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Problems on nonlinear differential equations include:
1. Existence and multiplicity of solutions (initial value problems,

boundary value problems, etc.)
2. Qualitative properties of solutions (stationary points, periodic

points, chaotic dynamics, invariant sets, etc.)



f : Rn → Rm is a smooth (i.e. of C 1-class) map.

Definition
x ∈ Rn is a regular point iff dx f is an epimorphism (i.e. the
differential is surjective). x is a critical point iff it is not regular.

Particular cases:
If m = n then x is regular iff dx f is an isomorphism.
If m = 1 then x is regular iff dx f (equivalently: ∇f (x)) is
nonzero.

Definition
y is a regular value iff each point of f −1(y) is regular. y is a critical
value if there exists a critical point in f −1(y).
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X and Y are topological spaces, f , g : X → Y .

Definition
f is homotopic to g (written as f ≃ g) iff there exists a continuous
map

F : X × [0, 1] → Y

such that F (·, 0) = f and F (·, 1) = g .



v : Rn → Rn a smooth vector-field,

ẋ = v(x). (∗)

t 7→ ϕt(x0) is the solution of (∗) with initial value x0 at 0, i.e.

d

dt
ϕt(x0) = v(ϕt(x0)),

ϕ0(x0) = x0.

Properties:
ϕt ◦ ϕs = ϕt+s , ϕ0 = id . (∗∗)

Definition
Let X be a topological space. A continuous map

ϕ : X × R ∋ (x , t) → ϕt(x) ∈ X

which satisfies (∗∗) is called a dynamical system.
If ϕ is given by (∗), we call it the dynamical system generated by v
or the dynamical system generated by (∗).
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ẋ = v(x). (∗)

t 7→ ϕt(x0) is the solution of (∗) with initial value x0 at 0, i.e.

d

dt
ϕt(x0) = v(ϕt(x0)),

ϕ0(x0) = x0.

Properties:
ϕt ◦ ϕs = ϕt+s , ϕ0 = id . (∗∗)

Definition
Let X be a topological space. A continuous map

ϕ : X × R ∋ (x , t) → ϕt(x) ∈ X

which satisfies (∗∗) is called a dynamical system.
If ϕ is given by (∗), we call it the dynamical system generated by v
or the dynamical system generated by (∗).



ϕ is a dynamical system.

Definition
x0 is a stationary point of ϕ iff ϕt(x0) = x0 for all t ∈ R.

Remark
x0 is a stationary point of ϕ generated by v iff v(x0) = 0, i.e. x0 is
a zero of v .



ϕ is a dynamical system.

Definition
x0 is a stationary point of ϕ iff ϕt(x0) = x0 for all t ∈ R.

Remark
x0 is a stationary point of ϕ generated by v iff v(x0) = 0, i.e. x0 is
a zero of v .



ϕ is a dynamical system.

Definition
x0 is a stationary point of ϕ iff ϕt(x0) = x0 for all t ∈ R.

Remark
x0 is a stationary point of ϕ generated by v iff v(x0) = 0, i.e. x0 is
a zero of v .



v : Rn → Rn a continuous vector-field
U open and bounded in Rn

v(x) ̸= 0 for all x ∈ ∂U

Definition (Brouwer degree, 1910)
If v is smooth and 0 is a regular value of v (i.e. dxv is an
isomorphism for every x ∈ v−1(0)),

deg(v ,U) :=
∑

x∈v−1(0)∩U

sgn det dxv ∈ Z.

In general,
deg(v ,U) := deg(w ,U),

where w is smooth, 0 is a regular value of w , and w is close
enough to v .



Properties of the Brouwer degree:
Solvability. If deg(v ,U) ̸= 0 then there exists x ∈ U such
that v(x) = 0.
Excision. If U ′ ⊂ U and v(x) ̸= 0 for all x ∈ U \ U ′ then

deg(v ,U) = deg(v ,U ′).

Homotopy invariance. If Rn × [0, 1] ∋ (x , t) → vt(x) ∈ Rn

is continuous and vt(x) ̸= 0 for all (x , t) ∈ ∂U × [0, 1] then

deg(v0,U) = deg(v1,U).

