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Introduction

Bresse system 1

1= Bresse system is given by the following equations (Bresse 1959)

p1p = Qz + IN + Fi,
P2ty = My — Q + Fo, (D)
prwie = Ny — 1Q + F3,

wp: transverse displacement, 1): shear angle displacement,
w: longitudinal displacement, F;: external forces
w [V axial force, (): shear force, M : bending moment

7T
)

.
» ~
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Introduction

Bresse system 11

with p1 = pA, py = pl and | = R~!, where
- p: density, A: cross-sectional area, I: second moment of area of
the cross-sectional area
v [?: radius of curvature of the beam

== Constitutive relations:
Q =K1 (3‘9:1‘, + 9+ ZUJ) 5 M = H2l/):r,7 N = K3 (UJCF - l@) ) (2)

where k1 = kAG, ko = EI and k3 = E'A , such that

w F: Young modulus of elasticity
m G modulus of rigidity
w k: transverse shear factor
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Introduction

Bresse system III

1= In the absence of heat effect, (1) and (2) yield the evolution Bresse
system

p1oee — K1 (o + 9P +lw), — lk3 (we — lp) = F1,
P2t — KoWze + K1 (o + 1 +lw) = Fy, (3)
prwee — K3 (we — lp), + 151 (9o + ¢ + lw) = F.

1 This system has been investigated by many researchers, using various
dampings, for example: Affilal, Guesmia and Soufyane *
Alabau-Boussouira, Mufioz Rivera and Almeida Junior * Alves, Fatori,
M. Jorge Silva and Monteiro Filippo Dell.Oro * Keddi, Tijani and
Messaoudi * Said-Houari and Soufyane *« Messaoudi and Hassan *
Guesmia * Al-Arwadi, Messaoudi and Hassan * Wehbe and Youssef
and many others.
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Introduction

Summary of results

1= In the presence of a linear frictional damping, viscoelastic or
Fourier heat acting on the shear equation, the exponential
stability is only obtained if the equal wave speeds hold:

1= [If a linear frictional damping, viscoelastic or Fourier heat acting
on the transverse displacement, the exponential stability can be
obtained under appropriate relations between the parameters.

1= If a linear frictional damping, viscoelastic or Fourier heat acting
on the longitudinal displacement equation, the exponential
stability cannot be obtained regardless to the parameters.
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Introduction

Timoshenko system |

v= If the curvature [ is zero, (3) reduces to the well-known
Timoshenko system

{ Pl@tt_ffl (SDI—F/Q))J':FI’ (4)
P2y — Koay + K1 (pz + ) = Fy

and an independent wave equation

P1Wit — K3Wgg = 3.
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Introduction

Timoshenko system II

1= The same property was observed in the Timoshenko system (4);
namely in the presence of only damping, the exponential stability

holds if and only if
p_p
K1 ] .

1= For example: Akil, Chitour, Ghader and Wehbe * Apalara,
Messaoudi and Keddi * Tatar * Junior, Santos and Rivera
Messaoudi and Mustafa * Messaoudi and Said-Houari *
Lasiecka et al and many others.
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Introduction

Truncated Timoshenko system I

1= From the Physics point of view, it was shown that Timoshenko
system (4) is characterized by two natural frequencies that yield
to a paradox known as the second spectrum.

1= The rotatory inertia and shear deformation included in the
Timoshenko beam model lead to a hyperbolic equation with a
finite wave propagation velocity starting from the first spectrum
of natural frequencies.

1= Nevertheless, the interaction of shear deformation and rotatory
inertia creates a second spectrum, which is a new frequency
range from which waves propagate at a lower frequency with
infinite velocity.
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Introduction

Truncated Timoshenko system II

1= This is a nonphysical condition for vibrating beams, of course,
and the second spectrum plays a significant role in the literature
on vibrating beam models.

1= QOver the years, a great deal of research has been done on this
topic. To deal with this paradox and eliminate the second
spectrum anomaly, other models have been proposed.

