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Problems on nonlinear differential equations include:

1. Existence and multiplicity of solutions (initial value problems,
boundary value problems, etc.)

2. Qualitative properties of solutions (stationary points, periodic
points, chaotic dynamics, invariant sets, etc.)



f: R" — R™ is a smooth (i.e. of Cl-class) map.

Definition
x € R" is a regular point iff dif is an epimorphism (i.e. the
differential is surjective). x is a critical point iff it is not regular.



f: R" — R™ is a smooth (i.e. of Cl-class) map.

Definition
x € R" is a regular point iff dif is an epimorphism (i.e. the
differential is surjective). x is a critical point iff it is not regular.
Particular cases:
If m = n then x is regular iff d,f is an isomorphism.
If m =1 then x is regular iff dxf (equivalently: Vf(x)) is
nonzero. —

Definition
y is a regular value iff each point of f~1(y) is regular. y is a critical
value if there exists a critical point in f=1(y).



X and Y are topological spaces, f,g: X — Y.
Definition

f is homotopic to g (written as f ~ g) iff there exists a continuous
map

F: X x[0,1] =Y
such that F(-,0) = f and F(-,1) = g.
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v: R" — R" a smooth vector-field,

x = v(x). (*)
t — ¢t(x0) is the solution of () with initial value xg at 0, i.e.
———
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Po(x0) = xo-



v: R" — R" a smooth vector-field,

x = v(x). (*)
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Properties:
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Definition
Let X be a topological space. A continuous map

o X xR 3 (x,t) = ¢e(x) € X
PSR G S A

which satisfies (xx) is called a dynamical system.



v: R" — R" a smooth vector-field,

x = v(x). (*)

t — ¢t(x0) is the solution of () with initial value xg at 0, i.e.

& 5e(00) = V(@e(0)).
$o(x0) = xo-

Properties:

¢t 0 s = Pris, ¢o=1id. (**)

Definition
Let X be a topological space. A continuous map

o X xR 3 (x,t) = ¢e(x) € X

which satisfies (xx) is called a dynamical system.

If ¢ is given by (x), we call it the dynamical system generated by v
or the dynamical system generated by (x).




¢ is a dynamical system.



¢ is a dynamical system.

Definition
Xo is a stationary point of ¢ iff ¢+(x0) = xo for all t € R.
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¢ is a dynamical system.

Definition
Xo is a stationary point of ¢ iff ¢+(x0) = xo for all t € R.
Remark

Xp is a stationary point of ¢ generated by v iff v(xg) =0, i.e. xg is
a zero of v.



v: R" — R" a continuous vector-field o O
U open and bounded in R"” U 00
v(x) # 0 for all x € OU

Definition (Brouwer degree, 1910)

If v is smooth and 0 is a regular value of v (i.e. dyv is an
isomorphism for every x € v=1(0)),

deg(v, V) := Z sgndet dyv € Z.

xev-1(0)NU

In general,
deg(v, U) := deg(w, U),

where w is smooth, 0 is a regular value of w, and w is close
enough to v.



Properties of the Brouwer degree:

Solvability. If deg(v, U) # 0 then there exists x € U such
that v(x) = 0.
Excision. If U' C U and v(x) # 0 for all x € U\ U’ then

deg(v, U) = deg(v, U').

Homotopy invariance. If R"” x [0,1] 5 (x,t) = v(x) € R"
is continuous and v¢(x) # 0 for all (x,t) € OU x [0,1] then

deg(vo, U) = deg(vy, U). @
Additivity. If Uy N U; = 0 then o0
deg(v, Up U Ur) = deg(v, Up) + deg(v, Uz).
Multiplicativity. If v: R” — R” and v/: R” — R" then

deg(v x v/, U x U') = deg(v, U) - deg(V', U").



Definition
Z is an isolated set of zeros of v if it is compact and there exists U,
a neighborhood of Z, such that Z = {x € U: v(x) = 0}.

For such Z and U set
d(v,Z) := deg(v, U)



Definition
Z is an isolated set of zeros of v if it is compact and there exists U,
a neighborhood of Z, such that Z = {x € U: v(x) = 0}.

For such Z and U set
d(v,Z) := deg(v, U)

Let Zg and Z; are isolated sets of zeros of vy and, respectively, v;.

Definition A
(vo, Zo) ~ (v1, Z1) iff there exists a vector-field Z

V:R"x[0,1] > R"xR [0

such that Z, W
V(-,0) = (w,0), V(,1)=(v1,0)

and an isolated set Z of zeros of V in R" x [0, 1] such that

Zo={x:(x,0) e Z}, Z1 ={x:(x,1) € Z}.



