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The cell cycle is a series of events that take place in
a cell leading to its replication. It is regulated by a
complex network of protein interactions.
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Schematic model of the cell cycle

G1 - growth, S - DNA synthesis, G2 - protein synthesis,
M -mitosis; G0 quiescence phase
A = G1 – growth phase (variable duration)
B = S+G2+M – proliferating phase (constant duration)
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a –age, x –size, m –maturity,

maturity m describes the position of a cell in

the cell cycle.

Types of models: maturity or size models;

one or two (four) phases models;

continuous or discrete time models.
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Continuous time model:
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Evolution of maturity:

a mother cell: (1) – resting phase, (2) – pro-

liferating phase

a daughter cell: (3) – resting phase, (4) – pro-

liferating phase.
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Discrete time (generational) model:
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w w

describe the relation between the initial matu-

rity of mother w and daughter cells w
Find an operator P s.t. if f is a density of distribution
of maturity in mother cells.then Pf is ... daughter cells.

Lasota, Mackey (1984), Tyson, Hannsgen (1986), Tyr-
cha (1988)
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1. Rubinow (1968):
m ∈ [0,1], a new born cell has maturity 0, a cell splits
at maturity 1, v = g(m) – maturation velocity:

m′(t) = g(m)

All cells have identical cell cycles.

2. Lebowitz and Rubinow (1974):

maturation velocity v is fixed at the birth and is constant

during the cell cycle

maturation velocity of the daughter cells is chosen with

some distribution depending on m.v. of the mother cell.

3. Rotenberg (1983):

During the cell cycle, a cell can change its maturation

velocity.
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Sample graphs of maturity in the models: a)

Rubinow, b) Lebowitz-Rubinow, c) Rotenberg.

10



4. Bell-Anderson (1967).
The cell maturity grows with rate g(m), i.e. m′ = g(m),
m(0) = m0, πtm0 = m(t),
it splits with intensity p(m) into two daughter cells with
maturity h(m)
u(t,m) - density of cells with maturity m

∂u

∂t
+
∂(gu)

∂m
= −p(m)u(t,m)

+ 2p(k(m))k′(m)u(t, k(m)), k = h−1

5.Two-phase model, M.C. Mackey, R.R. (1994).

∂u

∂t
+
∂(gu)

∂m
= −p(m)u(t,m)

+ 2p(k(m))k′(m)u(t− τ, k(m)),

k(m) = π−τ(h−1(m)).

5b. K. Pichór, R.R. (2019) - a system of two PDEs

with two boundary conditions.
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We are able to measure: the length of the cell cycle

and the size x of cells, but not maturity m and intensity

of splitting p(m).
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a -age, xb -initial size, x -size, h(x) = x/2.

q(xb, a) -density distribution of the cycle length l,

Φ(xb, a) = Prob(l ≥ A) =
∫∞
A q(xb, r) dr -survival

function,

Saxb = 1
2πaxb -the initial size of a daughter cell

xb xb xb

a(xb)

a(xb)

a

1

xb xb xb

Sa(xb)(xb)

Sa(xb)(xb)

Sa(xb)

1

The area where q is positive
The relation between the initial sizes
of mother and daughter cells
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Let f be the density of initial sizes of mother cells. If
they split at age a, then

Paf(xb) =
2g(π−a(2xb))

g(2xb)
f(π−a(2xb))

is the density of initial sizes of daughter cells.

P ∗a f(xb) = f(Sa(xb)).

p(xb, a) = q/Φ - intensity of splitting
u(t, xb, a) -the number of cells having initial size xb and
age a at time t,

2

∫ ∞
0

(
Pa
(
p(·, a)u(t, ·, a)

))
(xb) da

-the number of new born cells per unit time.

∂u

∂t
(t, xb, a) +

∂u

∂a
(t, xb, a) = −p(xb, a)u(t, xb, a),

u(t, xb,0) = 2

∫ ∞
0

(
Pa
(
p(·, a)u(t, ·, a)

))
(xb) da,

u(0, xb, a) = u0(xb, a).
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xb xb xb

a(xb)

a

X

1

E = L1(X),

u(t)(xb, a) = u(t, xb, a),

u(t): E → E.

asynchronous exponential growth (AEG):

if g(2x) 6= 2g(x) for some x, then

lim
t→∞

e−λtu(t) = α(u0)v,

α ∈ L(E,R), v ∈ E, λ ∈ R.

λ - Malthusian parameter,
v - stable distribution of initial size and age.
The real process should be close to a stationary state
v, so it is easy to estimate biological parameters.
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Sketch of the proof:

z(t, xb, a) = u(t, xb, a)/Φ(xb, a),

z(t)(xb, a) = z(t, xb, a):

z′(t) = Az(t),

Af(xb, a) = −
∂f

∂a
(xb, a)

D(A) =
{
f ∈W1(X): T f(xb) = Pf(xb)

}
.

