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Bresse system I

☞ Bresse system is given by the following equations (Bresse 1959)
ρ1φtt = Qx + lN + F1,
ρ2ψtt =Mx −Q+ F2,
ρ1ωtt = Nx − lQ+ F3,

(1)

➠ φ: transverse displacement, ψ: shear angle displacement,
ω: longitudinal displacement, Fi: external forces

➠ N : axial force, Q: shear force, M : bending moment
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Bresse system II

with ρ1 = ρA, ρ2 = ρI and l = R−1, where
➠ ρ: density, A: cross-sectional area, I: second moment of area of

the cross-sectional area
➠ R: radius of curvature of the beam

☞ Constitutive relations:

Q = κ1 (φx + ψ + lω) , M = κ2ψx, N = κ3 (ωx − lφ) , (2)

where κ1 = kAG, κ2 = EI and κ3 = EA , such that
➠ E: Young modulus of elasticity
➠ G: modulus of rigidity
➠ k: transverse shear factor
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Bresse system III

☞ In the absence of heat effect, (1) and (2) yield the evolution Bresse
system ρ1φtt − κ1 (φx + ψ + lω)x − lκ3 (ωx − lφ) = F1,

ρ2ψtt − κ2ψxx + κ1 (φx + ψ + lω) = F2,
ρ1ωtt − κ3 (ωx − lφ)x + lκ1 (φx + ψ + lω) = F3.

(3)

☞ This system has been investigated by many researchers, using various
dampings, for example: Affilal, Guesmia and Soufyane ∗
Alabau-Boussouira, Muñoz Rivera and Almeida Júnior ∗ Alves, Fatori,
M. Jorge Silva and Monteiro Filippo Dell.Oro ∗ Keddi, Tijani and
Messaoudi ∗ Said-Houari and Soufyane ∗ Messaoudi and Hassan ∗
Guesmia ∗ Al-Arwadi, Messaoudi and Hassan ∗ Wehbe and Youssef
and many others.
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Summary of results

☞ In the presence of a linear frictional damping, viscoelastic or
Fourier heat acting on the shear equation, the exponential
stability is only obtained if the equal wave speeds hold:

ρ1
κ1

=
ρ2
κ2

and κ1 = κ3.

☞ If a linear frictional damping, viscoelastic or Fourier heat acting
on the transverse displacement, the exponential stability can be
obtained under appropriate relations between the parameters.

☞ If a linear frictional damping, viscoelastic or Fourier heat acting
on the longitudinal displacement equation, the exponential
stability cannot be obtained regardless to the parameters.
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Timoshenko system I

☞ If the curvature l is zero, (3) reduces to the well-known
Timoshenko system{

ρ1φtt − κ1 (φx + ψ)x = F1,
ρ2ψtt − κ2ψxx + κ1 (φx + ψ) = F2

(4)

and an independent wave equation

ρ1ωtt − κ3ωxx = F3.
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Timoshenko system II

☞ The same property was observed in the Timoshenko system (4);
namely in the presence of only damping, the exponential stability
holds if and only if

ρ1
κ1

=
ρ2
κ2
.

☞ For example: Akil, Chitour, Ghader and Wehbe ∗ Apalara,
Messaoudi and Keddi ∗ Tatar ∗ Jùnior, Santos and Rivera ∗
Messaoudi and Mustafa ∗ Messaoudi and Said-Houari ∗
Lasiecka et al and many others.
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Truncated Timoshenko system I

☞ From the Physics point of view, it was shown that Timoshenko
system (4) is characterized by two natural frequencies that yield
to a paradox known as the second spectrum.

☞ The rotatory inertia and shear deformation included in the
Timoshenko beam model lead to a hyperbolic equation with a
finite wave propagation velocity starting from the first spectrum
of natural frequencies.

☞ Nevertheless, the interaction of shear deformation and rotatory
inertia creates a second spectrum, which is a new frequency
range from which waves propagate at a lower frequency with
infinite velocity.
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Truncated Timoshenko system II

☞ This is a nonphysical condition for vibrating beams, of course,
and the second spectrum plays a significant role in the literature
on vibrating beam models.

☞ Over the years, a great deal of research has been done on this
topic. To deal with this paradox and eliminate the second
spectrum anomaly, other models have been proposed.

☞ In 2009, Elishakoff [1] proposed the following truncated form{
ρ1φtt − κ1 (φx + ψ)x = F1,
−ρ2φxtt − κ2ψxx + κ1 (φx + ψ) = F2.