Additivity. If U0 ∩ U1 = ∅ then

deg(v ,U0 ∪ U1) = deg(v ,U0) + deg(v ,U1).

Multiplicativity. If v : Rn → Rn and v ′ : Rn′ → Rn′ then

deg(v × v ′,U × U ′) = deg(v ,U) · deg(v ′,U ′).



Definition
Z is an isolated set of zeros of v if it is compact and there exists U,
a neighborhood of Z , such that Z = {x ∈ U : v(x) = 0}.
For such Z and U set

d(v ,Z ) := deg(v ,U)

Let Z0 and Z1 are isolated sets of zeros of v0 and, respectively, v1.

Definition
(v0,Z0) ≃ (v1,Z1) iff there exists a vector-field

V : Rn × [0, 1] → Rn × R

such that
V (·, 0) = (v0, 0), V (·, 1) = (v1, 0)

and an isolated set Z of zeros of V in Rn × [0, 1] such that

Z0 = {x : (x , 0) ∈ Z}, Z1 = {x : (x , 1) ∈ Z}.
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An equivalent description of properties of the Brouwer degree:

Solvability. If d(v ,Z ) ̸= 0 then Z ̸= ∅.
Homotopy invariance. If (v ,Z ) ≃ (v ′,Z ′) then

d(v ,Z ) = d(v ′,Z ′).

Additivity. If Z ∩ Z ′ = ∅ then

d(v ,Z ∪ Z ′) = d(v ,Z ) + d(v ,Z ′).

Multiplicativity. If v : Rn → Rn and v ′ : Rn′ → Rn′ then

d(v × v ′,Z × Z ′) = d(v ,Z ) · d(v ′,Z ′).
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A generalization of the Brouwer degree to normed linear spaces is
called the Leray-Schauder degree (1934). It is used, in particular, to
prove the existence of solutions of boundary value problems, by
representing those solutions as zeros v(x) = 0 for a suitable
vector-field v in some normed space.



Let n ≥ 2 (the case n = 1 is trivial) and let ∂U be smooth.
if n = 2, the Brouwer degree is equal to the winding number of
v |∂U , i.e.

deg(v ,U) =
1
2π

∫
∂U

v∗dθ,

where
dθ :=

−ydx + xdy

x2 + y2

is the angular form; the right-hand side is the Cauchy index
(ca. 1830),

more general, for n ≥ 2,

deg(v ,U) =
1

µn−1

∫
∂U

v∗
(

σ

∥x∥n

)
,

where σ =
∑n

i=1(−1)ixidx1 . . . d̂xi . . . dxn and µn−1 is the
volume of the (n − 1)-dimensional unit sphere; the right-hand
side is the Kronecker index (1869).
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Theorem (Poincaré-Hopf formula, ca. 1925)
If ∂U is smooth and v(x) is directed outward of U for each x ∈ ∂U
then

deg(v ,U) = χ(U),

where χ denotes the Euler-Poincaré characteristic.

Remark
Since the Euler-Poincaré characteristic of an odd-dimensional
manifold is equal to 0,

χ(U) = (−1)n(χ(U)− χ(∂U)).



ϕ is a dynamical system on X .

S ⊂ X

Definition
The set

Inv S := {x ∈ S : ϕt(x) ∈ S for all t ∈ R}

is called the invariant part of S .
S is called invariant iff A = InvA.
S is called isolated invariant iff it is compact and there exists U, a
neighborhood of S , such that

S = InvU.

Such an U is called an isolating neighborhood.
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Example
Let A be a matrix with no eigenvalues on the imaginary axis.

The set {0} is an isolated invariant set for the dynamical system
generated by

ẋ = Ax .

Example
Let f : Rn → R is smooth (here of C 2-class), ϕ is the dynamical
system generated by

ẋ = −∇f (x).

x0 is a critical point of f iff ∇f (x0) = 0.

A finite set of isolated critical points of f is an isolated invariant set
of ϕ.
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B ⊂ X .

