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Complex biological processes and relations between them, usually involving

many parameters
After building hypotheses, validation through clinical results is needed
as well as a quantitative description

Mathematical modeling gives a tool to reduce the number of animal
experiments by in silico modeling, or to make these tests (partially) obsolete

Mathematical modeling gives a predictive tool to the clinicians to quantify
the impact of treatment

Major issue is that most parameters are patient-specific, which requires
the involvement of uncertainty assessment



e Cardiovascular diseases are the leading causes of death in developed
countries

e Modeling and simulations of blood flow behavior and the applied

stresses help to:
eUnderstand several diseases — prediction (diagnosis & treatment)
eOptimize surgical procedures
eDesign medical devices

New challenge:

Combining mechanism-driven models (e.g. based on physics and physiology)
and data-driven models (e.g. based on machine learning and artificial
intelligence) to analyze large and diverse datasets while attaining cause-to-

effect interpretability




CARDIOVASCULAR DISEASES

Atherosclerosis

e Accumulation of fatty materials, fibrous
elements and calcium in the intima of the
arteries

Causes:

e DL - Cholesterol
eHigh blood pressure
eSmoking

Consequences:

e Vessel narrowing
e Heart attack
e Stroke
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CARDIOVASCULAR DISEASES

Aneurysms
e Gradual dilation of arterial segments

e Consequences:

e \/essel stretches and becomes
thinner

e They can rupture causing
hemorrhage

Left renal

Right renal Hrary.

artery
Infrarenal
aneurysm

Aneurysm Clipping

Cerebral Aneurysm

Blood vessels
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Cerebral Aneurysm
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Personalized numerical approach to disease diagnosis

T : 7NN :
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Problem setting

Numerical simulations

FEEDBACK Post-processing visualization

Lab, animal and
clinical studies




Historical Remarks

Hemodynamics — study of blood flow in the circulatory system

* The importance of blood for life has been very clear since the old times with many
implications at religious level

* For instance, Egyptians had great familiarity with the inside of the human body through
the practice of mummification

Egyptians and Mesopotamians certainly practiced bloodletting as a therapy for numerous
illnesses

 The modern understanding of the circulatory system starts with the work of William
Harvey (1578-1657) — publication of his seminal work in 1628

* Giovanni Borelli (1608-1679) studied the contraction of the heart [E—
and its interaction with the arteries and is seen by many as the : &y
“father of Bioengineering”

* In 1742, Leonhard Euler (1707-1783) presented the “Principles for
determining the motion of the blood through arteries”. This is the first
known work on the mechanics of flows in elastic tubes, in which
Euler applied his equations to analyze the flow of blood through
arteries, driven by a piston pump simulating the heart. Euler is
considered the “father of Hemodynamics”

Hemomath




Historical Remarks

':T' (ps) + 3_8__ (psv) =

Acknowledgment:
L. Euler 1775

o §43. In motu igitur sanguinis explicando casdem offendimus insuperabiles difficultates, quae nos impe-
,dmm omnia plane opera Creatoris nccuratms perscrulari; ubi perpetuo multo magis summam sapientiam cum
"'mpotentla conJunctam admirari ac venerari debemus, cum ne summum quidem ingenium humanum vel

§ 15. Quoniam igitur relatio _.intgr.p et s constat, conveniet inde valorem'furm‘ulae.v(%) i

cum sola z variabilis hic occurrat reperietur:

B C@ -

hic valor succinctius ita exhiberi potest:

@)= (D)

43) “Thus in explaining the motion of the blood, we come up against
the same insuperable difficulties which clearly prevent us from more
accurately investigating all the works of the Creator; wherein we ought
constantly to admire and to venerate much more the highest wisdom
conjoined with omnipotence singg truly not even the greatest human
ingenuity avails to understand and explain the true structure of the
slightest micro-organism”.

Sicque posterior aequatio induet hanc formam:

2255 (02 o () (§) =0,

ita ut nunc duae tantum supersint functiones s et v, per ambas variabiles principale
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as av\  gds\ ’ av an,  2ge2r (I
1 v(a;)-o—s(ﬁ)—k(i)_o et ( )+v( )+(B—:)2(
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Mathematical Modeling and Simulation of the Human

Cardiovascular System

Motivation:

Hemodynamics vs cardiovascular diseases: local fluid patterns and wall shear stress
are strictly related to the development of cardiovascular diseases (indicator of
atherosclerosis)

Difficulties in modeling blood flow
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Blood Rheology
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*

Blood flow interaction with

the vessel walls WSS = M(g_‘; )
s Complex Geometry Local flow dynamics has

an important role in the
systemic circulation (and vice-versa)
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Closed System

3D flow simulations
are restricted to specific
" regions of interest
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Blood Flow Dynamics

8LO0D RAEOLOGY

> Why is blood a non-Newtonian fluid ?

