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Why do we need math in medicine???

•    Complex biological processes and relations between them, usually involving 
many parameters

•    Mathematical modeling gives a tool to reduce the number of animal  
experiments by in silico modeling, or to make these tests (partially) obsolete

•    Mathematical modeling gives a predictive tool to the clinicians to quantify 
the impact of treatment  

•    After building hypotheses, validation through clinical results is needed 
as well as a quantitative description

• Major issue is that most parameters are patient-specific, which requires 
the involvement of uncertainty assessment



CARDIOVASCULAR MATHEMATICS IN CLINICS

•    Cardiovascular diseases are the leading causes of death in developed 
countries

•    Modeling and simulations of blood flow behavior and the applied 
stresses help to: 

•Understand several diseases – prediction (diagnosis  & treatment)
•Optimize surgical procedures
•Design medical devices

New challenge:
Combining mechanism-driven models (e.g. based on physics and physiology) 
and data-driven models (e.g. based on machine learning and artificial 
intelligence) to analyze large and diverse datasets while attaining cause-to-
effect interpretability



Atherosclerosis 

• Accumulation of fatty materials, fibrous 
elements and calcium in the intima of the 
arteries

Causes:

•LDL - Cholesterol
•High blood pressure
•Smoking

CARDIOVASCULAR DISEASES
Consequences:

• Vessel narrowing
• Heart attack
• Stroke



Aneurysms

• Gradual dilation of arterial segments

•  Consequences: 

•  Vessel stretches and becomes 
thinner 

• They can rupture causing 
hemorrhage 

CARDIOVASCULAR DISEASES

Stents

Aneurysm Clipping
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Peak systole Mid-deceleration phase Late diastole

BAV patient : mild AR BAV patient :   severe AR

AORTOPATHIES IN
BAV PATIENTS



Personalized numerical approach to disease diagnosis

Lab, animal and 
clinical studies 



Historical Remarks

Hemodynamics – study of blood flow in the circulatory system

• The importance of blood for life has been very clear since the old times with many 
implications at religious level

• For instance, Egyptians had great familiarity with the inside of the human body through 
the practice of mummification

• Egyptians and Mesopotamians certainly practiced bloodletting as a therapy for numerous 
illnesses

� In 1742, Leonhard Euler (1707-1783) presented the “Principles for 
determining the motion of the blood through arteries”. This is the first  
known work on the mechanics of flows in elastic tubes, in which 
Euler applied his equations to analyze the flow of blood through 
arteries, driven by a piston pump simulating the heart. Euler is 

considered the “father of Hemodynamics”

• The modern understanding of the circulatory system starts with the work of William 
Harvey (1578-1657) – publication of his seminal work in 1628

• Giovanni Borelli (1608-1679) studied the contraction of the heart 
and its interaction with the arteries and is seen by many as the 

“father of Bioengineering”



Historical Remarks



Motivation

Mathematical Modeling and Simulation of the Human 
Cardiovascular System

Motivation:

Hemodynamics vs cardiovascular diseases: local fluid patterns and wall shear stress 
are strictly related to the development of cardiovascular diseases (indicator of 
atherosclerosis)

Ø Difficulties in modeling blood flow

v Blood Rheology

v Blood flow interaction with      
the vessel walls

v Complex Geometry

v Closed System 3D flow simulations
are restricted to specific
regions of interest

Local flow dynamics has
an important role in the
systemic circulation (and vice-versa)



Blood Flow Dynamics

Shear –Thinning
viscosity

Main Factors:
RBC aggregation 
and
deformability

Ø Why is blood a non-Newtonian fluid ?Ø

Haematocrit
Osmotic pressure

Plasma composition

Other factors

BLOOD RHEOLOGY



Blood Flow Dynamics

BLOOD RHEOLOGY

Main Factors:

Viscosity depends on shear rate and vessel radius 

Red blood cells aggregate as 
in stack of coins

In small vessels (below 1mm  radii) red  blood cells move 
toward the central part of the vessel, and blood viscosity shifts 
toward plasma viscosity (much lower)

Fåhraeus-Lindquist effectRouleaux aggregation



Blood Flow Dynamics

BLOOD RHEOLOGY

Main Factors:

Ø Why is blood a non-Newtonian fluid ?