(5)
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Truncated Timoshenko system III

☞ Under several damping terms, various stability results of system
(5) have been established irrespective of the system parameters.
For example:

➠ Almeida Júnior, Ramos and Freitas [2] looked into{
ρ1φtt − κ1 (φx + ψ)x + µφt = 0,
−κ2ψxx + κ1 (φx + ψ) = 0.

(6)

Discussed briefly the well-posedness.
Proved an exponential decay without imposing any relationship
between the coefficients.

12 / 66

101720
Highlight



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Truncated Timoshenko system IV

➠ Apalara et al. [3] considered the following thermoelastic
truncated Timoshenko system ρ1φtt − κ (φx + ψ)x = 0,

−ρ2φttx − bψxx + κ (φx + ψ) + γθx = 0,
ρ3θt − βθxx + γψxt = 0,

(7)

Discussed briefly the well-posedness.
Proved an exponential decay without imposing any relationship
between the coefficients.
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Truncated Timoshenko system V

➠ Keddi, Messaoudi and Alahyane [4] studied the system
ρ1φtt − κ (φx + ψ)x = 0,
−ρ2φttx − bψxx + κ (φx + ψ) + δθx = 0,
cθt + qx + δψxt = 0,
τqt + βq + θx = 0,

(8)

Established the well-posedness, using some nonclassical
techniques.
Proved an exponential decay without imposing any relationship
between the coefficients.
Provided some numerical illustrations.
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Truncated Timoshenko system VI

➠ Messaoudi, Keddi and Alahyane studied the system
ρ1φtt − k (φx + ψ)x = 0,

−ρ2φttx − bψxx + k (φx + ψ) + γ
(

τ2
q

2 θtt + τqθt + θ
)
x
= 0,(

τ2
q

2 θtt + τqθt + θ
)
t
− κ (τθθxt + θx)x + γθ0ψxt = 0,

(9)

Established the well-posedness, using some nonclassical
techniques.
Proved an exponential decay without imposing any relationship
between the coefficients.
Provided some numerical illustrations.

➠ See other works by Ahmima et al., Ben Moussa et al., Ramos et
al., Messaoudi and Keddi, Zougheib and El Arwadi, . . . .
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Truncated Bresse system I

☞ Taking into account the truncated shear beam model (6) and
considering the Bresse system as an extension of the
Timoshenko model, we consider the shear Bresse system:


ρ1φtt − κ1 (φx + ψ + lω)x − lκ3 (ωx − lφ) + βθx = 0,
−κ2ψxx + κ1 (φx + ψ + lω) = 0,
ρ3ωtt − κ3 (ωx − lφ)x + lκ1 (φx + ψ + lω) = 0,
cθt − κθxx + βφxt = 0,

(10)

in (0, L)× (0,∞), where ρ1, ρ3, κ1, κ3, b, c, l, β, κ are positive
constants.
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Truncated Bresse system II

☞ We take the following boundary conditions

φ (0, t) = φ (L, t) = ψx (0, t) = ψx (L, t) = 0,
ωx (0, t) = ωx (L, t) = θx (0, t) = θx (L, t) = 0,

for t ∈ [0,∞)

(11)

and the initial conditions

φ (x, 0) = φ0 (x) , ω (x, 0) = ω0 (x) ,
φt (x, 0) = φ1 (x) , ωt (x, 0) = ω1 (x) ,

θ (x, 0) = θ0 (x) ,
for x ∈ (0, L) . (12)
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Auxiliary system I

Before discussing the well-posedness of our problem, we introduce,
by eliminating ψ, the following auxiliary system


ρ1φtt − κ1B (φx + lω)x − lκ3 (ωx − lφ) + βθx = 0,
ρ3ωtt − κ3 (ωx − lφ)x + lκ1B (φx + lω) = 0,
cθt − κθxx + βφxt = 0,

(13)

with B is defined as follows:
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Auxiliary system II

B=I − κ1S
−1 = −κ2

(
S −1 ◦ ∂xx

)
,

where
S =− κ2∂xx + κ1I.
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Semigroup Setting I

Let us consider the following spaces

L2
∗ (0, L) =

{
u ∈ L2 (0, L) :