Pf(xb) = 2
∫∞
0

(
Pa(q(·, a)f(·, a))

)
(xb) da

T f(xb) = f(xb,0), W1(X) =
{
f ∈ E : ∂f∂a ∈ E

}
,

‖f‖W1(X) = ‖f‖E +
∥∥∥∥∂f∂a

∥∥∥∥
E

.

16



C0-semigroup {S(t)}t≥0:
B - a Banach space, S(t): B → B, t ≥ 0, linear and
bounded operators,
S(0) = Id, S(t+ s) = S(t)S(s), s, t ≥ 0,
(c) for each x ∈ B, the function t 7→ S(t)x is continuous.

The infinitesimal generator A of C0-semigroup {S(t)}t≥0

is defined by

Ax = lim
t↓0

1

t
(S(t)x− x)

whenever the limit exists. The domain D(A) of A, is
the set of x ∈ B for which this limit does exist.
We often used the notation S(t)x = eAtx.
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Proposition 1 The operator A generates a pos-

itive C0-semigroup {T (t)}t≥0 on E.

The proof is based on a perturbation method related

to operators with boundary conditions and unbounded

perturbations in L1 space [Gwiżdż and Tyran-Kamińska,

Positivity. 2019].
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Proposition 2 The operator A∗ has an eigen-

value λ > 0 and a corresponding eigenfunction

v such that

c1Φ(xb, a) ≤ v(xb, a) ≤ c2Φ(xb, a) (1)

for some positive constants c1 and c2 indepen-

dent of xb and a.

Steps: 1. Identifying the domain of A∗

2. Checking that A∗ has a positive eigenfunction corre-

sponding to the eigenvalue λ if some integral operator

Kλ on C[xb, xb] has a positive fixed point.

3. The existence of positive eigenvectors of Kλ.

4. Checking that for some λ the eigenvector of Kλ is a

fixed point of Kλ.

19



Proposition 3 There exists a unique, up to a

multiplicative constant, eigenfunction fi of A
corresponding to the eigenvalue λ.

Next we introduce the semigroup {P (t)}t≥0 given

by P (t)f = e−λtT (t)f defined on the space

E1 = L1(X,B(X), µ) with the measure µ given

by dµ = v d`.

{P (t)}t≥0 is a stochastic semigroup,

fi is an invariant density fi of {P (t)}t≥0 and

limt→∞ P (t)f = fi for each density f .

Finally, we translate this result in terms of the

semigroup {T (t)}t≥0 and obtain AEG.
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(X,Σ,m) — σ-finite measure space.
D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1} – densities.

Stochastic operator: P :L1 → L1 linear, P (D) ⊂ D.
Stochastic semigroup: C0-semigroup of stochastic op-
erators.

f∗ ∈ D -invariant if P (t)f∗ = f∗ for t ≥ 0.
{P (t)} -asymptotically stable if there is a density f∗ s.t.

lim
t→∞
‖P (t)f − f∗‖ = 0 for f ∈ D.

{P (t)} -partially integral if there exist t > 0, k(t, x, y) ≥ 0∫
X

∫
X

k(t, x, y)m(dx)m(dy) > 0

P (t)f(x) ≥
∫
k(t, x, y)f(y)m(dy) for f ∈ D.

21



Theorem 1 If a partially integral stochastic

semigroup {P (t)}t≥0 has a unique invariant den-

sity f∗ and f∗ > 0, then it is asymptotically

stable.

Proposition 4 The semigroup {P (t)}t≥0 is par-

tially integral.

The proof by using Dyson-Phillips expansion theorem:

(how to write e(A+B)t using eAt and B).

The key role play condition g(2x) 6= 2g(x) for some

x ∈ (xb, xb).

It is enough to check that {T ∗(t)}t≥0 is partially inte-

gral (P (t)f = e−λtT (t)f and symmetry in the definition

partially integral semigroup).
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Corollaries and remarks

1. Chemostat. The AEG law holds for microorganisms
cultured in a chemostat. In order to grow cells under
constant environmental conditions, culture liquid should
be removed from the system with rate D = λ.

2. Age-size structured model: Let w(t, x, a) be the num-
ber of cells having size x and age a at time t.
The function w satisfies the following problem:

∂w

∂t
(t, x, a) +

∂w

∂a
(t, x, a) +

∂(gw)

∂x
(t, x, a) = −p̄(x, a)w(t, x, a),

w(t, x,0) = 4

∫ ∞
0

p̄(2x, a)w(t,2x, a) da,

w(0, x, a) = w0(x, a).

Corollary 1 w(t, x, a) satisfies AEG condition.
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3. Case g(2x) = 2g(x), for example g(x) = cx:
AEG does not hold.
{T (t)}t≥0 irreducible:

∫∞
0 T (t)f dt > 0 for f ≥ 0, f 6= 0,

but there are two functions f1, f2 ≥ 0, f1, f2 6= 0 s.t.
T (t)f1 · T (t)f2 ≡ 0 for all t ≥ 0.

t

x

Growth of mother and daughter cells in the case g(x) = cx.
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Rod-shaped bacteria, e.g. E. coli, C. crescentus and B.
subtilis change only their length.
Variety of distinct models of cell cycle and cell division.
Most of models with the assumption g(x) = κx but with
various descriptions of the cell cycle length.