1= In 2009, Elishakoff | 1 | proposed the following truncated form

{ P1Pt — K1 (@I‘f‘@)); :Fh (5)

—P2Pxtt — KoVe + K1 (S‘QL + l/)) = F.
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Introduction

Truncated Timoshenko system I1I

1= Under several damping terms, various stability results of system
(5) have been established irrespective of the system parameters.
For example:

m  Almeida Junior, Ramos and Freitas looked into

P1Ptt — K1 ((707" + uj).’li ar Hpr = 07 (6)
—KoWze + K1 (99:0 + l/}) = 0.

o Discussed briefly the well-posedness.
@ Proved an exponential decay without imposing any relationship
between the coefficients.
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Introduction

Truncated Timoshenko system IV

w  Apalara et al. [3] considered the following thermoelastic
truncated Timoshenko system

p1pw — K (pz + 1), =0,
—P2Ptta — bIQ)Jl;(lf + K (\}9:1: + U) + '7/9:1; - 0 (7)
/)3'9t - 3030:6 + ")L'Jut - 0:

o Discussed briefly the well-posedness.
@ Proved an exponential decay without imposing any relationship
between the coefficients.
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Introduction

Truncated Timoshenko system V

w Keddi, Messaoudi and Alahyane [4] studied the system

P1Ptt — K (99:17 + /lj/').’lﬁ = 07

—P2Pttr — gy + K (o + ) + 00, =0,
Cet + 4z + (5?/’:1:15 =0,

Tq + ﬁ(] + 0:1; - 05

®)

o Established the well-posedness, using some nonclassical
techniques.

@ Proved an exponential decay without imposing any relationship
between the coefficients.

@ Provided some numerical illustrations.
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Introduction

Truncated Timoshenko system VI

w Messaoudi, Keddi and Alahyane studied the system

prow — k (z + w)m =0,
2
—P2Ptte — b/ly‘b,’l‘,,’l; +k (99.’1: + U) + Y (%ett + qut + 9) - 0-
T

<%19“ + T(Ief/ + 9) - KR (TQQ?M + 9517)55 + 700@:1:7‘, - 0-,

t

€))

o Established the well-posedness, using some nonclassical
techniques.

@ Proved an exponential decay without imposing any relationship
between the coefficients.

@ Provided some numerical illustrations.

w See other works by Ahmima et al., Ben Moussa et al., Ramos et
al., Messaoudi and Keddi, Zougheib and El Arwadi, ....
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Introduction

Truncated Bresse system |

v= Taking into account the truncated shear beam model (6) and
considering the Bresse system as an extension of the
Timoshenko model, we consider the shear Bresse system:

p1pee — K1 (0o + ¢ + lw), — Uz (we — lp) + Bl =0,
_"("ZL/VTLI‘ + K1 (kﬁz + /l/} + lw) = Ov

p3wit — K3 (Wz — ), + 1K1 (02 + 19 + lw) = 0,

cly — KOzy + Byt =0,

(10)

in (0, L) x (0,00), where p1, ps, k1, k3, b, ¢, 1, 3, k are positive
constants.
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Introduction

Truncated Bresse system II

1 We take the following boundary conditions

0 (0,t) = @ (L,t) =¥, (0,t) = ¢, (L,t) =0,

e (0,8) =y (L, 1) = 0, (0,1) = 0 (L, 1) = 0, " F€10:0)

(1)

and the initial conditions

@(I,O):g’)o(l’), w(z,0) = wo (),
ot (2,0) =1 (), wi(2,0) =w(x), forz e (0,L). (12)
0 (x,0) = by (),
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Existence and uniqueness of solutions

Outline

@ Existence and uniqueness of solutions
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Existence and uniqueness of solutions

Auxiliary system I

Before discussing the well-posedness of our problem, we introduce,
by eliminating v, the following auxiliary system

o — 1B (o + ), — Lz (we — o) + Bz = 0,
P3Wit — K3 (wx - l(.,O)J a4 ZHISB (@T + Zw) - 0’ (13)
Cgt — Kﬂ;px aF /7)9911‘ - 07

with B is defined as follows:
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Existence and uniqueness of solutions