∫ L

0
u (x) dx = 0

}
,

H1
∗ (0, L) = H1 (0, L) ∩ L2

∗ (0, L) ,

H2
∗ (0, L) =

{
u ∈ H2 (0, L) : ux ∈ H1

0 (0, L)
}

and the Hilbert space

H = H1
0 (0, L)× L2 (0, L)×H1

∗ (0, L)× L2
∗ (0, L)× L2

∗ (0, L)

21 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Semigroup Setting II

equipped with the inner product

⟨U,U∗⟩H = ρ1 ⟨ϕ, ϕ∗⟩+ κ2κ1

〈
S − 1

2 (φx + lω)x ,S
− 1

2 (φ∗
x + lω∗)x

〉
+ρ3 ⟨w,w∗⟩+ κ3 ⟨(ωx − lφ) , (ω∗

x − lφ∗)⟩+ c ⟨θ, θ∗⟩ ,

for U = (φ, ϕ, ω, w, θ)T , U∗ = (φ∗, ϕ∗, ω∗, w∗, θ∗)T ∈ H .
Therefore, system (13) can be written in the operator form{

Ut = A U, ∀t > 0,

U (0) = U0 = (φ0, φ1, ω0, ω1, θ0)
T ,

(14)
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Semigroup Setting III

where the operator A : D (A ) ⊂ H → H is defined by

A U =


ϕ

−ρ−1
1 [−κ1B (φx + lω)x − lκ3 (ωx − lφ) + βθx]

w
−ρ−1

3 [−κ3 (ωx − lφ)x + lκ1B (φx + lω)]
−c−1 [−κθxx + βϕx]

 .

and

D (A ) =
[
H2 (0, L) ∩H1

0 (0, L)
]
×H1

0 (0, L)×
[
H2

∗ (0, L) ∩H1
∗ (0, L)

]
×H1

∗ (0, L)×
[
H2

∗ (0, L) ∩H1
∗ (0, L)

]
.
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Auxiliary well-posedness result I

Thus, we have the following existence and uniqueness result of the
auxiliary system (13) .

Theorem 1

For any initial data U0 ∈ H , the problem (14) has a unique weak
solution U ∈ C ([0,+∞) ;H ). Moreover, if U0 ∈ D (A ), then
U ∈ C ([0,+∞) ;D (A )) ∩ C1 ([0,+∞) ;H ).

Lemma 2
The operator A is dissipative.
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Auxiliary well-posedness result II

Proof.
For any U ∈ D (A ), using the inner product, the definition of the
operator B, the symmetry property of the operator S − 1

2 , we get

⟨A U,U⟩H = −κ
∫ L

0
θ2xdx ≤ 0,

Lemma 3
The operator A is maximal.
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Auxiliary well-posedness result III

Proof.
The application of the variational approach, the Lax-Milgram theorem
and the regularity theory for the linear elliptic equations guarantees
that the operator I − A is surjective.

Therefore, the result of Theorem 1 follows by Hille-Yosida theorem.
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Main well-posedness result I

Now, we return to the original problem. We introduce the Hilbert
space

H = H1
0 (0, L)×L2 (0, L)×H1

∗ (0, L)×H1
∗ (0, L)×L2

∗ (0, L)×L2
∗ (0, L)

and

D =
[
H2 (0, L) ∩H1

0 (0, L)
]
×H1

0 (0, L)×
[
H2

∗ (0, L) ∩H1
∗ (0, L)

]
×
[
H2

∗ (0, L) ∩H1
∗ (0, L)

]
×H1

∗ (0, L)×
[
H2

∗ (0, L) ∩H1
∗ (0, L)

]
.

Then, the main well-posedness result in this section is given by the
following theorem
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Main well-posedness result II

Theorem 4

For any initial data (φ0, φ1, ω0, ω1, θ0)
T ∈ H , the problem

(10)-(12) has an unique weak solution

(φ,φt, ψ, ω, ωt, θ) ∈ C ([0,+∞) ;H).

