drive system is equipped with two torque-meters, i.e.
“torque-meter I” installed between the driving motor and the adjustable inertial disk as well as “torque-meter II” situated
between the overload coupling and the electric brake imitating an operation of the driven machine, see Fig. 15. By means of
the frequency generator co-operating with the electric brake it was possible to impose the sinusoidal component on the
average retarding torque transmitted by the entire drive system. These devices enabled us to determine experimentally the
first two torsional ‘elastic’ natural frequencies equal to �54.5 and �112.1 Hz for the turned-off driving motor.

Then, similarly as in the first example described in Section 5.1, the hybrid model of the investigated laboratory drive
system has been properly tuned-up in order to indicate the respective fundamental torsional natural frequencies possibly
close to those obtained experimentally as well as to identify the mechanical damping level. The first torsional eigenform of
natural frequency 54.6 Hz of this drive system model is presented in Fig. 16b. Fig. 17a illustrates the frequency response
function of this model in the most important frequency range 0–150 Hz, in which the significant peaks corresponding to the
above mentioned first two torsional natural frequencies are observed.

In the next step, the laboratory drive systemwas experimentally tested in nominal, steady-state operating conditions for
the supply voltage frequency set-up to ωe/2π¼60 Hz, where on the rated torque of the fluctuating sinusoidal component of
amplitude R¼0.25 of the constant value has been imposed by the electric brake within the practically most important
excitation frequency range ω/2π¼0–150 Hz. In Fig. 17b the amplitude spectrum determined by means of FFT of the
measured dynamic torque time histories registered using torque-meter I is presented. Apart from the visible disturbances
introduced by the excitation signal at ca. 16 and 23 Hz, in this figure one can notice the significant peak corresponding to ca.
54.5 Hz, which is related to the resonance effect with the system first, fundamental ‘elastic’ natural frequency. Moreover, a
dynamic amplification of the system response caused by the resonance effect with the second eigenform is also remarkable
in the vicinity of 112 Hz.

Similarly as in the first example described in Section 5.1, in the retarding torque fluctuation frequency domain ω in
Fig. 18a the plots of steady-state dynamic response fluctuation amplitudes are shown which are determined by successive



Fig. 18. Amplitude characteristics of the electromagnetic torque (solid black and dashed line) and of the mechanical torque in the input shaft (gray line)
obtained using simulations (a) and by means of the analytical solution (b).

Fig. 19. Electromagnetic stiffness (black line) and damping coefficient (gray line).
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numerical simulations performed for the analogous system nominal operating conditions as these realized during
measurements, i.e. for the supply voltage frequency set-up to ωe/2π¼60 Hz. In this figure the black and gray lines,
respectively, there are plotted amplitudes of the motor-torque and of the dynamic torque transmitted by the input shaft in
the vicinity of the torque-meter I position in the real object. The result depicted in Fig. 18a and determined by successively
repeated simulations performed for each constant excitation frequency values ω/2π within 0–150 Hz has been very precisely
confirmed by the analogous plots in Fig. 18b obtained using analytical relationships (10)–(12) and illustrated in the same
way as those in Fig. 18a. As it follows from the electromechanical response amplitude characteristics: in Fig. 17b obtained
experimentally and in Fig. 18a obtained using simulations as well as from that shown in Fig. 18b and determined by means
of the analytical approach, apart from the quasi-static, low-frequency torsional oscillations excited due to the electro-
mechanical interaction with the asynchronous motor within 0–4 Hz, all these amplitude characteristics are characterized by
the resonant peaks at the above mentioned mechanical system natural frequencies �54.6 and �112.1 Hz, similarly as the
frequency response function in Fig. 17a. In the considered case, this asynchronous motor is not able to influence remarkably
the drive system dynamic properties, since in the entire investigated interaction frequency range 0–175 Hz the rotor-to-
stator electromechanical stiffness does not exceed 0.25 kNm/rad, as shown in Fig. 19 which demonstrates the motor
electromagnetic stiffness and damping coefficient characteristics. Here, the first eigenmode torsional stiffness of this
mechanical system ω1