Definition
The exit set of B is defined as

B− := {x ∈ B : ϕϵn(x) /∈ B for some 0 < ϵn → 0}.

B is called an isolating block iff B and B− are compact and

InvB ⊂ intB.

It follows InvB is an isolated invariant set and B is its isolating
neighborhood.
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X is a topological space, A ⊂ X .

Definition
A continuous map r : X → A is called a retraction iff r(a) = a for
each a ∈ A.

A retraction r is called a strong deformation retraction iff

i ◦ r ≃ idX : X → X ,

where i : A ↪→ X is the inclusion map. A is called a strong
deformation retract of X if there exist a strong deformation
retraction X → A.
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Theorem (Ważewski, 1947)
If B is an isolating block and B− is not a strong deformation
retract of B then

InvB ̸= ∅.
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X is a topological space, A ⊂ X .

Definition
The quotient space X/A is defined as

X/A := (X \ A) ∪ {∗}

endowed with the following topology:
if A ̸= ∅ obtained from the topology of X/A is such that the
neighborhoods of ∗ are induced from the neighborhoods of A
in X (intuitively: X/A is obtained by “squeezing” A to one
point ∗);

X/∅ is equal to X ∪ {∗}, where ∗ is a point outside of X , with
the topology of disjoint union.

In particular, X/X is a one-point space {∗}.
(In consequence, ∅/∅ = {∗}.)
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Definition
A pointed topological space (X , x0) is a topological space X
together with a distinguished point x0 ∈ X (called the base point).

Example
We treat X/A as the pointed space

((X \ A) ∪ {∗}, ∗).

Definition
A map of pointed spaces f : (X , x0) → (Y , y0) is a continuous map
f : X → Y such that f (x0) = y0.
A homotopy between f , g : (X , x0) → (Y , y0) is a continuous map
F : X × [0, 1] → Y such that

F (·, 0) = f , F (·, 1) = g , F (x0, t) = y0 for all t ∈ [0, 1].

If such a homotopy exists, f and g are called homotopic (written as
f ≃ g).
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Definition
(X , x0) and (Y , y0) are of the same homotopy type iff there exist
maps f : (X , x0) → (Y , y0) and g : (Y , y0) → (X , x0) such that

g ◦ f ≃ idX f ◦ g ≃ idY.

The homotopy type of (X , x0) is denoted as [(X , x0)].

The homotopy type of one-point space ({∗}, ∗) is denoted 0.

Remark
If A is a strong deformation retract of X then [X/A] is equal to 0.

Remark (Corollary from Theorem of Ważewski)
If B is an isolating block and [B/B−] ̸= 0 then Inv(B) ̸= ∅.
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S is an isolated invariant set for ϕ on a locally compact metrizable
space X .

Theorem (Conley, Easton 1971)
For every neighborhood U of S there exists an isolating block B
such that

S = InvB, B ⊂ U.

Theorem (Conley 1972)
If B and B∗ are isolating blocks such that

S = InvB = InvB∗

then
[B/B−] = [B∗/B

−
∗ ].

Definition
The homotopy type h(ϕ,S) := [B/B−] is called the Conley index
of S .
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Sk denotes the k-dimensional unit sphere and ∗ ∈ Sk is an
arbitrary point.

Σk := [(Sk , ∗)].

Example
Let ϕ be generated by ẋ = Ax , where A has no eigenvalues on the
imaginary axis. Then

h(ϕ, {0}) = Σk

where k is the number of eigenvalues with the real part positive.
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Let x0 be a critical point of f : Rn → R.

Definition
x0 is non-degenerate if the Hessian of f at x0 (i.e. the linearization
of ∇f at x0) is an isomorphism.

Theorem (Morse, 1929)
If x0 is a non-degenerate critical point then in a suitable coordinate
system in a neighborhood of x0,

f (x) = f (x0)−
k∑

i=1

(xi − x0i )
2 +

n∑
i=k+1

(xi − x0i )
2.