Moreover, if (φ0, φ1, ω0, ω1, θ0)
T ∈ D (A ), then

(φ,φt, ψ, ω, ωt, θ) ∈ C ([0,+∞) ;D) ∩ C1 ([0,+∞) ;H).
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Main well-posedness result III

Proof.
Let (φ,φt, ω, ωt, θ) be the solution of the problem 14. Considering
the results of Theorem 1 and defining ψ as a solution to the problem{

Sψ = −κ1 (φx + lω) ,
ψx (0) = ψx (L) = 0,

the desired result is achieved.
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Functionals and related lemmas
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Energy functional I

Lemma 5

The energy functional of system (10)− (12), given by

E (t) =
1

2

∫ L

0

[
ρ1φ

2
t + κ1 (φx + ψ + lω)2 + κ2ψ

2
x

+κ3 (ωx − lφ)2 + ρ3ω
2
t + cθ2

]
dx

satisfies, along the solution,

E′ (t) = −κ
∫ L

0
θ2xdx. (15)
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Functionals and related lemmas
Main theorem and short proof

Energy functional II

Proof.
Multiplying the four equations of system (10) by φt, ψt, ωt and θ,
respectively, integrating over (0, L), using integration by parts and the
boundary conditions (11), then adding the results at the end, we
obtain (15).
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Technical lemmas I

Lemma 6
Let (φ,ψ, ω, θ) be the solution of problem (10)− (12). Then, the
functional

F1 (t) = cρ1

∫ L

0

(∫ x

0
θ (y) dy

)
φtdx

satisfies, for any ε1 > 0, the estimate

F ′
1 (t) ≤ −βρ1

2

∫ L

0

φ2
tdx+ ε1

∫ L

0

(φx + ψ + lω)
2
dx

+l2ε1

∫ L

0

(ωx − lφ)
2
dx+m

(
1 +

1

ε1

)∫ L

0

θ2xdx, (16)

for some constant m > 0, independent of ε1 and l.
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Functionals and related lemmas
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Technical lemmas II

Lemma 7
Let (φ,ψ, ω, θ) be the solution of problem (10)− (12). Then, the
functional

F2 (t) = ρ1

∫ L

0
φt

(∫ x

0
(φx + lω) (y) dy

)
dx

satisfies the estimate

F ′
2 (t) ≤ −κ1

2

∫ L

0

(φx + ψ + lω)
2
dx− κ2

2

∫ L

0

ψ2
xdx+ l2

∫ L

0

ω2
t dx

+l2m

∫ L

0

(ωx − lφ)
2
dx+m

∫ L

0

φ2
tdx+m

∫ L

0

θ2xdx, (17)

for some constant m > 0, independent of l.
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Functionals and related lemmas
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Technical lemmas III

Lemma 8
Let (φ,ψ, ω, θ) be the solution of problem (10)− (12). Then, the functional

F3 (t) = −ρ1κ3
∫ L

0

φt (ωx − lφ) dx− κ1ρ3

∫ L

0

ωt (φx + ψ + lω) dx

satisfies, for any ε3 > 0, the estimate

F ′
3 (t) ≤ (κ3ρ1 − κ1ρ3)

∫ L

0

φxtωtdx− l
(
κ23 − ε3

) ∫ L

0

(ωx − lφ)
2
dx

+lε3

∫ L

0

ω2
t dx+ lm

(
1 +

1

l2ε3

)∫ L

0

φ2
tdx

+lκ21

∫ L

0

(φx + ψ + lω)
2
dx+

1

lε3
m

∫ L

0

θ2xdx, (18)

for some constant m > 0, independent of ε3 and l.
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Functionals and related lemmas
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Technical lemmas IV

Lemma 9
Let (φ,ψ, ω, θ) be the solution of problem (10)− (12). Then, the
functional

F4 (t) = −ρ3
∫ L

0
ωtωdx− ρ1

∫ L

0
φtφdx

−cβ
κ

∫ L

0
φ

(∫ x

0
θ (y) dy

)
dx− β2

2κ

∫ L

0
φ2dx

satisfies the estimate

F ′
4 (t) ≤ −ρ3

∫ L

0

ω2
t dx− ρ1

2

∫ L

0

φ2
tdx+ κ1

∫ L

0

(φx + ψ + lω)
2
dx

+κ3

∫ L

0

(ωx − lφ)
2
dx+ κ2

∫ L

0

ψ2
xdx+m

∫ L

0

θ2xdx, (19)

for some constant m > 0, independent of l.
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Functionals and related lemmas
Main theorem and short proof

Main theorem (Exponential decay) I

This part is devoted to establishing our exponential stability result.
Before that, we present some necessary results.