RBC aggregation Shear —Thinning

and viscosity
deformability

Other factors Whole Blood Ht=40%,

Haematocrit
Osmotic pressure
Plasma composition

Hardened RBC "Ht"=40%

Viscosity, c¢Ps

[
—

10 100

Shear Rate, 1/sec



Blood Flow Dynamics

B8LO0D RAEOLOGY

Viscosity depends on shear rate and vessel radius

Rouleaux aggregalon Fahraeus-Lindquist effect

X Capillary

Normal venule

—t S T PRT L SN

In small vessels (below 1Imm radii) red blood cells move
toward the central part of the vessel, and blood viscosity shifts
toward plasma viscosity (much lower)

Red blood cells aggregate as
in stack of coins




Blood Flow Dynamics

SLO0D RAEOLOGY
> Why is blood a non-Newtonian fluid ?

» Non-Linear Viscoelasticity <

| | Non-Linear Viscoelastic parameters
~+  Elastic behavior of RBC Creeping experimentally measured
~ (elongation and distortion) | Stress Relaxation e.g. with unsteady flow in

~* Formation and distortion capillary tube viscometers
Normal Stress

~ of the rouleaux
| | Effects

10 8 PO —— =%
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_ﬁ C —s—ELASTICITY |]

& g B =0 S Oscillatory and pulsatile
~ Haematocrit s B i flow analysis
~ Temperature s
~ Time (Thixotropy) T 10 =
i q © E . ) ) 3 . .
- Experimental factors s e | Viscoelastic effects are
~ Plasma viscosity | g “9, & " only substantial at low
: : @ - 3
: = shear rates
{ , £ 109 10! 10 2 103

Shear Rate (1/sec)

Fig. The shear rate dependence of normal
human blood at 2Hz and 2229C [Vilastic Sc. Inc]




Blood Flow Dynamics
SLO0D RFEOLOGY

Particles Simulation

surface shear lines

flow direction B

> Dissipative Particle Dynamics (DPD)

stochastic mesoscopic simulation technique

A. Gambaruto lateral view




Blood Flow Dynamics

8LO0D RFEOLOGY

Particles Simulation
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Blood Flow Dynamics

sSLO0D RAEOLOGY

Blood can also exhibit other non-Newtonian characteristics

*Thixotropy: Due to the finite time required for the formation and
breakdown of the rouleaux. It is a function of shear rate.

*Yield-Stress: Some experiments show that blood can resist shear,
behaving rigidly, until a critical level of stress is reached (the yield stress).
Above this value blood appears to flow like a fluid.

—— —_—
=S . 2 .




Constitutive Models

SFEAR-TFINNING BLOOD FLOW WIODELS:
EXPERIMIEENTAL PARAMIETERS

Model non Newtonian viscosity model constants for blood

Power-Law Y) = kA n=0.61,k = 0.42

no = 0.056 Pas, 1o, = 0.00345Pas
A = 5.383s

Powell-Eyring

no = 0.056 Pas, 1o = 0.00345Pas
A =1.007s,m = 1.028

Cross

no = 0.056 Pas, 1o, = 0.00345Pas

Modified Cross A = 3.736s,m = 2.406, a = 0.254

no = 0.056 Pas, n., = 0.00345Pas

Carreau A =3.313s,n = 0.3568

no = 0.056 Pas, s = 0.00345Pas

Carreau-Yasuda A=1.902s,n =0.22,a = 1.25

- (Y.I.Cho nd‘f( ense
. -.( : ~a
= - . 3\‘



Blood Flow Dynamics

More aoout ... BLO0OD RrEOLOGY

* A. Fasano, A. Sequeira. Hemomath — The Mathematics of Blood.

MS&A -Modeling, Simulation and Applications Series, Springer Verlag,
ISBN: 978-3-319-60512-8, 2017.