� Non-Linear Viscoelasticity �

Non-Linear 
Creeping
Stress Relaxation
Normal Stress 
Effects

Sources of Viscoelastic 
Behavior:

Viscoelastic parameters
experimentally measured 
e.g. with unsteady flow in 
capillary tube viscometers

• Elastic behavior of RBC
(elongation and distortion)
• Formation and distortion 
of the rouleaux

Oscillatory and pulsatile
flow analysisHaematocrit

Temperature
Time (Thixotropy)
Experimental factors
Plasma viscosity
………………..

Ø

Viscoelastic effects are 
only substantial at low 
shear rates

Fig. The shear rate dependence of normal 
human blood  at 2Hz and 22ºC [Vilastic Sc. Inc]



Ø Dissipative Particle Dynamics (DPD) Ø

Particles Simulation

A. Gambaruto

Blood Flow Dynamics
BLOOD RHEOLOGY

stochastic mesoscopic simulation technique



A. Gambaruto

Particles Simulation

Blood Flow Dynamics

BLOOD RHEOLOGY



Blood Flow Dynamics

BLOOD RHEOLOGY

Main Factors:
Blood can also exhibit other non-Newtonian characteristics

•Thixotropy: Due to the finite time required for the formation and
breakdown of the rouleaux. It is a function of shear rate.

•Yield-Stress: Some experiments show that blood can resist shear, 
behaving rigidly, until a critical level of stress is reached (the yield stress). 
Above this value blood appears to flow like a fluid. 



Constitutive Models

Main Factors:

SHEAR-THINNING BLOOD FLOW MODELS: 
EXPERIMENTAL PARAMETERS 

(Y.I.Cho and K.R.Kensey, Biorheology, 1991)



Blood Flow Dynamics

More about … BLOOD RHEOLOGY

• A. Fasano, A. Sequeira. Hemomath – The Mathematics of Blood. 
MS&A -Modeling, Simulation and Applications Series, Springer Verlag, 
ISBN: 978-3-319-60512-8, 2017.

• Anne M. Robertson, Adélia  Sequeira and Marina V. Kameneva. Hemorheology. 
In: Hemodynamical Flows: Modeling, Analysis and Simulation,  G. P. Galdi,  
R. Rannacher,  A. M. Robertson, S. Turek, Oberwolfach Seminars, Vol. 37, 
pp.63-120, 2008.

• Anne M. Robertson, Adélia  Sequeira and Robert Owens. Rheological models 
for blood. In: Cardiovascular Mathematics, A. Quarteroni, L. Formaggia and
A. Veneziani (eds.), Springer-Verlag, 2009.



Blood Flow Dynamics

Main Factors:

Blood Flow: Generalized Newtonian fluid equations

rouleaux aggregation

shear-thinning viscosity Carreau model



Morphology of the Blood Vessels

Main Factors:

Mechanical model of the arterial 
vessel: linear or non-linear elasticity 
in Lagrangian formulation

Mechanical interaction
(Fluid-wall coupling)

Biochemical 
interactions



Equations for the deformation of the vessel wall
3D nonlinear hyperelasticity (Lagrangian formulation)
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structure domain

reference configuration
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Mechanical Interaction - FSI



3D nonlinear hyperelasticity (Lagrangian formulation)
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Mechanical Interaction - FSI



3D nonlinear hyperelasticity (Lagrangian formulation)
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Mechanical Interaction - FSI

We consider a St Venant – Kirchhoff material for which
S is a linear function of E
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Mechanical Interaction - FSI



ALE Formulation

Mechanical Interaction - FSI

The vessel wall should be in Lagrangian coordinates and the fluid in Eulerian coordinates

and the computational domain is recovered because Ωt = At (Ω0 )

