

Name of the course	Polish English	Zaawansowane cyfrowe przetwarzanie obrazów Advanced Digital Image Processing				
DOCTORAL SCHOOL OF IPPT PAN Specialized course						
Course coordinator	Prof. Nieniewski, Ph.D, D.Sc., EE		Course teacher	Mariusz Nieniewski, Ph.D, D.Sc., EE		
Implementing unit	ZIINO		Scientific discipline / disciplines	Computer science/Informatics		
Level of education	doctoral studies		Semester	Summer semester		
Language of the course	English or Polish					
Type of assessment	assessment of activity during class, lab reports	Number of hours in a semester		60	ECTS credits	4
Type of classes	Lecture	Auditory classes	Project classes	Laboratory	Seminar	
Number of hours	in a week	2			2	
	in a semester	30			30	

COURSE OFFERED IN THE DOCTORAL SCHOOL OF IPPT PAN

1. Prerequisites

Digital Image Processing course

2. Course objectives

The aim of the course is to teach students to process images in the frequency domain (also called transform domain). The textbooks references for this course indicate the use of Matlab. In fact Matlab is not a necessity for this course since the same functionality can be obtained by using Octave or Python, which are available in public domain. The lectures provide theoretical background at the introductory level. The main flavor of the course is lab experiments with image processing. These experiments are conducted mainly in Octave and Fiji (imageJ), which is another freely available software. Possible software conversions from one programming language to another are implemented via API so the student obtains a more general overlook of the area of digital image processing and can choose the best software option in a particular case.

3. Course content (separate for each type of classes)

Lecture

Main topics:

1. theoretical principles of lowpass and highpass filtering in the frequency domain – ideal filters, Butterworth filters, and Gaussian filters
2. theoretical principles of bandpass and bandreject filtering in the frequency domain – ideal filters, Butterworth filters, and Gaussian filters
3. theoretical principles of noise modelling in images
4. theoretical principles of image restoration in simpler cases of degradation
5. comparison of filtering in image domain and frequency domain
6. transformations between color spaces and their uses

7. miniprojects in the area of digital image processing

Laboratory

Main topics:

1. lowpass and highpass filtering in the frequency in the Matlab/Octave environment – ideal filters, Butterworth filters, and Gaussian filters
2. bandpass and bandreject filtering in the Matlab/Octave environment – ideal filters, Butterworth filters, and Gaussian filters
3. noise modelling in the Matlab/Octave environment
4. image filters for improving image quality in frequency domain
5. comparison of filtering in image domain and frequency domain
6. transformations between color spaces and their uses
7. carrying out complete miniprojects in frequency domain using built-in Matlab/Octave functions of the IPT (Image Processing Toolbox), user defined functions delivered in the textbook Gonzalez, Digital Image Processing Using Matlab, as well as student defined functions, possibly generated with the use of AI.

4. Learning outcomes

Number of the learning outcome	Learning outcomes description	Reference to the learning outcomes according to the 8 th level of PRK	Learning outcomes verification methods*
Knowledge			
Knowledge acquired from lecture			
1	The graduate acquires knowledge of theoretical principles of lowpass and highpass filtering in the frequency domain – ideal filters, Butterworth filters, and Gaussian filters.	P8S_WG	assessment of activity during classes and assessment of lab reports
2	The graduate acquires knowledge of theoretical principles of bandpass and bandreject filtering in the frequency domain – ideal filters, Butterworth filters, and Gaussian filters.	P8S_WG	assessment of activity during classes and assessment of lab reports
3	The graduate acquires knowledge of theoretical principles of noise modelling in images.	P8S_WG	assessment of activity during classes and assessment of lab reports

THE DOCTORAL SCHOOL OF IPPT PAN

4	The graduate acquires knowledge of theoretical principles of image restoration in simpler cases of degradation.	P8S_WG	assessment of activity during classes and assessment of lab reports
5	The graduate acquires knowledge of how to compare results of filtering in image domain and frequency domain.	P8S_WG	assessment of activity during classes and assessment of lab reports
6	The graduate acquires knowledge of transformations between color spaces and their uses.		assessment of activity during classes and assessment of lab reports
7	The graduate acquires knowledge how to carry out complete miniprojects in frequency domain using built-in Matlab/Octave functions of the IPT (Image Processing Toolbox), user defined functions delivered in the textbook Gonzalez, Digital Image Processing Using Matlab, as well as student defined functions, possibly generated with the use of AI.		assessment of activity during classes and assessment of lab reports