* Anne M. Robertson, Adélia Sequeira and Marina V. Kameneva. Hemorheology.
In: Hemodynamical Flows: Modeling, Analysis and Simulation, G. P. Galdi,

R. Rannacher, A. M. Robertson, S. Turek, Oberwolfach Seminars, Vol. 37,
pp.63-120, 2008.

* Anne M. Robertson, Adélia Sequeira and Robert Owens. Rheological models
for blood. In: Cardiovascular Mathematics, A. Quarteroni, L. Formaggia and

A. Veneziani (eds.), Springer-Verlag, 2009.
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Blood Flow Dynamics

Blood Flow: Generalized Newtonian fluid equations

rouleaux aggregation

o = hm w(y) = 0.056 Pa s

= lim p(¥) = 0.00345Pa s

y—o0

A=3.313s

n = (0.3568




Morphology of the Blood Vessels

Fibrocollagenous Tissue
Tunica

Fibrocollagenous Tissue Adventitia
with Extemnal Elastic Lamina

e

Tunica Fibrocolla genous Tissue

Intima Internal Elastic Lamina

-

Endothelium Smooth Muscle - Tunica Media

Mechanical model of the arterial
vessel: linear or non-linear elasticity v
in Lagrangian formulation

Biochemical

Mechanical interaction i i
echanical interactio interactions

(Fluid-wall coupling)
= — :&‘ o~

S




Mechanical Interaction - FSI

Equations for the deformation of the vessel wall

3D nonlinear hyperelasticity (Lagrangian formulation)

Zt - R3 —~ structure domain

== reference configuration

[
% FZ,out

ox' =T" Ul UL}

,ext 2,in

0 _ 10 0 0 0 == boundary of the reference
0L = Fa) UFZ,ext UFZ,in UFZ,out domain

e - — ~ o ——
= J = e

-

-~

D —— e -



Mechanical Interaction - FSI

3D nonlinear hyperelasticity (Lagrangian formulation)

0 inX’,Viel

== displacement vector

== wall density
w

0(77) — F(U)S(ﬂ) — ( I+ VOU)S(U) =~ first Piola-Kirchhoff tensor

gradient of deformation second Piola-Kirchhoff tensor
tensor




Mechanical Interaction - FSI

3D nonlinear hyperelasticity (Lagrangian formulation)

We consider a St Venant — Kirchhoff material for which S(n)=Atr(E)+2vE

Sis alinear function of E

Green-St Venant Stress tensor

E=E() = (FTF=1)=— (V) +V

/I(E,f), v(E,f) —— Lamé constants

(functions of the Young modulus and of the Poisson ratio)
EE o ES
(1+§)(1 25) | 2(1+§)




Mechanical Interaction - FSI

Equations for the deformation of the vessel wall

(Lagrangian formulation)

2

p. az? ~V,0(n)=0 inX’

n=n, fort=0, in >’

oan . an,
ot ot

—~~

o(n).n,=¢ on FZ}

fortr=0, inX’

o(n).n,=0 on I'?

2 .ext

(o(mn,)z,, onTY

+
compatibility
conditions

My _
Ot

&
interface conditions

0
u, onl,

(fixed structure)




Mechanical Interaction - FSI

ALE Formulation

The vessel wall should be in Lagrangian coordinates and the fluid in Eulerian coordinates

Q" Reference configuration for

h the fluid domain
i
i
!

o The motion of the fluid domain is
() described by the ALE map defined by

o v-*

0 A QY = Q)

I‘I ] I‘oul

Qo

A (R)=x(1,%), r€Q°

and the computational domain is recovered because Q' = A"(Q")

oA’
The velocity of the fluid domain is defined by w(t,x) = o

| —
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Mechanical Interaction - FSI

The FSI model — the fluid equations in the ALE frame

Remark: The ALE map is arbitrary. Itis
possible to define it using an harmonic
extension of the boundary domain, by solving

AA'=0, em Q'

Boundaries are fixed in the longitudinal direction, but A'=n em T
they freely move in the radial (and tangential) SA’
direction Al.n= O, T =0 em an U Ftom
on
- 9 . .
pa—”‘ + p(u—w.NV)u+Vp—2div(u()D@) =0 em Q'
!z
- divu=0 emQ'
interfacecond. em T, VYt E(0,T],

with initial condition u=1u,

=S . = .7

-




Blood Flow Simulations - FSI

Blood flow: Generalized Newtonian flow (ALE frame)

p(%—?%—(u—w)-VU)+Vp—V-‘r(u)=0 in Qy

V-u=0 ian

2u()D(w) in

u = blood velocity

w = domain velocity
p = pressure

pr = density

M = viscosity

n = wall displacement

+ initial and boundary
conditions at I; (i=0,1,2)