Ω0 Reference configuration for 
the fluid domain

The motion of the fluid domain is 
described by the ALE map defined by

At (x̂) = x(t, x̂), x̂ ∈Ω0

At :Ω0 →Ωt

The velocity of the fluid domain is defined by w(t, x) = ∂A
t

∂t



The FSI model – the fluid equations in the ALE frame

Mechanical Interaction - FSI

z

Ωη

w

t

Γ
t

in

Γ
w

Ω0

Γ
t

a

0Γ

t

ρ
∂u
∂t x̂

+ ρ(u−w.∇)u+∇p− 2div(µ( !γ )D(u)) = 0 emΩt

div u = 0 emΩt

interface cond. em Γw
t

Δ At = 0, em Ωt

At =η em Γw
t

At. n = 0, δAt

δn
. τ = 0 em Γin

t ∪Γout
t

Remark: The ALE map is arbitrary.  It is 
possible to define it using an harmonic 
extension of the boundary domain, by solving

Boundaries are fixed in the longitudinal direction, but 
they freely move in the radial (and tangential) 
direction

∀t ∈ (0,T ],

with initial condition u = u0



Blood Flow Simulations - FSI

Blood flow:  Generalized Newtonian flow (ALE frame)

Deformation of the vessel wall

Interface conditions

u = blood velocity
w = domain velocity
p = pressure
ρf = density
μ = viscosity
η = wall displacement

+ initial and boundary
conditions at Γi (i=0,1,2)
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Blood Flow Simulations - FSI

Interface conditions
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Blood Flow Simulations - FSI

Blood: 
Newtonian or non-Newtonian fluid

Deformation of the Vessel Wall: 
3D (nonlinear) elasticity or 2D shell type
models

Normal stresses

Interface conditions

Displacement (new domain)

Open problems:
Well posedness of the FSI problem

Contributions given by e.g. : D.Coutand,
S. Shkoller, Y.Maday, C.Grandmont, 

B.Desjardins, M.Esteban,  G.P. Galdi, 
H.Beirão da Veiga, S. Canic, among others

Devise efficient numerical algorithms

Contributions given by e.g. : P. le Tallec,
F.Nobile, M.A.Fernandéz, M.Moubachir,

J-F.Gerbeau, S.Deparis, W.A.Wall,
among others

implicit coupling
(iterative procedure)



Regularity Assumptions:
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Mechanical Interaction - FSI



An Energy Estimate for the Coupled Problem
[ A. Moura, A. S, , J. Janela, 2009 – generalization of L. Formaggia, A. Moura, F. Nobile, 2007 ]
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Mechanical Interaction - FSI



Blood Flow Simulations - FSI

FSI   Algorithm: (adapted from Fernandéz & Moubachir, 2005)

Coupling strategy:  fully implicit coupling based on a  Newton 
algorithm with the exact computation of the Jacobian

Efficient solvers for each fluid and structure subproblems to  ensure
accurate and fast convergence of the FSI nonlinear coupled system

ALE formulation to account for the evolution of the
computational domain

Fluid equations: Discretization in time: implicit Euler scheme
Discretization in space:Stabilized P1 buble / P1  FE

Structure equations: Discretization in time:  mid-point Newmark method

Discretization in space:  P1  FE



Blood Flow Simulations - FSI

Implementation issues

• Solve the whole problem simultaneously (monolithic approach):
- Pros: no stability issue !
- Cons: huge system, develop a new solver

• Use independent solvers for fluid and structure (partitioned approach):
- Pros: re-usability of state of the art algorithms, easy to change solvers
- Cons: possible troubles with the coupling algorithms

• Important remark: in the partitioned approach, we have the choice

- Strong coupling: sub-iterations per time step (no spurious energy)
➡ The results are the same as for the monolithic approach !