Knowledge acquired from laboratory

1	The graduate acquires knowledge of lowpass- and highpass filtering in the frequency in the Matlab/Octave environment – ideal filters, Butterworth filters, and Gaussian filters.	P8S_WK	assessment of activity during classes and assessment of lab reports
2	The graduate acquires knowledge of bandpass-, and bandreject filtering in the frequency domain in the Matlab/Octave environment – ideal filters, Butterworth filters,, and Gaussian filters.	P8S_WK	assessment of activity during classes and assessment of lab reports
3	The graduate acquires knowledge of noise modelling in the Matlab/Octave environment.	P8S_WK	assessment of activity during classes and assessment of lab reports
4	The graduate acquires knowledge of image filters for improving image quality in frequency domain.	P8S_WK	assessment of activity during classes and assessment of lab reports
5	The graduate acquires knowledge of how to compare filtering in image domain and frequency domain in the Matlab/Octave environment.	P8S_WK	assessment of activity during classes and assessment of lab reports
6	The graduate acquires knowledge of transformations between color spaces and their uses in the Matlab/Octave environment.	P8S_WK	assessment of activity during classes and assessment of lab reports
7	The graduate acquires knowledge carrying out complete miniprojects in frequency domain using built-in Matlab/Octave functions of the IPT (Image Processing Toolbox), user defined functions delivered in the textbook Gonzalez, Digital Image Processing Using Matlab, as well	P8S_WK	assessment of activity during classes and assessment of lab reports

	as student defined functions, possibly generated with the use of AI.		
Skills			
1	The graduate is able to solve problems of image filtering with images coming from industrial, scientific, and biomedical environments using methods available when filtering in image domain.	PBS_UW	assessment of activity during classes and assessment of lab reports
2	The graduate is able to solve problems of image filtering and image quality improving in image domain.	P8S_UW	assessment of activity during classes and assessment of lab reports
3	The graduate is ready to apply the acquired knowledge of the theory of image filtering in the field of his/her scientific research.	P8S_UW	assessment of activity during classes and assessment of lab reports
4	The graduate is able to transfer the acquired knowledge of the theory of image filtering to the industrial and other environments and disseminate the results of his/her research.	P8S_UW	assessment of activity during classes and assessment of lab reports
Social competences			
1	The graduate is ready to think and act in a creative and entrepreneurial way.	P8S_KO	assessment of activity during classes and assessment of lab reports
2	The graduate is ready to critically evaluate the achievements of the represented scientific discipline, including his/her own contribution to the development of this discipline.	P8S_KK	assessment of activity during classes and assessment of lab reports

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria
Activity in the lab, presentation of the lab reports

6. Literature
<u>Primary references:</u>
[1] R.C. Gonzalez, R. E. Woods , Digital Image Processing, 3 rd ed.
[2] R.C. Gonzalez, R.E. Woods, S. L. Eddins , Digital Image Processing Using Matlab, 3 rd ed.
[3] Princeton_Fourier_da8827c90-6617-4bc6-b840-2bea0618d480.pdf
[4] Osgood_book-fall-07.pdf
<u>Secondary references:</u>
[1] Butz_Fourier_Transformation_For_Pedestrians.pdf
[2] K.F. Riley, M.P. Hobson, S.J. Bence , Mathematical Methods for Physics and Engineering, 3 rd ed. 2006, Cambridge University Press
[3] R. Szeliski , Computer Vision, Algorithms and Applications, 2011, Springer

7. PhD student's workload necessary to achieve the learning outcomes**

No	Description	
1	Hours of scheduled instruction given by the lecturer in the classroom	60
2	Hours of consultations with the lecturer, tests, etc.	15
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	30
	Total number of hours	105
	ECTS credits	4

** 1 ECTS = 25–30 hours of the PhD students work (2 ECTS ≈ 60 hours; 4 ECTS ≈ 110 hours, etc.)