An equivalent description of properties of the Brouwer degree:



An equivalent description of properties of the Brouwer degree:
Solvability. If d(v, Z) # 0 then Z # 0.
Homotopy invariance. If (v, Z) ~ (v/, Z’) then

d(v,Z)=d(V,Z).
Additivity. If ZN Z' = () then
d(v,ZuZ')=d(v,Z)+d(v,Z").
Multiplicativity. If v: R” — R"” and v/: R” — R" then

divxVv,ZxZ")=d(v,Z) -d(V',Z).



A generalization of the Brouwer degree to normed linear spaces is
called the Leray-Schauder degree (1934). It is used, in particular, to
prove the existence of solutions of boundary value problems, by
representing those solutions as zeros v(x) = 0 for a suitable
vector-field v in some normed space.



Let n > 2 (the case n =1 is trivial) and let U be smooth.

if n = 2, the Brouwer degree is equal to the winding number of

V‘au, i.e.
1 N
d = — *d6
cB(v.U) = 5= [ van
where J J
dy = YUY
X2+ y?

is the angular form; the right-hand side is the Cauchy index
(ca. 1830),



Let n > 2 (the case n =1 is trivial) and let U be smooth.

if n = 2, the Brouwer degree is equal to the winding number of

V‘au, i.e.
1
d = — *do
cB(v.U) = 5= [ van
where J J
do = M
X2 +y2

is the angular form; the right-hand side is the Cauchy index
(ca. 1830),

more general, for n > 2,

deg(va):l/ V*< 0n>a
tn-1 Jou  \ x|l

where 0 = 37 (=1)x;dxq . .. c/l;, ...dx, and p,_1 is the
volume of the (n — 1)-dimensional unit sphere; the right-hand
side is the Kronecker index (1869).
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Theorem (Poincaré-Hopf formula, ca. 1925)

If OU is smooth and v(x) is directed outward of U for each x € OU
then X

dsln 0=
syt V)

where x denotes the Euler-Poincaré characteristic.

Remark
Since the Euler-Poincaré characteristic of an odd-dimensional
manifold is equal to 0,
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¢ is a dynamical system on X.
ScX
Definition
The set
InvS :={x €5: ¢¢(x) € S for all t € R}
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¢ is a dynamical system on X.
ScX
Definition
The set
InvS :={x €5: ¢¢(x) € S for all t € R}

is called the invariant part of S.

S is called invariant iff A = Inv A.

S is called isolated invariant iff it is compact and there exists U, a
neighborhood of S, such that

S=InvU.

Such an U is called an isolating neighborhood.



Example
Let A be a matrix with no eigenvalues on the imaginary axis.



Example
Let A be a matrix with no eigenvalues on the imaginary axis.
The set {0} is an isolated invariant set for the dynamical system

generated by
x = Ax.
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Example
Let A be a matrix with no eigenvalues on the imaginary axis.
The set {0} is an isolated invariant set for the dynamical system

generated by
x = Ax.

Example
Let f: R” — R is smooth (here of C?-class), ¢ is the dynamical

system generated by
x = —VF(x).
—_—

xo is a critical point of f iff Vf(xp) = 0.




Example

Let A be a matrix with no eigenvalues on the imaginary axis.
The set {0} is an isolated invariant set for the dynamical system

generated by
x = Ax.

Example
Let f: R” — R is smooth (here of C?-class), ¢ is the dynamical

system generated by
x = —Vf(x).

xo is a critical point of f iff Vf(xp) = 0.

A finite set of isolated critical points of f is anf&ated invariant set
crie= ot OF DOIELEL LIHEal POIts ©OF 1 e

of ¢. o
o



B C X.
Definition ?%
The exit set of B is defined as

B™ :={x € B: ¢¢,(x) ¢ B for some 0 < ¢, — 0}.

N
B is called solating block iff B and B~ t and
/Ts called an isolating block i rd_/an ' B~ are compam

Inv B C int B.




B C X.

Definition
The exit set of B is defined as

B™ :={x € B: ¢¢,(x) ¢ B for some 0 < ¢, — 0}.

B is called an isolating block iff B and B~ are compact and

Inv B C int B.

It follows Inv B is an isolated invariant set and B is its isolating
neighborhood.



X is a topological space, A C X.

Definition
A continuous map r: X — A is called a retraction iff r(a) = a for
each a € A. X



X is a topological space, A C X.

Definition

A continuous map r: X — A is called a retraction iff r(a) = a for
each a € A.

A retraction r is called a strong deformation retraction iff

jor~idx: X = X,

where i: A < X is the inclusion map.




X is a topological space, A C X.

Definition

A continuous map r: X — A is called a retraction iff r(a) = a for
each a € A.