Blood Flow Simulations - FSI

Interface conditions

Viel, atT"

on)-n=—pn+t(u)-n, Vtel, at T"

l using the Piola transform

—(detVym)z(u, p)(Vy n)-n, =o(n)-n,, Vtel, on I'

Boundary conditions in [I;



Blood Flow Simulations - FSI

Blood.: Deformation of the Vessel Wall:
Newtonian or non-Newtonian fluid 3D (nonlinear) elasticity or 2D shell type
models

Displacement (new domain)

=

Normal stresses

implicit coupling
(iterative procedure)

Well posedness of the FSI problem Devise efficient numerical algorithms
Contributions given by e.g. : D.Coutand, Contributions given by e.g. : P. le Tallec,
S. Shkoller, Y.Maday, C.Grandmont, F.Nobile, M.A.Fernandéz, M.Moubachir,
B.Desjardins, M.Esteban, G.P. Galdi, J-F.Gerbeau, S.Deparis, W.A.Wall,
H.Beirdo da Veiga, S. Canic, among others among others

N . .5
- N L



Mechanical Interaction - FSI

Regularity Assumptions:

is an open connex domain
is locally Lipschitz

=—— satisfies the cone property (to apply the Korn inequality)

0 t
F?EH () u(t) e H'(QY),Vt




Mechanical Interaction - FSI

An Energy Estimate for the Coupled Problem
[A. Moura, A. S, , J. Janela, 2009 — generalization of L. Formaggia, A. Moura, F. Nobile, 2007 ]

p.,.|[on]|[ - 2 A
+ e LZ(ZO)+u(7)HE(n) iy 5 IPEGD)

2 2

E(?) = gHu

L2(Q") L2 (=)

Theorem: The coupled FSI problem, with homogeneous Dirichlet BC at the boundary
Tl ke satisfies the following energy inequality

out

di(E(t)) +2u, HD(u)H;(Q,) <0 and, therefore, the energy decay
!

where E(0) is a constant that only depends on the

t
E(t) + 2/100_““D(u) ;(Q,) usS90)]  initial data
(0]



Blood Flow Simulations - FSI

FSI Algorithm: (adapted from Fernandéz & Moubachir, 2005)

ALE formulation to account for the evolution of the
computational domain

Efficient solvers for each fluid and structure subproblems to ensure
accurate and fast convergence of the FSI nonlinear coupled system

Fluid equations: Discretization in time: implicit Euler scheme
Discretization in space:Stabilized P1 buble / P1 FE

Structure equations: Discretization in time: mid-point Newmark method

Discretization in space: P1 FE

Coupling strategy: fully implicit coupling based on a Newton
algorithm with the exact computation of the Jacobian

— — — " -— [ — . _—— —
~ . W Ee S, =S e
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Blood Flow Simulations - FSI

® Solve the whole problem simultaneously (monolithic approach):

- Pros: no stability issue !
- Cons: huge system, develop a new solver

® Use independent solvers for fluid and structure (partitioned approach):
- Pros: re-usability of state of the art algorithms, easy to change solvers
- Cons: possible troubles with the coupling algorithms

e Important remark: in the partitioned approach, we have the choice

Strong coupling: sub-iterations per time step (no spurious energy)
&d The results are the same as for the monolithic approach !

- Weak coupling: 1 or 2 iterations per time step (possible spurious energy)
&d Possible source of instabilities (due to the added-mass effect)

—— o~ — N -— - P —~—
\_‘.‘Vm LXK wu_ e
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Geometrical Multiscale

2

| BF— & *Global features have influence
' ; f e on the local fluid dynamics
§— A ’ s »
e / 4 e Local changes in geometry or
1 =18 .":‘_'_T . .
. material properties (e.g. due to
A2 27 21 j;

surgery, aging, stenosis, ...) may
induce pressure waves reflections
=>» global effects

Modeling strategy

® use the expensive 3D model
only in the region of interest

* couple with network models
that include peripheral
impedances to account for
global effects




Geometrical Multiscale

Allows to take into account

RIGHT SIDE LEFT SIDE
the global circulation in
d%so G; D
31

Crdza__ 26 25 (3N localized simulations and set
‘f\m proper boundary conditions

3D

= Very detailed simulations
= Very complex
= Computationally very costly

1D

= Evolution of mean pressure and flux in
arteries

= System of hyperbolic equations

= Low computational cost

0D

= Evolution in time of mean pressure and flux
in wide compartments

= System of ODEs

= Very low computational cost




Geometrical Multiscale

1D Model

* Describes the wave propagation nature 04 90
—+—==0
of blood flow of Oz
* Allows for the simulation of complex 3 QZ
arterial networks! o—| — |+
dz\ A