2 � γ12¼12548.8 kNm/rad is incomparably greater to be essentially influenced by any stiffening effect
generated by this asynchronous motor. Moreover, the electromagnetic damping coefficient in the vicinity of 50 Hz is close to
zero, but it is always positive within the entire considered interaction frequency range, as it follows from the respective plot
in Fig. 19.
6. Final remarks

In the paper dynamic electromechanical coupling between the structural model of the rotating machine drive system
and the circuit model of the asynchronous motor has been investigated. By means of the analytical–computational approach
an interaction between the fundamental torsional eigenmodes and the driving electromagnetic torque was studied in order
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to determine the frequency zones of greater sensitivity to amplification of torsional vibrations as well as the frequency zones
of significant attenuating activity of the electromagnetic damping. For this purpose, for selected electromechanical systems
an influence of electromagnetic and retarding torque fluctuation on torsional vibration amplitudes was investigated. As
objects of considerations the rotating machine drive systems of mutually diverse structures and driven by the asynchronous
motors of various power and technical parameters were applied. From the obtained results of computations and
measurements it follows that the coupling effects between the mechanical and electrical parts become significant for
drive systems characterized by very small fundamental torsional ‘elastic’ natural frequencies and driven by asynchronous
motors with great static torque gradients in the nominal speed ranges. Then, the first, fundamental natural frequency values,
which usually result in relatively small modal stiffness, can be remarkably increased since the eigenforms corresponding to
them become sensitive to effective stiffening by the electromagnetic elasticity generated by the driving motor.

Because the asynchronous motors generate relatively high electromagnetic damping in the lowest torsional excitation
frequency ranges, resonance effects with the fundamental eigenmodes of the driven mechanical system can be completely
suppressed. On the other hand, an ability of induction of the greatest electromagnetic torque fluctuation amplitudes in the
lowest excitation frequency ranges, indicated by the asynchronous motors, results in severe torsional vibrations which are
quasi-static in character due to simultaneous activity of the above mentioned electromagnetic damping. Nevertheless,
amplitudes of these oscillations can exceed many times the transmitted rated toque values, as it is followed from the
performed measurements and theoretical computations. A physical cause of these low-frequency fluctuations can be also be
described as rotational vibrations of the drive system rigid body mode, where the restoring moment is generated by the
electromagnetic visco-elastic spring created by a driving motor between the rotor and the stator. A frequency of these
oscillations is greater, when the stiffness of this spring is higher. According to the above, one can conclude that the
electromechanical coupling between the asynchronous motor and the driven machine introduces an additional ‘rigid body’
vibration form, in addition to the naturally existing torsional ‘elastic’ vibrations of the drive system. A severity and character
of all of them depend on individual dynamic properties of the mechanical system as well as on electrical parameters of the
driving motor.

As described above and demonstrated by means of the proper characteristics, the considered asynchronous motors
generate the greatest electromagnetic damping at the lowest external excitation frequencies. From comparisons with the
experimentally identified mechanical damping coefficient values it follows that in the lowest frequency ranges the
electromagnetic damping can dissipate torsional vibration energy more effectively than the mechanical one. Moreover, in
cases of asynchronous motors with the above mentioned great static torque gradients in the nominal speed ranges negative
electromagnetic damping is also observed. This property can lead to a dangerously instable motor co-operation with weakly
damped mechanical systems. Minima of these negative damping coefficients usually occur for frequencies corresponding to
the vicinities of the nominal supply voltage frequencies. For greater excitation frequencies the electromagnetic damping
coefficients ‘come back’ to positive values and next they gradually begin to tend to zero. Then, torsional vibrations of the
drive systems start to be more and more effectively attenuated by mechanical damping, effectiveness of which naturally
increases with an oscillation frequency.

It is to emphasize that the theoretically investigated effects of the dynamic interaction between the asynchronous motors
and the driven mechanical systems have been successfully confirmed by the results of measurements performed on the real
object. Thus, the proposed analytical–computational approach for electromechanical coupling investigations, even at the
presented stage, seems to be a convenient and very effective tool for producers of various machine drive systems, enabling
them of making right choices of optimal asynchronous motors for driven objects. Nevertheless, in the next step of research
in this field a more advanced electrical model of the asynchronous motor is going to be applied. Properties of this model will
be referred to these of the analogous three-dimensional spatial model of the electromagnetic flux between the stator and
the rotor.
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