Auxiliary system II

B=I — 1.5 = —ko (S 004g),

where
e/(ﬁ = = K'/Qa:p:c + K'/l].
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Existence and uniqueness of solutions

Semigroup Setting |

Let us consider the following spaces

L
L2(0,0) = {u, € L*(0,L): / u(z)de = 0} ;
0
H;(0,L) = H'(0,L)nLZ(0,L),
HZ2(0,L) = {ueH*(0,L):u, € Hy(0,L)}
and the Hilbert space

A = H} (0,L) x L* (0,L) x H} (0,L) x L2(0,L) x L?(0, L)
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Existence and uniqueness of solutions

Semigroup Setting II

equipped with the inner product
+p3 (w, w*) + k3 (we — lp) , (w = 17)) +¢(0,07),
for U = (¢, ¢, w,w,0)", U* = (¢*, ¢*,w*, w*, %) € .

Therefore, system (13) can be written in the operator form

{ U, = /U, ¥Vt >0, "

U (0) = Uy = (0, 1,wo, w1, 00)"
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Existence and uniqueness of solutions

Semigroup Setting III

where the operator <7 : D (/) C 7 — S is defined by

7/)1_1 [7”1% (99:1; + ]w)‘L - ZK/B (w.’l: - ]79) + “80,’1‘}
,Q/U — 7 w
_/)51 [_/‘CS (w:r - Z(p)r + l/‘m]% (/5941; + ZW)]
_cil [_Hﬂm:l: + /3(,),}

and

D(«/) = [H?(0,L)NnHj(0,L)] x Hy (0,L) x [HZ(0,L)NH}(0,L)]
xH}(0,L) x [HZ(0,L)NH}(0,L)].
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Existence and uniqueness of solutions

Auxiliary well-posedness result I

Thus, we have the following existence and uniqueness result of the
auxiliary system (13) .

For any initial data Uy € ¢, the problem (14) has a unique weak
solution U € C ([0, +00) ; H). Moreover, if Uy € D (&), then
U € C([0,+00); D («))NC ([0, +00) ; H).

The operator < is dissipative.
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Existence and uniqueness of solutions

Auxiliary well-posedness result 11

For any U € D (.«/), using the inner product, the definition of the
operator B, the symmetry property of the operator .& _%, we get

L
(FUU) ,p = —k / 02dx < 0,
JO

Ol

V.

The operator </ is maximal.
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Existence and uniqueness of solutions

Auxiliary well-posedness result I11

The application of the variational approach, the Lax-Milgram theorem
and the regularity theory for the linear elliptic equations guarantees
that the operator I — o7 is surjective. L

Therefore, the result of Theorem 1 follows by Hille-Yosida theorem.
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Existence and uniqueness of solutions

Main well-posedness result I

Now, we return to the original problem. We introduce the Hilbert
space

H = H} (0,L)xL* (0, L)xH} (0, L)xH} (0, L)xL? (0, L)x L? (0, L)
and

D = [H?(0,L)NH;(0,L)] x Hy (0,L) x [HZ(0,L)NH} (0,L)]
x [HZ(0,L)NH}(0,L)] x H! (0,L) x [H2(0,L) N H} (0,L)].

Then, the main well-posedness result in this section is given by the
following theorem
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Existence and uniqueness of solutions

Main well-posedness result 11

Theorem 4

For any initial data (@9, @1, w0, w1, 90)T € I, the problem
(10)-(12) has an unique weak solution

(¢, ¢, ¥, w,wt, 0) € C ([0, +00) ; H).

