

Optical Waves at Nano-photonic Planar Structures

Prof. Wojciech Nasalski, Ph.D, Dr. Habil.

Department of Theory of Continuous Media

The course is aimed at students who intend to apply methods of optics in exploring contemporary problems of nano-photonics. The first three sections provide elementary description of electromagnetics and optics of multi-layers, as well as basics of beams and wave packets. The three subsequent sections introduce fundamentals of plasmonics, meta-materials and nano-visualisation.

Main topics:

- 1. Electromagnetic field:
 - 1.1 Maxwell's equations,
 - 1.2Boundary conditions,
 - 1.3Hertz potentials,
 - 1.4Field polarisation frames,
 - 1.5 Monochromatic plane waves,
 - 1.6Field integral representations.
- 2. Layered structures:
 - 2.1Reflection and refraction of waves,
 - 2.2Waves in layered media,
 - 2.3Absorption and attenuation of waves,
 - 2.4Bragg diffraction and scattering,
 - 2.5Waves at double periodic media.
- 3. Beams and wave packets:
 - 3.1 Monochromatic Hermite-Gaussian beams,
 - 3.2 Monochromatic Laguerre-Gaussian beams,
 - 3.3Non-monochromatic wave packets,
 - 3.4 Monochromatic Bessel-Gaussian beams.
- 4. Plasmonic structures:
 - 4.1Surface plasmon polaritons
 - 4.2Localised plasmons,
 - 4.3Resonances of plasmonic structures,
 - 4.4Enhanced light transmission and sensing.
- 5. Meta-material structures:
 - 5.1Double-negative materials,
 - 5.2Negative refraction,
 - 5.3Perfect lenses and invisible objects,
 - 5.4Anisotropic and hyperbolic meta-materials.
- 6. Visualisation of nano-material structures:
 - 6.1Evanescent and leaky waves,
 - 6.2Atomic Force Microscopy,
 - 6.3Scanning Near-field Optical Microscopy.

The total number of lecture hours: 60 h, laboratory exercises: 8 h, self-teaching: 90 h, direct tutoring and consultations: 20 h.

ECTS Points: 6