- Weak coupling: 1 or 2 iterations per time step (possible spurious energy)
➡ Possible source of instabilities (due to the added-mass effect)



Geometrical Multiscale

Modeling strategy

• use the expensive 3D model
only in the region of  interest

• couple with network models
that include peripheral 
impedances to account for
global effects

•Global features have influence 
on the local fluid dynamics

• Local changes in geometry or 
material properties (e.g. due to 
surgery, aging, stenosis, …) may 
induce pressure waves reflections
è global effects



Geometrical Multiscale

§ Very detailed simulations
§ Very complex
§ Computationally very costly

§ Evolution in time of mean pressure and flux 
in wide compartments

§ System of ODEs
§ Very low computational cost

0D

3D

§ Evolution of mean pressure and flux in 
arteries

§ System of hyperbolic equations
§ Low computational cost

1D

Allows to take into account
the global circulation in

localized simulations and set
proper boundary conditions
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• Describes the wave propagation nature 
of blood flow

• Allows for the simulation of complex 
arterial networks!

Domain decomposition 
  

∂A
∂t

+ ∂Q
∂z

= 0

∂Q
∂t

+α ∂
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Q2

A
⎛
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⎞
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ρ
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1D Model

Area

Flux

Mean
Pressure

K = 8πµ friction parameter

(initial terms are negligible and elastic stresses in the
radial direction are dominant)

Geometrical Multiscale

Coriolis coefficient∝



Geometrical Multiscale

The 3D (FSI) - 1D Coupling

At the coupling interface we impose the continuity of the: 

è Flux: 

è Normal stress: 

Q3D = u.ndγ
Γ3D
∫ = Q1D

   
−τ tot .n = pn + ρ

2
| u |2 n − 2µ( !γ )D(u).n = p1D + ρ

2
| u1D |2

⎛
⎝⎜

⎞
⎠⎟

n

Homogeneous Neumann 
conditions on the structure
at the interface gives a 
stable coupling 



Geometrical Multiscale

Absorbing Boundary Conditions

The 3D - 1D Coupling:

[ + ]   Allows to integrate 3D (FSI) models into lower order (1D) models that can 
represent large parts of the vascular system

[ + ]  Acts as physiological boundary condition, partially filtrating spurious pressure 
wave reflections

[ - ]  If the 1D hyperbolic problem is solved explicitly, a CFL condition imposes a 
time step much smaller than the one required by the 3D FSI algorithm

[ - ]  May be impossible or nontrivial to implement in many widely used commercial 
CFD codes

: To impose a condition on the characteristic variable                         directly on the 
3D FSI model   [Janela, Moura, Sequeira, 2010]

W2 (Q, p) = 0



Geometrical Multiscale

3D-1D for a cilindrical artery: pressure pulse

(A. Moura)

3D model (spurious reflections) 3D-1D coupled model



Geometrical Multiscale

3D-1D for the carotid bifurcation: velocity field

(A. Moura)



Geometrical Multiscale

0D Lumped parameters (system of linear ODE’s)

• RLC circuits model “large” arteries
• RC circuits account for capillary bed
• Can describe compartments 

(such as peripheral circulation)

The analogy

Fluid dynamics Electrical circuits
Pressure Voltage

Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C

0D Model



Geometrical Multiscale

A  full geometric multiscale model: 0D-1D-2D (or 3D)  coupling



Clinical Study

Simulation-Based 
Medicine

Computational 
Hemodynamics of 

Cerebral Aneurysms



Cerebral Aneurysms

Can CFD help in prognosis and therapy planning? 
• Cerebral aneurysms are arterial dilations with a non uniform 

distribution: they are typically found at specific points of the arterial   
system, namely in the apex of bifurcations and at the outer bands of  
curved segments in and near the Circle of Willis

• In case of rupture they are the most common cause of hemorrhagic 
strokes

• There are typically no symptoms until rupture

• The mechanisms behind the development, growth and rupture of 
intracranial aneurysms are still not well understood

• A better understanding of these processes can lead to better patient 
evaluation and treatment



Correlation with Hemodynamics

wTwo factors associated with increased risk for development of cerebral aneurysms
alter the geometry of the vessels (and hence the flow):  Asymmetry of the Circle 
of Willis and Cerebral atherosclerosis.

• Hypertension alters load on vessel and is associated with both increased 
development and rupture.

Main Goal
An extensive analysis of personalized clinical data and computer simulations (CFD) to study the     
possible relations between morphology, hemodynamics and the risk for development and 
rupture of cerebral aneurysms, helping to improve its evaluation & treatment. 