Moreover, if (o, 1, wo, w1, HO)T € D (), then

(997 P, /Q/),W,Wt, 9) € C ({0 _'_QO) D) N Cl ([07 +OO) ’H)
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Existence and uniqueness of solutions

Main well-posedness result I11

Let (¢, 1, w, wy, ) be the solution of the problem 14. Considering
the results of Theorem 1 and defining ¢/ as a solution to the problem

{ S = —k1 (pg + W),

the desired result is achieved. ]
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Outline

© Exponential stability
@ Functionals and related lemmas
@ Main theorem and short proof
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Energy functional I

The energy functional of system (10) — (12), given by

1 [F ; , .

Elt) = B /0 [p1¢f + k1 (pz + ¥ + lw)z + /-a:g’z/‘;j
. )2 2 02| 7.
+kK3 (wm - lgy) -+ p3w; + cl } dx

satisfies, along the solution,

L
E'(t) = —n/ 62 dzx. (15)
0
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Energy functional 11

Multiplying the four equations of system (10) by ¢y, ¢, w; and 6,
respectively, integrating over (0, L), using integration by parts and the
boundary conditions (11), then adding the results at the end, we
obtain (15). O
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Technical lemmas |

Let (p, 1), w, 0) be the solution of problem (10) — (12). Then, the

functional
L az
F1(t) = cp / < / 0 (y) dy) prdx
Jo \Jo

satisfies, for any €1 > 0, the estimate

Bp1 v 2 g 2
< 5 pidr + &1 (e + 9+ lw)” dx
0 0

L L
+z281/ (wg — )’ dz +m (1+1>/ 62dzx, (16)
0 €1 0

for some constant m > 0, independent of €1 and l.

F1 (1)
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Technical lemmas I1

Let (p,1),w, 0) be the solution of problem (10) — (12). Then, the
functional
L

Z2t)=p |

0

Pt (/OI (oz + lw) () d:u) dzx

satisfies the estimate
k" 2 ke [* 2 2 ‘ 2
Fy(t) < —?/ (pz + ¥ + lw) dx—?/ Yidr +1 / wydz
0 0 0

L L L
+12m/ (wy — 150)2 dz +m / oldx + m/ 62dzx, (17)
0 Jo 0

for some constant m > 0, independent of l.
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Technical lemmas 111

Lemma 8

Let (¢, 1), w, 8) be the solution of problem (10) — (12). Then, the functional

) L
F3(t) = —p1K3 / ot (we — L) dz — I‘i?lpg/ wi (pz + 0 + lw) dz
Jo 0

satisfies, for any €3 > 0, the estimate

L L
F5(t) < (k3p1 = nlpg)/ Parwrdr — 1 (K5 — €3) / (we — lp)* dz
0 0

i 1 i
—Hsg/ widz +Im (1 4F 2) / pid
0 [2e3

L
+l/€§/ (0 + 9 + lw) dx+—m/ 02dx, (18)
0

for some constant m > 0, independent of €3 and .
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Technical lemmas IV

Let (¢,1,w, 0) be the solution of problem (10) — (12). Then, the
functional

o ], oL
Fu(t) = —/’3/ wrwdr — [)1/ prpdr
0

0
L @ 2 L
= @(/ 0(:1/)61@/) dw—ﬁ/ pdx
Kk Jo Jo 2 Jo

satisfies the estimate

L L L
F,(t) < —,03/ widr — % 2dT + K1 / (pz + P + lw)® da
0 0 0

oI, L L
+K3 / (wg — l<p)2 dx + Ko / Y2dx +m / 02dx, (19)
0 0 Jo

for some constant m > 0, independent of l.
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Exponential stability Functionals and related lemmas

Main theorem and short proof

Main theorem (Exponential decay) I

This part is devoted to establishing our exponential stability result.
Before that, we present some necessary results.