Proposition 10 (Gearhart-Herbst-Prüss-Huang Theorem)

Let T (t) = eAt be a C0-semigroup of contractions on a Hilbert
space. Then T (t) is exponentially stable if and only if

iR = {iλ, λ ∈ R} ⊂ ρ (A)

and
lim|λ|→∞

∥∥∥(iλI −A)−1
∥∥∥ <∞

hold.
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Main theorem (Exponential decay) II

The main result of this part is

Theorem 11

Let (φ,ψ, ω, θ) be the solution of problem (10)− (12). Then, the
energy functional E is exponentially stable if and only if
κ3ρ1 − κ1ρ3 = 0.
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Proof
① Assume that κ3ρ1 − κ1ρ3 = 0 and define the following

Lyapunov functional

L (t) = NE (t)+n1F1 (t)+n2F2 (t)+2l−1F3 (t)+κ3F4 (t)

where N and ni are positive constants.
❊ We choose carefully the constants εi, ni and N so that the

functional L satisfies
for two positive constants λ1 and λ2

λ1E (t) ≤ L (t) ≤ λ2E (t) ∀t ≥ 0. (20)

for some λ3 > 0,

L ′ (t) ≤ −λ3E(t). (21)

❊ we use (20) and (21) to easily find the first direction of proof.
39 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Functionals and related lemmas
Main theorem and short proof

Proof
① Assume that κ3ρ1 − κ1ρ3 = 0 and define the following

Lyapunov functional

L (t) = NE (t)+n1F1 (t)+n2F2 (t)+2l−1F3 (t)+κ3F4 (t)

where N and ni are positive constants.
❊ We choose carefully the constants εi, ni and N so that the

functional L satisfies
for two positive constants λ1 and λ2

λ1E (t) ≤ L (t) ≤ λ2E (t) ∀t ≥ 0. (20)

for some λ3 > 0,

L ′ (t) ≤ −λ3E(t). (21)

❊ we use (20) and (21) to easily find the first direction of proof.
39 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Functionals and related lemmas
Main theorem and short proof

Proof
① Assume that κ3ρ1 − κ1ρ3 = 0 and define the following

Lyapunov functional

L (t) = NE (t)+n1F1 (t)+n2F2 (t)+2l−1F3 (t)+κ3F4 (t)

where N and ni are positive constants.
❊ We choose carefully the constants εi, ni and N so that the

functional L satisfies
for two positive constants λ1 and λ2

λ1E (t) ≤ L (t) ≤ λ2E (t) ∀t ≥ 0. (20)

for some λ3 > 0,

L ′ (t) ≤ −λ3E(t). (21)

❊ we use (20) and (21) to easily find the first direction of proof.
39 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Functionals and related lemmas
Main theorem and short proof

Proof
① Assume that κ3ρ1 − κ1ρ3 = 0 and define the following

Lyapunov functional

L (t) = NE (t)+n1F1 (t)+n2F2 (t)+2l−1F3 (t)+κ3F4 (t)

where N and ni are positive constants.
❊ We choose carefully the constants εi, ni and N so that the

functional L satisfies
for two positive constants λ1 and λ2

λ1E (t) ≤ L (t) ≤ λ2E (t) ∀t ≥ 0. (20)

for some λ3 > 0,

L ′ (t) ≤ −λ3E(t). (21)

❊ we use (20) and (21) to easily find the first direction of proof.
39 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Functionals and related lemmas
Main theorem and short proof

Proof
① Assume that κ3ρ1 − κ1ρ3 = 0 and define the following

Lyapunov functional

L (t) = NE (t)+n1F1 (t)+n2F2 (t)+2l−1F3 (t)+κ3F4 (t)

where N and ni are positive constants.
❊ We choose carefully the constants εi, ni and N so that the

functional L satisfies
for two positive constants λ1 and λ2

λ1E (t) ≤ L (t) ≤ λ2E (t) ∀t ≥ 0. (20)

for some λ3 > 0,

L ′ (t) ≤ −λ3E(t). (21)

❊ we use (20) and (21) to easily find the first direction of proof.
39 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Functionals and related lemmas
Main theorem and short proof

Proof
② By contrast, if κ3ρ1 − κ1ρ3 ̸= 0, by using Proposition 10, we

can then show the lack of exponential stability thanks to the
following procedure: we show that there exists a sequence of real
values λn such that∥∥∥(iλnI − A)−1

∥∥∥
L (H)

→ +∞.