Cerebral Aneurysms - Treatment

Clipping Coiling Balloon and 
stent assisted coiling

Balloon assisted
Onyx embolization



Cerebral Aneurysms – Multi-Factorial Problem

wall
stress

growth &
remodeling

BIOMECHANICS

smooth
contacts

extra structural
support stabilization

sharp
contacts

increased
stress

wall 
injury

PERI-ANEURYSMAL ENVIRONMENT

low WSS

high WSS

endothelial
dysfunction remodeling intimal

thickening

excess NO
apoptosis

degenerative
remodeling

wall
weakness

HEMODYNAMICS

genetics
gender, age
smoking
history of SAH
hypertension

CLINICAL

initiation growth
stabilization

rupture

ANEURYSM



A Case Study: From Medical Imaging to CFD

image acquisition

image processing
&

geometry modeling mesh generation

hemodynamics modeling

flow solution
&

visualization

CTA - Circle of Willis



A Case Study: From Medical Imaging to CFD

• voxel resolution of 
0.8 mm size

• 5123 gridRotational CTA

Maximum intensity projections



Medical Imaging and Virtual Model 
Reconstruction

Vasculature in the neck (left www.netterimages.com) Cerebral arterial system 
showing a saccular aneurysm located on the outer bend

Model reconstruction:
Ø constant treshold segmentation

Ø marching tetrahedra algorithm for 3D surface extraction 
Ø surface smoothing (200 iterations of the bi-Laplacian)

Extracted domain for numerical simulations

http://www.netterimages.com


Outflow Boundary Conditions

Schematic of the coupling with the 0D model (left) and the 1D model (centre)

Scheme of the explicit coupling between the 3D and 1D models (right)

- No slip: u=0 (neglect the side branch)
- Traction free
-Coupling with a 1D model equivalent to the 
3D side branch
-Coupling with a 0D resistance model based 
on the 1D model 

Four different outflow 
conditions analyzed 
for the side branches

Solving 3D-1D – Implicit coupling



Software for Segmentation and Meshing

Automatic and manual segmentations - ITKSnap
http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage

Surface smoothing suitable for simulations – Meshlab
http://www.meshlab.net/

Meshing – Gmsh (3D FE mesh generator)
http://gmsh.info/

Creation of extensions – MeshMixer (geometry manipulation)
http://www.meshmixer.com/

http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
http://www.meshlab.net/
http://gmsh.info/
http://www.meshmixer.com/


Hemodynamics Parameters - Velocity

mm/s

Pic of systole Mid of diastole End of diastole Blood: incompressible Newtonian
fluid

Density: 𝜌=1.056x10-3 g/mm3

Kinematic viscosity: 𝜈 =3.267 mm2 /s
Time step: 1x10-3  

3 cardiac cycles were computed using 800 time-
steps per cycle
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39
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t=
0.

79
0 

s
Offline post-processing 
with ParaView
https://www.paraview.org/

https://www.paraview.org/


Pic of systole

Hemodynamics Parameters – WSS

WSS

20 Pa0

Mid of diastole

Mid of diastole

τW = t − (t. n) n



Other Hemodynamics Indicators
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ENUMATH 2023
European Conference on Advanced 

Mathematics and Numerical Applications

meets Lisbon

ENUMATH 2021 has been canceled due to the COVID-19 Pandemic and postponed to September 4-8, 2023. 
It will take place in Lisbon, at the IST. (April 30 – deadline for submission of abstract proposals for 
Contributed Talks and Poster Presentations)

https://enumath2023.com/

Organizing Committee
Adélia Sequeira (Chair) – IST and CEMAT, Univ. Lisbon
Ana Silvestre (Co-Chair) – IST and CEMAT, Univ. Lisbon
Jorge Tiago – IST and CEMAT, Univ. Lisbon
Telma Guerra – IPSetúbal and CEMAT, Univ. Lisbon
João Janela – ISEG, Univ. Lisbon
Marília Pires – Univ.  Évora
Svilen S. Valtchev – IPLeiria and CEMAT, Univ Lisbon