A retraction r is called a strong deformation retraction iff

jor~idx: X = X,

where i: A < X is the inclusion map. A is called a strong

. . . — T
defor of X if there exist a strong deformation
retraction X — A.

— v

g
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Theorem (Wazewski, 1947)

If B is an isolating block and B~ is not a strong deformation
_retract of B then L EE—

— Inv B # 0.



Theorem (Wazewski, 1947)

If B is an isolating block and B~ is not a strong deformation
retract of B then
Inv B # (.

2
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X is a topological space, A C X.

Definition
The quotient space X /A is defined as

X/A = (X\A)U{x}
e —
endowed with the following topology:
if A = () obtained from the topology of X /A is such that the
Mre induced from the neighborhoods of A
in X (intuitively: X/A is obtained by “squeezing” A to one
point *);
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point *);
X /0 is equal to X U {*}, where x is a point outside of X, with

the topology of disjoint union.



X is a topological space, A C X.

Definition
The quotient space X /A is defined as

X/A = (X \ A)U {x}

endowed with the following topology:
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X is a topological space, A C X.

Definition
The quotient space X /A is defined as

X/A = (X \ A)U {x}

endowed with the following topology:

if A = () obtained from the topology of X /A is such that the
neighborhoods of * are induced from the neighborhoods of A
in X (intuitively: X /A is obtained by “squeezing” A to one
point *);

X /0 is equal to X U {*}, where * is a point outside of X, with
the topology of disjoint union.

In particular, X /X is a one-point space {x}.
(In consequence, 0/0 = {x}.)



Definition

A pointed topological space (X, xp) is a topological space X

together with a distinguished point xp € X (called the base point).
e ——

Example

We treat X /A as the pointed space

(XN A)U L}, ).



Definition
A pointed topological space (X, xp) is a topological space X
together with a distinguished point xp € X (called the base point).

Example
We treat X /A as the pointed space

(XN A)U L}, ).

Definition
A map of pointed spaces f: (X, xp) — (Y, y0) is a continuous map
f: X — Y such that f(x0) = yo.
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Definition
A pointed topological space (X, xp) is a topological space X
together with a distinguished point xp € X (called the base point).

Example
We treat X /A as the pointed space

(XN A)U L}, ).

Definition

A map of pointed spaces f: (X, xp) — (Y, y0) is a continuous map
f: X — Y such that f(x0) = yo.

A homotopy between f,g: (X, x0) = (Y, y0) is a continuous map
F: X x[0,1] = Y such that

F(-,0)=1, F(,1)=g, F(xo,t)=yp forallte]0,1].
“~ - 7 —
If such a homotopy exists, f and g are called homotopic (written as

f~g).

— —



Definition
(X,x0) and (Y, yo) are of the same homotopy type iff there exist
maps f: (X, x0) = (Y,y) and g: (Y, y0) — (X, x0) such that

gof:id&fog:idy.
P —.
The homotopy type of (X, xg) is denoted as [(X, x0)].
ST




Definition
(X,x0) and (Y, yo) are of the same homotopy type iff there exist
maps f: (X, x0) = (Y,y) and g: (Y, y0) — (X, x0) such that

gof~idx fog ~idy.

The homotopy type of (X, xg) is denoted as [(X, x0)].

The homotopy type of one-point space ({*},*) is denoted 0.

Remark

If Ais a strong deformation retract of X then [X/A] is equal to 0.
—_— @ — @@ —

Remark (Corollary from Theorem of Wazewski)
If B is an isolating block and [B/B~] # 0 then Inv(B) # 0.




S is an isolated invariant set for ¢ on a locally compact metrizable
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For every neighborhood U of S there exists an isolating block B

such that
S=InvB, BcCU.



S is an isolated invariant set for ¢ on a locally compact metrizable
space X.

Theorem (Conley, Easton 1971)
For every neighborhood U of S there exists an isolating block B

such that
S=InvB, BcCU.

Theorem (Conley 1972)

If B and B, are isolating blocks such that
P

S=InvB =Inv B,
then

[B/B”] = [B«/B.].
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S is an isolated invariant set for ¢ on a locally compact metrizable
space X.

Theorem (Conley, Easton 1971)

For every neighborhood U of S there exists an isolating block B
such that
S=InvB, BcCU.

Theorem (Conley 1972)

If B and B, are isolating blocks such that
S=InvB =Inv B,

then

[B/B7] = [B./B.].

Definition
The homotopy type h(¢,S) :=[B/B™] is called the Conley index

of S. T



Sk denotes the k-dimensional unit sphere and x € S¥ is an
arbitrary point.



Sk denotes the k-dimensional unit sphere and x € S¥ is an
arbitrary point.