The number i(x0) := k is independent of the choice of a coordinate
system and is called the Morse index of x0

Example
If ϕ is generated by ẋ = −∇f (x) and x0 is non-degenerated then

h(ϕ, {x0}) = Σi(x0).



Let S0 and S1 are isolated invariant sets of ϕ0 and, respectively, ϕ1.

Definition
(ϕ0, S0) ≃ (ϕ1,S1) iff there exists a dynamical system

Φ: X × [0, 1]× R ∋ (x , λ, t) → (ϕλ
t (x), λ) ∈ X × [0, 1]

and an isolated set S of zeros of Φ in X × [0, 1] such that

S0 = {x : (x , 0) ∈ S}, S1 = {x : (x , 1) ∈ S}.



Properties of the Conley index:

Ważewski property. If h(ϕ, S) ̸= 0 then S ̸= ∅.
Homotopy invariance. If (ϕ,S) ≃ (ϕ′,S) then

h(ϕ,S) = h(ϕ′,S ′).

Additivity. If S ∩ S ′ = ∅ then

h(ϕ, S ∪ S ′) = h(ϕ,S) ∨ h(ϕ,S ′).

Multiplicativity. If S is an isolated invariant set for ϕ and ϕ′

is an isolated invariant set for ϕ′ then

h(ϕ× ϕ′,S × S ′) = h(ϕ,S) ∧ h(ϕ′,S ′).
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Properties of the Conley index vs. properties of the Brouwer degree:

h(ϕ, S) ̸= 0 ⇒ S ̸= ∅ vs. d(v ,Z ) ̸= 0 ⇒ Z ̸= ∅,

(ϕ,S) ≃ (ϕ′, S ′) ⇒ h(ϕ, S) = h(ϕ′, S ′)

vs. (v ,Z ) ≃ (v ′,Z ′) ⇒ d(v ,Z ) = d(v ′,Z ′).

h(ϕ,S ∪ S ′) = h(ϕ,S) ∨ h(ϕ, S ′)

vs. d(v ,Z ∪ Z ′) = d(v ,Z ) + d(v ,Z ′),

h(Φ,S × S ′) = h(ϕ,S) ∧ h(ϕ′, S ′)

vs. d(v × v ′,Z × Z ′) = d(v ,Z ) · d(v ′,Z ′).



The Euler-Poincaré characteristics of a pointed space (X , x0) differs
from the E-P characteristic of a single space χ(X ) by one, i.e.

χ(X , x0) = χ(X )− 1.

Theorem (R.S. 1985)
If ϕ is generated by a vector-field v , S is an isolated invariant set of
ϕ,

Z = {x ∈ S : v(x) = 0}

then
d(v ,Z ) = (−1)nχ(h(ϕ,S)).

Example

d(v ,Z ) = χ(B/B−) = χ(B)− χ(B−) = −2
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Some generalized versions of the Conely index:
K.Rybakowski 1987; for dynamical systems generated by
parabolic equations,
K.Gęba, M.Izydorek, A.Pruszko 1999; for gradient systems in
Hilbert spaces,
J.Robbin, D.Salamon 1988; for discrete-time dynamical
systems generated by diffeomorphisms,
M.Mrozek 1990; for discrete-time systems generated by
continuous maps,
M.Mrozek 1988; for multi-valued dynamical systems,
M.Izydorek 2000; for dynamical systems with group
symmetries.



Applications of the Conley index include problems on:
existence and multiplicity of critical points of functionals,
existence of bifurcations in parametrized dynamical systems,
existence of connecting trajectories between stationary points,
existence of periodic orbits,
existence of symbolic dynamics.



Other topological tools in the theory of differential equations
include:

applications of the Lusternik-Schnirelman category,
applications of the Krasnoselski’s genus and, more general,
so-called index theories,
applications of Nielsen fixed point classes theory,
modifications of the Leray-Schauder degree (e.g. the
Gaines-Mawhin’s coincidence index),
further generalizations of the Leray-Schauder degree (e.g.
Skrypnik’s degree),
equivariant degrees (e.g. K.Gęba’s G -∇-degree),
the Fuller index on periodic orbits of dynamical systems.