P—P =¥(A)

Domain decomposition

K=8mu => friction parameter

X 9 Coriolis coefficient

(initial terms are negligible and elastic stresses in the
radial direction are dominant)

Area —> S
Flux, —— [LERENRNRCRV T

QNZ(z)

L /(- )~ x,t)d
Pressure |2(z)|m-£(_,)p( dy



Geometrical Multiscale

The 3D (FSI) - 1D Coupling

At the coupling interface we impose the continuity of the:

= Flux:

=» Normal stress:

—1"n= pn+§|u i n—Z,LL()'/)D(u).n:(ﬁID +§|L_11D |2]n

Homogeneous Neumann
conditions on the structure
at the interface gives a flow rote

stable coupling ~— 7




Geometrical Multiscale

Absorbing Boundary Conditions
The 3D - 1D Coupling:
[ +] Allows to integrate 3D (FSI) models into lower order (1D) models that can

represent large parts of the vascular system

[ +] Acts as physiological boundary condition, partially filtrating spurious pressure
wave reflections

[ -] If the 1D hyperbolic problem is solved explicitly, a CFL condition imposes a
time step much smaller than the one required by the 3D FSI algorithm

[ -1 May be impossible or nontrivial to implement in many widely used commercial
CFD codes

IDEA: To impose a condition on the characteristic variable [/A(857=1| directly on the
3D FSI model [Janela, Moura, Sequeira, 2010]

= T
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Geometrical Multiscale

3D model (spurious reflections)

(A. Moura)

pressure
5.000e+03
3.625¢+03
2.250e+03
8.750e+02

-5.000e+02

3D-1D coupled model

pressure

5.000e+03
3.621e+03
2241e+03
8.622e+02

-5.171e+02




Geometrical Multiscale




Geometrical Multiscale

0D Model

0D Lumped parameters (system of linear ODE’ s)

dP;, __
C = —(Qix1— Q)
dQ; _—
LG = —(P = Pi_1) - RQ;
Fluid dynamics Electrical circuits
Pressure Voltage
Flow rate Current
$ Blood viscosity Resistance R
: Blood inertia Inductance L
L Wall compliance Capacitance C
) 4
—= ke - * RLC circuits model “large” arteries
— C * RC circuits account for capillary bed

» Can describe compartments
(such as peripheral circulation)




Geometrical Multiscale

A full geometric multiscale model: 0D-1D-2D (or 3D) coupling
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Clinical Study

Simulation-Based
Medicine

Computational
Hemodynamics of
Cerebral Aneurysms



Cerebral Aneurysms

Can CFD help in prognosis and therapy planning?

» Cerebral aneurysms are arterial dilations with a non uniform
distribution: they are typically found at specific points of the arterial
system, namely in the apex of and at the outer bands of

in and near the Circle of Willis

* In case of rupture they are the most common cause of

* There are typically no symptoms until rupture

« The mechanisms behind the development, growth and rupture of
intracranial aneurysms are still not well understood

» A better understanding of these processes can lead to better patient
evaluation and treatment




Correlation with Hemodynamics

+Two factors associated with increased risk for development of cerebral aneurysms
alter the geometry of the vessels (and hence the flow): Asymmetry of the Circle
of Willis and Cerebral atherosclerosis.

* Hypertension alters load on vessel and is associated with both increased
development and rupture.

Main Goal
An extensive analysis of personalized clinical data and computer simulations (CFD) to study the

possible relations between morphology, hemodynamics and the risk for development and
rupture of cerebral aneurysms, helping to improve its evaluation & treatment.




Cerebral Aneurysms - Treatment

Clipping Coiling Balloon and
= : stent assisted coiling

Clip applied to
neck of aneurysm

Balloon assisted
Onyx embolization -

=S . .5



Cerebral Aneurysms — Multi-Factorial Problem

HEMODYNAMICS / N
low WSS endothe!lal Pl remodeling } |nt'|mal. genetics
dysfunction thickening gender, age
smoking
high WSS excess N-O L degener§t|ve wall history of §AH
apoptosis remodeling weakness hypertension
g — -
( ANEURYSM \
stabilization

\4

initiation growth

rupture
\ J

( PERI-ANEURYSMAL ENVIRONMENT \

BIOMECHANICS
growth & sharp increased wall
stress remodeling contacts stress injury
.
smooth extra structural [ .
( stabilization
| contacts || support
= 4