Proposition 10 (Gearhart-Herbst-Priiss-Huang Theorem)

Let T (t) = e be a Cy-semigroup of contractions on a Hilbert
space. Then T (t) is exponentially stable if and only if

iR={i\,Ae R} Cp(A)

and -
limy 5o0 H(i/\f - A)_IH < 00

hold.
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Exponential stability Functionals and related lemmas
Main theorem and short proof

Main theorem (Exponential decay) I1

The main result of this part is

Let (¢,1,w, 0) be the solution of problem (10) — (12). Then, the
energy functional E is exponentially stable if and only if

k3p1 — K1p3 = 0.
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Exponential stability Functionals and related lemmas
Main theorem and short proof

@ Assume that x3p; — k1 p3 = 0 and define the following
Lyapunov functional

< (f) =NE (f) +n1.F, (f) +no.Fo (f) —|—2]_1323 (f) + k3% (f)

where /N and n; are positive constants.
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Exponential stability Functionals and related lemmas
Main theorem and short proof

@ Assume that x3p; — k1 p3 = 0 and define the following
Lyapunov functional

< (f) =NE (f) +n1.F, (f) +no.Fo (f) —|—2]_1323 (f) + k3% (f)

where /N and n; are positive constants.
# We choose carefully the constants €;, n; and N so that the
functional .Z satisfies
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Exponential stability Functionals and related lemmas
Main theorem and short proof

@ Assume that x3p; — k1 p3 = 0 and define the following
Lyapunov functional

< (f) =NE (f) +n1.F, (f) +no.Fo (f) —|—2]_1323 (f) + k3% (f)

where /N and n; are positive constants.
# We choose carefully the constants €;, n; and N so that the
functional .Z satisfies
e for two positive constants A, and A2

ME () < Z(t) < \E(t) Vt > 0. (20)
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Exponential stability Functionals and related lemmas
Main theorem and short proof

@ Assume that x3p; — k1 p3 = 0 and define the following
Lyapunov functional

< (f) =NE (f) +n1.F, (f) +no.Fo (f) —|—2]_1323 (f) + k3% (f)

where /N and n; are positive constants.
# We choose carefully the constants €;, n; and N so that the
functional .Z satisfies
e for two positive constants A, and A2

ME () <Z(t) < XE(t) ¥Vt >0. (20)
e for some A3 > 0,

L't < —XsE(). @21)
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Exponential stability Functionals and related lemmas
Main theorem and short proof

@ Assume that x3p; — k1 p3 = 0 and define the following
Lyapunov functional

< (f) =NE (f) +n1.F, (f) +no.Fo (f) —|—2]_1323 (f) + k3% (f)

where /N and n; are positive constants.
# We choose carefully the constants €;, n; and N so that the
functional .Z satisfies
e for two positive constants A, and A2

ME () < Z(t) < \E(t) Vt > 0. (20)

e for some A3 > 0,

L't < —XsE(). @21)

# we use (20) and (21) to easily find the first direction of proof.
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Exponential stability Functionals and related lemmas
Main theorem and short proof

@ By contrast, if k3p1 — k1p3 # 0, by using Proposition 10, we
can then show the lack of exponential stability thanks to the
following procedure: we show that there exists a sequence of real
values \,, such that

H (Al — A)~" — +o0.

2(H)
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Exponential stability Functionals and related lemmas
Main theorem and short proof

@ By contrast, if k3p1 — k1p3 # 0, by using Proposition 10, we
can then show the lack of exponential stability thanks to the
following procedure: we show that there exists a sequence of real
values \,, such that

H (Al — A)~" — +o0.

2(H)

Indeed, there exists a sequence of vectors

F, = (0,0,0,0, f,0)" € H, where f, = p3' cos(";m) and a

sequence of numbers \,, € R, where \2p3 = k3 (”’T) + 2k,
with || F;, ||y < oo such that

|@xar =) B = 100l — +o0,

where U,, € D (A) be the solution of
(i I — A)U, = F,. 40/66



Polynomial Stability (case k3 p1 — k1 p3 7 0)

Outline

e Polynomial Stability (case xk3p1 — k1p3 7# 0)
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Polynomial Stability (case k3 p1 — K1 p3 7# 0)

Main theorem (Polynomial decay) I

We assume x3p1 — k1p3 # 0 and define the second-order energy
functional by

1 [F . , .
&(t) = 2 /0 [/Jlﬂpft + k1 (. + Y + lw)f + "Wwét

+p3wi, + kg (wWe — 1@)7 + c@ﬂ dx.