Additive model (or a con-
stant ∆ model):
the difference ∆(xb) = xd−
xb between the size at divi-
sion xd and the initial size
xb of a cell is a random vari-
able independent of xb.If
h(x) is the density distribu-
tion of ∆, then

q(xb, a) = κxbe
κah
(
xbe

κa−xb
)

The coefficient of variation cv = σ/µ of ∆ for E. coli
cv ∈ (0.17,0.28). σ -standard deviation, µ -the mean.
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Target size model: a cell with initial size xb attempts to
divide at a target size xd = f(xb).

The expected length of the cell cycle is

τ0(xb) = κ−1 ln(f(xb)/xb),

but τ0(xb) is additively perturbed by a symmetric random
variable ξ, and finally τ(xb) = τ0(xb) + ξ is the length of
the cell cycle.

If h(a) is the density distribution of ξ, then q(xb, a) =
h(a− τ0(xb)) is the density of τ(xb).

h has a truncated normal distribution located in some
interval [−ε, ε] seems to be more suitable. f(xb) =
2x1−α

b xα0, α ∈ [0,1] and x0 > 0.
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Paradoxes of exponential growth g(x) = κx

If the population starts with a single cell of size x, cells
from nth generation have size xn(t) = 2−neκtx at time t.
Since xb ≤ xn(t) ≤ xb, population consists of a few gen-
erations at each time and all cells in each generation
have the same size.
if xb/xb < 2, then there exist a sequence αn → ∞ and
c > 0 s.t. if t ∈ [αn, αn + c], then the population consists
only of cells from the nth generation, thus all cells have
the same size and they cannot split in this time interval.
Consequently the size of the population never reaches
an exponential growth.
For E. coli xb = 2.32 ± 0.38 µm (mean± SD).

It takes the population
a longer time to reach
its balanced growth for
greater α because

xb/xb = e2κε/α
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How to correct exponential growth of size, to

obtain AEG ?

Maybe assume that κ depends on xb ?

Individual cells can have different growth rates,

but the average growth rate does not depend

on the initial size of cells!

There should be another factor which decides

about the growth rate of an individual cell!

Maturity?... or stochastic fluctuations of κ

during the cell cycle?
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The methodology developed here can be ap-

plied to models: with asymmetric divisions;

with different velocities of proliferation; with

stochastic growth of individuals...

2. Stochastic growth of x:
a cell having initial size xb grows according to Itô stochas-
tic differential equation

dξxbt = g(ξxbt ) dt+ σ(ξxbt ) dWt, (2)

where Wt, t ≥ 0, is a Wiener process.
We obtain a C0-semigroup for the evolution of densities
of distribution of (xb, a) and can prove AEG. It means
that we can also show AEG for densities of (x, a), but
these densities do not define a semigroups of operators!
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Chaos

(Ω, ρ) - metric space, π : [0,∞)×Ω→ Ω.
π is a semiflow on Ω if π is a continuous function,
π0ω = ω, πt+sω = πt(πsω) for t, s ≥ 0, ω ∈ Ω.

µ - probability measure on the σ-algebra B(Ω) of Borel
subsets of Ω.
µ is invariant w.r. π if µ(π−1

t (A)) = µ(A) for A ∈ B(Ω),
t ≥ 0.

µ is supported on Ω if µ(U) > 0 for each nonempty open
subset U of Ω.

Invariant measure µ is exact if limt→∞ µ(πt(A)) = 1 if

µ(A) > 0. Exactness implies ergodicity and mixing.

System (Ω,B(Ω), µ, π) with invariant and exact

measure µ supported on Ω is called stochasti-

cally chaotic.
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Stochastic chaos implies many other chaotic

behaviours, for example:

Chaos in the sense of Auslander-Yorke: each trajectory
is unstable, there exists a dense trajectory.

existence turbulent trajectory in the sense of Bass: tra-
jectory t→ πtω and its translation t→ πt+τω are almost
uncorrelated for large τ (the lack of memory).
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Chaos in precursors of blood cells

Maturity is the morphological state of a cell.
Processes of maturation and division: a newly born cell
has the same maturity m as its mother at division.

Uncontrolled process:

0 1m

Each cell can split with the same probability.
When one cell reaches the maturity 1 it leaves the bone
marrow and one of cells from the bone marrow splits.

∂u

∂t
+

∂

∂m
(g(m)m) = g(1)u(t,1)u(t,m)

If u(0,m) = u0(m), then πtu0(m) = u(t,m).

R.R., Chaos 19 (2009).

The semiflow π is stochastically chaotic.
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Bell and Anderson size model with g(x) = x:

∂u

∂t
+ x

∂u

∂x
= −(d+ b)u(t, x) + 4bu(t,2x),

If u(0,m) = u0(m), then πtu0(m) = u(t,m).

R.R., J. Math. Anal. Appl. 393 (2012).

If we choose the space Ω in a ”proper way”,

then the semiflow π is stochastically chaotic.

33



Thank You!
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