Indeed, there exists a sequence of vectors
Fn = (0, 0, 0, 0, fn, 0)

T ∈ H, where fn = ρ−1
3 cos

(
nπx
L

)
, and a

sequence of numbers λn ∈ R, where λ2nρ3 = κ3
(
nπ
L

)2
+ l2κ1,

with ∥Fn∥H <∞ such that∥∥∥(iλnI − A)−1 Fn

∥∥∥
H
= ∥Un∥H → +∞,

where Un ∈ D (A) be the solution of

(iλnI − A)Un = Fn. 40 / 66
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Main theorem (Polynomial decay) I

We assume κ3ρ1 − κ1ρ3 ̸= 0 and define the second-order energy
functional by

E (t) =
1

2

∫ L

0

[
ρ1φ

2
tt + κ1 (φx + ψ + lω)2t + κ2ψ

2
xt

+ρ3ω
2
tt + κ3 (ωx − lφ)2t + cθ2t

]
dx.

As in the proof of Lemma 5, it follows that E satisfies

E ′ (t) = −κ
∫ L

0
θ2xtdx. (22)
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Main theorem (Polynomial decay) II

Here, with the same notations and Lemmas of the previous section,
we define the Lyapunov functional L̃ (t) as follows

L̃ (t) = N (E (t) + E (t)) + n1F1 (t) + n2F2 (t)

+2l−1F̃3 (t) + βκ3F4 (t) ,

where

F̃3 (t) = βF3 (t) + κ (κ3ρ1 − κ1ρ3)

∫ L

0
θx (ωx − lφ) dx.
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Main theorem (Polynomial decay) III

The functional F̃3 satisfies, for any η > 0, the estimate

F̃ ′
3 (t) ≤ −lβκ23

∫ L

0
(ωx − lφ)2 dx+ lη

∫ L

0
(ωx − lφ)2 dx

+lη

∫ L

0
ω2
t dx+ lβκ21

∫ L

0
(φx + ψ + lω)2 dx

+lm

(
1 +

1

l2η

)∫ L

0
φ2
tdx+ lm

(
1 +

1

l2η

)∫ L

0
θ2xdx

+
m

lη

∫ L

0
θ2xtdx, (23)

for some constant m > 0, independent of η and l.
The main result of this part is given by
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Main theorem (Polynomial decay) IV

Theorem 12
Let (φ,ψ, ω, θ) be the strong solution of problem (10)− (12) and
assume that κ3ρ1 − κ1ρ3 ̸= 0. Then, the energy functional E satisfies

E (t) ≤ σ

t
, ∀t > 0, (24)

where σ is a positive constant.
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Proof
❊ We choose carefully the constants N,ni, ε1 and η so that the

functional L̃ (t) satisfies

L̃ (t) ≥ 0, ∀t ≥ 0.

for some σ0 > 0,

L̃ ′ (t) ≤ −σ0E (t) , ∀t > 0.

❊ Recalling that E is decreasing, we have

tE (t) ≤ L̃ (0)− L̃ (t)

σ0
≤ L̃ (0)

σ0
, ∀t > 0,

which implies the estimate of polynomial stability (24).
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Numerical scheme I

➥ Taking L = 1, we define the uniform partition of (0, 1) by
0 = x0 < x1 < · · · < xNh

= 1, denote the length of the interval
(xj , xj+1) by ∆x = 1

Nh
and define

P 1
h =

{
u ∈ H1

0 (0, L), u|Ii is a linear polynomial
}
.

➥ For the time discretization, we denote by ∆t = T
Nt

the step time,
where T is the total time and Nt is a positive integer.
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Numerical scheme II

The finite-element approximate system for (10) is to find φn
h, ψn

h , ωn
h ,

θnh , such that, for all ξh, ηh, ζh, χh ∈ P 1
h ,

ρ1

∆t (φ
n
ht − φn−1

ht , ξh) + κ1(φ
n
hx + ψn

h + lωn
h , ξhx)

−lκ3(ωn
hx − lφn

h, ξh) + β(θnhx, ξh) = 0,
κ2(ψ

n
hx, ηhx) + κ1(φ

n
hx + ψn

h + lωn
h , ηh) = 0,

ρ3

∆t (ω
n
ht − ωn−1

ht , ζh) + κ3(ω
n
hx − lφn

h, ζhx) + lκ1(φ
n
hx + ψn

h + lωn
h , ζh) = 0,

c
∆t (θ

n
h − θn−1

h , χh) + κ(θnx , χhx) +
β
∆t (φ

n
hx − φn−1

hx , χh) = 0.