As in the proof of Lemma 5, it follows that & satisfies

L
& (t) = -k / 02,dz. (22)
0
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Polynomial Stability (case k3 p1 — K1 p3 7# 0)

Main theorem (Polynomial decay) 11

Here, with the same notations and Lemmas of the previous section,
we define the Lyapunov functional .Z () as follows

Z(t) = N(E(@)+& (1) +niF () +noFo (t)
1207 F5 (1) + BraFu (1),

where
L

Fs (t) = B.F3 (t) + K (K3p1 — K1p3) / 0z (wg — lp) dx.
0
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Polynomial Stability (case k3 p1 — k1 p3 7 0)

Main theorem (Polynomial decay) III

The functional .%5 satisfies, for any 77 > 0, the estimate
~ L L
F5(t) < lﬁ/@%/ (wo — 1) dar + ln/ (we — lp)* dz
0 0
L L
+l77/ widz + 15K2 / (¢ + 1 + lw)* da
0 0
1 Lo, 1 L

+lm 1—}—% ; pidr +1lm 1+% ; 0rdx

—1-% /0 05.dx, (23)
for some constant m > 0, independent of 1 and /.

The main result of this part is given by
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Polynomial Stability (case k3 p1 — k1 p3 7 0)

Main theorem (Polynomial decay) IV

Let (¢,1,w, 0) be the strong solution of problem (10) — (12) and
assume that k3p1 — k1p3 # 0. Then, the energy functional E satisfies

E(t) <=, Vt>0, (24)

=9

where o is a positive constant.
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Polynomial Stability (case k3 p1 — k1 p3 7 0)

Proof

1
Se

& We choose carefully the constants IV, n;, £ and 7 so that the
functional . (1) satisfies
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Polynomial Stability (case k3 p1 — k1 p3 7 0)

Proof

1
Se

& We choose carefully the constants IV, n;, £ and 7 so that the
functional . (1) satisfies

Z(t) >0, Vt>0.
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Polynomial Stability (case k3 p1 — k1 p3 7 0)

Proof

1
Se

& We choose carefully the constants IV, n;, £ and 7 so that the
functional . (1) satisfies

Z(t) >0, Vt>0.

e for some oy > 0,

Z'(t) < —0oE (1), Yt>0.
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Polynomial Stability (case k3 p1 — k1 p3 7 0)

Proof

# We choose carefully the constants N, n;, €1 and ) so that the
functional . (1) satisfies

Z(t) >0, Vt>0.

e for some oy > 0,

Z'(t) < —0oE (1), Yt>0.

# Recalling that F is decreasing, we have

Z20)-2() _ 2

o0 )

tE (t) <

, Vt >0,

which implies the estimate of polynomial stability (24).
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Numerical approximation

Outline

© Numerical approximation
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Numerical approximation

Numerical scheme I

w Taking L = 1, we define the uniform partition of (0, 1) by

0=x9 <w <---<uzpn, = 1, denote the length of the interval

(xj,2j41) by Az = Nih and define

Pl = {u € H)(0, L), u|r, is a linear polynomial} .

w For the time discretization, we denote by At = Nlt the step time,
where 7T is the total time and V; is a positive integer.
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Numerical approximation

Numerical scheme 11

The finite-element approximate system for (10) is to find ¢}, ¥}, wy',

05, such that, for all &, 1y, Cp, Xn € P,

Zif ((pht kfj;lll‘_l? Eh) + K1 (@Zx + l/";ll + Zw;12~ 5}),;1:)

71}”5 (W/L:I: o l\p;i” Eh) + d(H;ZL gh) =0,

52 (e e) + K1 (R + 07 + D) =

de (whf - ('”;Llfl Ch) + hg(“}hw lkph C}”) + ]hl(‘f’hr + L/’h + ]('” Ch) - 7
At (9;:1 - 9;11 Xh) + h(en th) + At (‘f’hl "th Xh') 0.