Tk = [(SK, %)].

/—’w
Example

Let ¢ be generated by x = Ax, where A has no eigenvalues on the
imaginary axis. Then ©—

h(¢,{0}) =%*

where k is the number of eigenvalues with the real part positive.
I
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Let xg be a critical point of f: R" — R.

Definition

xo is non-degenerate if the Hessian of f at xg (i.e. the linearization
of W at xp) is an isomorphism.

Theorem (Morse, 1929)

If xg is a non-degenerate critical point then in a suitable coordinate
system in a neighborhood of xg,

The number i(xp) := k is independent of the choice of a coordinate
system and-is called the Morse index of xg

Example

h(¢, {xo}) = /o),

_—

—



Let Sp and S; are isolated invariant sets of ¢° and, respectively, ¢?.

and an isolated set S of zeros of ® in X x [0, 1] such that

So ={x:(x,0) € S}, S ={x:(x,1) € S}.




Properties of the Conley index:



Properties of the Conley index:

Wazewski property. If h(¢,S) # 0 then S # ().

o ————
Homotopy invariance. If (¢,S) ~ (¢/, S) then

h(¢,S) = h(¢', S').
R



Properties of the Conley index:
Wazewski property. If h(¢,S) # 0 then S # ().
Homotopy invariance. If (¢,S) ~ (¢/, S) then

h(¢, S) = h(d', S').
0. =HeS)

OYoRY

h(6,SUS') = h(¢,S) V h(¢, S').
A

Multiplicativity. If S is an isolated-invariant set for ¢ and ¢/
is an isolated invariant set for ¢/ then

Additivity. If SN'S’ = () then

h(¢ x ¢',S x S") = h(¢,S) A h(¢', S).
J

~



Properties of the Conley index@ properties of the Brouwer degree:

h(¢,S)#0=S#10 @ d(v,Z) #0=Z #0),

(¢,5) = (¢, S") = h(¢,S) = h(¢', ')
@ (v,2)~ (V,Z") = d(v,Z) = d(V', Z').

h(¢,SUS") = h(¢,S) V h(¢, S")
@ d(v,ZUZ)=d(v,Z) +d(v,Z"),

h(®,S x S') = h(,S) A h(d, S
@d(v xVv,ZxZ'Y=d(v,Z)-d(V,Z).



The Euler-Poincaré characteristics of a pointed space (X, xp) differs
from the E-P characteristic of a single space x(X) by one, i.e.

X(X, x0) = x(X) — 1.
M



The Euler-Poincaré characteristics of a pointed space (X, xp) differs
from the E-P characteristic of a single space x(X) by one, i.e.

X(X, x0) = x(X) — 1.

Theorem (R.S. 1985)

If  is generated by a vector-field v, S is an isolated invariant set of
o}
Z={xeS:v(x)=0}
i

d(v,Z) = (—=1)"x(h(¢, 5)).
m———~ —~ N
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The Euler-Poincaré characteristics of a pointed space (X, xp) differs
from the E-P characteristic of a single space x(X) by one, i.e.

X(X, x0) = x(X) — 1.

Theorem (R.S. 1985)

If ¢ is generated by a vector-field v, S is an isolated invariant set of

o}
Z={xeS:v(x)=0}
then
d(v,Z) = (=1)"x(h(o, 5))-
Example




Some generalized versions of the Conely index:
K.Rybakowski 1987; for dynamical systems generated by
parabolic equations,
K.Geba, M.lzydorek, A.Pruszko 1999; for gradient systems in
Hilbert spaces,

J.Robbin, D.Salamon 1988; for discrete-time dynamical
systems generated by diffeomorphisms,

M.Mrozek 1990; for discrete-time systems generated by
continuous maps,
M.Mrozek 1988; for multi-valued dynamical systems,

M.lzydorek 2000; for dynamical systems with group
symmetries.



Applications of the Conley index include problems on:
existence and multiplicity qunctionals,
existence of bifurcations in parametrized dynamical systems,
existence of connecting trajectories between stationary points,
existence of periodic orbits, ~~~ —————————

existence of ‘symbolic dynamics.

—



Other topological tools in the theory of differential equations
include:

applications of the Lusternik-Schnirelman category,

applications of the Krasnoselski's genus and, more general,
so-called index theories,

applications of Nielsen fixed point classes theory,

modifications of the Leray-Schauder degree (e.g. the
Gaines-Mawhin's coincidence index),

further generalizations of the Leray-Schauder degree (e.g.
Skrypnik's degree),

equivariant degrees (e.g. K.Geba's G-V-degree),

the Fuller index on periodic orbits of dynamical systems.