with φn
ht = (φn

h − φn−1
h )/∆t and ωn

ht = (ωn
h − ωn−1

h )/∆t.
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Numerical scheme III

Then, the discrete energy is given by

En
h =

1

2

(
ρ1∥φn

ht∥22 + κ1∥φn
hx + ψn

h + lωn
h∥22 + κ2∥ψn

hx∥22
)

+
1

2

(
κ3∥ωn

hx − lφn
h∥22 + ρ3∥ωn

ht∥22 + c∥θnh∥22
)
.
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Numerical experiments I

By using the following initial conditions:

φ0(x) = 2 sin(πx), ψ0(x) = cos(πx), ω0(x) = cos(πx),
θ0(x) = cos(πx), φ1(x) = sin(π2x), ω1(x) = sin(π2x),

Two numerical tests are done for different entries as follow:

Test 1:

ρ1 = ρ3 = κ = κ1 = κ2 = c = β = 1, κ3 = 2, and l = 1
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Numerical experiments II

Test 2:

ρ1 = ρ3 = 1, κ = 0.5, κ1 = 1, κ2 = 1.5,

c = 2.3, β = 0.8, κ3 = 2, and l = 0.5
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Numerical experiments III

Figure 1: Damping cross section waves of Test 1
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Numerical experiments IV

Figure 2: Energy decay in natural and log scales for Test 1
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Numerical experiments V

Figure 3: Damping cross section waves of Test 2
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Numerical experiments VI

Figure 4: Energy decay in natural and log scales for Test 2
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Numerical experiments VII

Figure 5: The evolution in time of ln(Eh)
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Numerical experiments VIII

As a conclusion, for both tests, we observed that the numerical
solution converges to zero and the energy decay with different rates
seems to be reached which is compatible with the theoretical results.

58 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

Outline

1 Introduction

2 Existence and uniqueness of solutions

3 Exponential stability
Functionals and related lemmas
Main theorem and short proof

4 Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

5 Numerical approximation

6 Other Relevant results

59 / 66



Introduction
Existence and uniqueness of solutions

Exponential stability
Polynomial Stability (case κ3ρ1 − κ1ρ3 ̸= 0)

Numerical approximation
Other Relevant results

The shear Bresse system with Fourier’s law I

☞ Two additional related works have been documented:
➠ Keddi, Messaoudi and Alahyane [6] investigated a thermoelastic

shear Bresse system, where the heat conduction is modeled by the
Fourier’s law acting on the shear force:

ρ1φtt − κ1 (φx + ψ + lω)x − lκ3 (ωx − lφ) = 0,
−κ2ψxx + κ1 (φx + ψ + lω) + βθx = 0,
ρ3ωtt − κ3 (ωx − lφ)x + lκ1 (φx + ψ + lω) = 0,
cθt − κθxx + βψxt = 0.

(25)

Showed that the system is not exponentially stable.
Proved a polynomial decay of the solution in the case of the equal
speeds of wave propagation of the two hyperbolic equations.
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The shear Bresse system with Fourier’s law II

➠ Keddi, Chabekh and Messaoudi (submitted) studied the effect of
the thermal damping, where the coupling is via the axial
displacement equation:

ρ1φtt − k (φx + ψ + lω)x − lk0 (ωx − lφ) = 0,
−bψxx + k (φx + ψ + lω) = 0,
ρ3ωtt − k0 (ωx − lφ)x + lk (φx + ψ + lω) + βθx = 0,
cθt − κθxx + βωxt = 0.

(26)

Showed that the system is exponentially stable if and only if the
speeds of wave propogation of the hyperbolic equations are equal.
Established a polynomial decay in the case of nonequal speeds.
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The shear Bresse system with Fourier’s law III

Conclusion.
The stability of the one-dimensional linear shear thermoelastic Bresse
system, which consists of two hyperbolic equations and one elliptic
equation coupled with a heat equation of Fourier type, is intrinsically
linked to the coupling equation and the equality of the hyperbolic
wave speeds.
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The shear Bresse system with Fourier’s law IV

Summary

Equal Speed Non-equal Speed
Dissipation via transverse

displacement (First Equation) Exponential decay Polynomial decay

Dissipation via shear angle
(Second Equation) No exponential decay Open question

Only polynomial decay
Dissipation via longitudinal

displacement (Third
Equation)

Exponential decay Polynomial decay
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