A Case Study: From Medical Imaging to CFD

hemodynamics modeling

V-u =0

p(g—:+u-Vu> =-Vp+V.71

image acquisition
CTA - Circle of Willis

Image processing flow solution
& &
geometry modeling  mesh generation visualization



A Case Study: From Medical Imaging to CFD

* voxel resolution of
0.8 mm size

5123 grid

Rotational CTA

Maximum intensity projections

=S . 2 7




Medical Imaging and Virtual Model

Reconstruction

Extracted domain for numerical simulations

Vasculature in the neck (left www.netterimages.com) Cerebral arterial system
showing a saccular aneurysm located on the outer bend

] » constant treshold segmentation
Model reconstruction:

» marching tetrahedra algorithm for 3D surface extraction
» surface smoothing (200 iterations of the bi-Laplacian)

= .. -



http://www.netterimages.com

Outflow Boundary Conditions

Solving 3D-1D — Implicit coupling

4resS)
t \!
n+l 3D m\’“‘“‘ o

o

normal total stress (flux)

b 3D D

relaxed fux (relaxed normal total stress)
t
-1 s5)
Al stre 1D
X \“““m‘ o

flw

Schematic of the coupling with the 0D model (left) and the 1D model (centre)

Scheme of the explicit coupling between the 3D and 1D models (right)
- No slip: u=0 (neglect the side branch)

Four different outflow - Traction free
conditions analyzed -Coupling with a 1D model equivalent to the
for the side branches 3D side branch

-Coupling with a 0D resistance model based
on the 1D model

- S
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Software for Segmentation and Meshing

Automatic and manual segmentations - ITKSnap
http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage

Surface smoothing suitable for simulations — Meshlab
http://www.meshlab.net/

Creation of extensions — MeshMixer (geometry manipulation)
http://www.meshmixer.com/

Meshing — Gmsh (3D FE mesh generator)
http://gmsh.info/



http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
http://www.meshlab.net/
http://gmsh.info/
http://www.meshmixer.com/

Hemodynamics Parameters - Velocity

Pic of systole

Mid of diastole

End of diastole
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/" Blood: incompressible Newtonian

fluid

Density: p=1.056x103 g/mm?
Kinematic viscosity: v =3.267 mm? /s
Time step: 1x1073

3 cardiac cycles were computed using 800 time-

steps per cycle /
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Offline post-processing
with ParaView
https://www.paraview.org/
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https://www.paraview.org/

Hemodynamics Parameters — WSS

Pic of systole

Mid of diastole

Mid of diastole
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Other Hemodynamics Indicators

TAWSS =
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ce mat TECNICO LISBOA
center for computational ENUMATH 2023

and stochastic mathematics

European Conference on Advanced
Mathematics and Numerical Applications

meets Lisbon
https://enumath2023.com/

ENUMATH 2021 has been canceled due to the COVID-19 Pandemic and postponed to September 4-8, 2023.
It will take place in Lisbon, at the IST. (April 30 — deadline for submission of abstract proposals for

Contributed Talks and Poster Presentations) ENUMATHZ &
2023
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Organizing Committee :
Adélia Sequeira (Chair) — IST and CEMAT, Univ. Lisbon -
Ana Silvestre (Co-Chair) — IST and CEMAT, Univ. Lisbon b v
Jorge Tiago — IST and CEMAT, Univ. Lisbon e gy w
Telma Guerra — IPSetubal and CEMAT, Univ. Lisbon

Jodo Janela — ISEG, Univ. Lisbon

Marilia Pires — Univ. Evora
SV|Ien S. Valtchev IPLeiria and CEMAT Univ L|sbon

José A. Carrillo de la Plata (University of Oxford, UK)
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* Luis O. Silva (IST, University of Lisbon, Portugal)
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Alessandro Veneziani (University of Emory, USA)
Sara Zahedi (KTH, Stockholm, Sweden)

Local Organizers:
« Adéli ira (Chair
= Ana i
o

g 4;‘
SoAZ!
Naha &

";.:\\\ 1) uisson | e




=]
-rooNOWOT®

5.45x1072

m
n (]
- O ©
<

2.1 s WSS [dyn/cm™2]

Time=

&Gy
5.0e-03
4.0e-03
3.0e-03
2003
1003
0.0e+00

=
1.3516E+04

1.0114E+04

———
6.7125E+03

3.3107E+03

| u
-9.1030E+01