with o}, = (@) — @) 1)/At and wy, = (w Z*WZZ’_l)/At-
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Numerical approximation

Numerical scheme 111

Then, the discrete energy is given by
1
5 (Rallwhs = LoRlIZ + psllwi I3 + cll67113) -
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Numerical approximation

Numerical experiments I

By using the following initial conditions:

wo(z) = 2sin(mx), o(x) = cos(mz), wo(x) = cos(mx),
Oo(x) = cos(mz), @1(x) =sin(Fx), wi(r)=sin(Fz),

Two numerical tests are done for different entries as follow:

o Test1:

pL=p3s=K=Kl =Ke=c=0=1, k3=2,and[ =1
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Numerical approximation

Numerical experiments II

@ Test 2:

pr = p3=1, k=05, k1 =1, kg = 1.5,
c = 23,0=08, k3=2,andl =0.5
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Numerical approximation

Numerical experiments III
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Figure 1: Damping cross section waves of Test 1
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Numerical approximation

Numerical experiments IV
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Figure 2: Energy decay in natural and log scales for Test 1
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Numerical approximation

Numerical experiments V
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Figure 3: Damping cross section waves of Test 2
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Numerical approximation

Numerical experiments VI
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Figure 4: Energy decay in natural and log scales for Test 2
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Numerical approximation

Numerical experiments VII

8 —Test 1
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Figure 5: The evolution in time of In(F},)
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Numerical approximation

Numerical experiments VIII

As a conclusion, for both tests, we observed that the numerical
solution converges to zero and the energy decay with different rates
seems to be reached which is compatible with the theoretical results.
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Other Relevant results

Outline

@ Other Relevant results
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Other Relevant results

The shear Bresse system with Fourier’s law I

= Two additional related works have been documented:

w Keddi, Messaoudi and Alahyane [6] investigated a thermoelastic
shear Bresse system, where the heat conduction is modeled by the
Fourier’s law acting on the shear force:

prpw — ki1 (o + 0+ lw) — ks (wy — Z@) =0,
—KoWze + K1 ( Z/ + lw) + 50,

p3wi — ki3 (Wa lsa) +Ih1(w+1/—|—/w)—

Cet ’{QJJ 4’¢3L}1t =0.

(25)

@ Showed that the system is not exponentially stable.
@ Proved a polynomial decay of the solution in the case of the equal
speeds of wave propagation of the two hyperbolic equations.
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Other Relevant results

The shear Bresse system with Fourier’s law II

- Keddi, Chabekh and Messaoudi studied the effect of
the thermal damping, where the coupling is via the axial
displacement equation:

P1Ptt — k (791 + 1//’ + Zw)x - lk’U (wfl? - Z‘tg) - 07
_bl'b.’l,'.’l,' + k (99:1: + Z' + ]w) - 05
pawi — ko (W — 1), + 1k (pz + 19 +lw) + B0, = 0,

cly — KO,y + Bwye = 0.
(26)

o Showed that the system is exponentially stable if and only if the
speeds of wave propogation of the hyperbolic equations are equal.
o Established a polynomial decay in the case of nonequal speeds.
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Other Relevant results

The shear Bresse system with Fourier’s law III

The stability of the one-dimensional linear shear thermoelastic Bresse
system, which consists of two hyperbolic equations and one elliptic
equation coupled with a heat equation of Fourier type, is intrinsically
linked to the coupling equation and the equality of the hyperbolic
wave speeds.
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Other Relevant results

The shear Bresse system with Fourier’s law IV

Summary

Equal Speed Non-equal Speed

Dissipation via transverse

displacement (First Equation) Exponential decay Polynomial decay

Dissipation via shear angle

(Second Equation) No exponential decay Open question

Only polynomial decay

Dissipation via longitudinal
displacement (Third Exponential decay Polynomial decay
Equation)
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