
Ergodic and chaotic behaviour
of partial differential equations

and applications to biological models

Ryszard Rudnicki

Institute of Mathematics

Polish Academy of Sciences

IPPT Seminar on Mechanics

6.2.2023

1



by Pavel Borisenko

2



When can we say that a system is chaotic?

Answer: A system is chaotic if it has a simple

and deteministic description, but it behavies

in a complicated and ”random” way.
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1. Macroscopic approach: The existence

of global attractors with complicated structure

(strange attractors).

2. Microscopic approach: The existence of

trajectories which are unstable, turbulent or

dense in the phase space; topological mixing.

3. Stochastic approach: The existence of

invariant measures having strong ergodic and

analytic properties.
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X - metric space

{St}t≥0 - semiflow on X

a) St : X → X, for t ≥ 0,

b) S0 = Id, St+s = St ◦ Ss, t, s ≥ 0,

c) St(x) is a continuous function of (t, x) .

Example:

x′(t) = f(x(t)), x(0) = x0 ∈ Rn

St(x0) = x(t).

Iterates of a transformation S : X → X (dis-

crete time semiflow).
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Macroscopic approach – strange properties of

attractors of a semiflow.

Attractor – a compact set A for which there

is an open set U such that:

A ⊂ U ,

St(clU) ⊂ U for t > 0,

A =
⋂
t>0 St(U).

An attractor is called a strange attractor if it is

a fractal set, i.e. if it has different topological

and Hausdorff dimensions.
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Smale horseshoe
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Dynamics (on the vertical part of Sh) similar

to the shift transformation on Cantor set:

C =
∏
n∈N
{0,2}n, (Tx)n = xn+1.

C = {a ∈ [0,1] : a =
∞∑
n=1

an3−n, an ∈ {0,2} }

C is a strange set and trajectories expands:

|Tn(x)−Tn(y)| = 3n|x−y| for n = 1, . . . , n(x, y),

n(x, y) is large if |x− y| is small.

Examples: the logistic map T (x) = 4x(1 − x),

the Smale’s horseshoe, the Lorenz’ flow and

T : H(C)→ H(C), Tf = f ′.
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Microscopic approach:

Chaos in the sense of Auslander-Yorke:

(a) each trajectory is unstable,

(b) there exists a dense trajectory.

Chaos in the sense of Devaney: (b) + the set

of periodic points is dense in X

Topological mixing: for any two open subsets

U , V of X there exists t0 > 0 such that

St(U) ∩ V 6= ∅ for t ≥ t0.
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Turbulent trajectory (Lasota-Yorke): no perio-

dic points in the closure of the trajectory.

Turbulent trajectory (Bass):

lim
T→∞

1
T

∫ T
0 St(x) dt = x0

lim
t→∞

1
T

∫ T
0 [St(x)− x0][St+τ(x)− x0] dt = γ(τ)

γ(0) 6≡ 0, lim
τ→∞ γ(τ) = 0.
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Stochastic approach: probabilistic proper-

ties of dynamical systems

µ - probability measure on the σ-algebra B(X)

of Borel subsets of X.

µ invariant w.r. {St}t≥0 if for A ∈ B(X), t > 0

µ(S−1
t (A)) = µ(A).
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µ is ergodic if

lim
T→∞

1

T

∫ T
0
f(St(x)) dt =

∫
X
f(x)µ(dx) µ−a.e.

f = 1A ⇒ (mean time of visiting A) = µ(A)

µ is mixing if limt→∞ µ(S−1
t (A)∩B) = µ(A)µ(B).

lim
t→∞

P (St(x) ∈ A |x ∈ B) = µ(A).

µ is exact if limt→∞ µ(St(A)) = 1 for µ(A) > 0.

exactness ⇒ mixing ⇒ ergodicity.
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(P) suppµ = X (positivity on open sets)

Mixing + (P) ⇒ chaos (A-Y)

Ergodicity + (P) ⇒ a.a. traj. are dense in X

Mixing + (P) ⇒ unstability of all trajectories

Mixing + (P) ⇒ topological mixing

Mixing + (P) + exist. of the 2-moment of µ

⇒ almost all trajectories are turbulent (Bass)
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If X is a finite dimesional space, then ergodic prop-
erties of transformations and semiflows on X can be
successfully investigated by means of Frobenius–Perron
operators:

A. Lasota and M.C. Mackey, Chaos, Fractals and Noise.

Stochastic Aspects of Dynamics, 1994.

(X,Σ,m) a σ-finite measure space, S : X → X

a measurable transformation s.t.

if m(A) = 0, then m(S−1(A)) = 0.

The operator P : L1(X)→ L1(X) s.t.∫
A

Pf(x)m(dx) =
∫

S−1(A)

f(x)m(dx)

for all f ∈ L1 and A ∈ Σ is called Frobenius–

Perron operator for S.
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µ- a probability measure µ < m,

Let f∗ = dµ
dm be a density of µ.

µ is invariant under S ⇔ Pf∗ = f∗ for t > 0.

P F–P operator to the system (X,Σ, µ, S):

S P

ergodic 1X is a unique invariant density of P

mixing w-limt→∞ P tf = 1X for each f ∈ D

exact limt→∞ P tf = 1X for each f ∈ D
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Invariant measure for p.d.e.

A.Lasota, Rend. Sem. Math. Univ. Padova 61

(1979), 40-48.

∂u

∂t
+ x

∂u

∂x
= λu

Stv(x) = u(t, x); Stv(x) = eλtv(e−tx).

X = {v ∈ C[0,1] : v(0) = 0}.

Theorem 1 If λ ≥ 2 then there is a continuous

ergodic measure µ on X invariant w.r. {St}.

(continuous µ(Per) = 0)
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Lemma 1 Let S : X → X be a continuous

map. If for some nonempty compact disjoint

sets A and B we have

A ∪B ⊂ S(A) ∩ S(B),

then there exists a turbulent trajectory (L-Y).

Lemma 2 (Bogoluboff-Kriloff). Let S : X →
X be a continuous map of a compact metric

space. Then there exists a probability Borel

measure µ invariant and ergodic w.r. S.
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Invariant measure for p.d.e.

R.R. (1985), (1988).

∂u

∂t
+

∂

∂x
(g(x)u) = f(x, u)

u(0, x) = v(x), for x ∈ [0,1].

g(0) = 0, g(x) > 0 for x ∈ (0,1],

f(0, u0) = 0, ∂f
∂u(0, u∗) > 0.

{Vt}t≥0, Vtv(x) = u(t, x)

X = {v ∈ C[0,1] : v(0) = u∗}.
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Theorem 2 There exists a probability mea-

sure µ which satisfies:

(a) µ is invariant w.r. to {Vt},

(b) µ is exact,

(c) suppµ = X,

(d)
∫
X ‖v2‖µ(dv) <∞.

Moreover, we proved that the set of periodic

points of {Vt} is dense in X.
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Draft of the proof:

{Tt} left-side shift on

Y = {ϕ : [0,∞)→ R}

(Ttϕ)(s) = ϕ(s+ t) for t, s ≥ 0.

1. Semiflows (Vt, X) and (Tt, Y ) are conjugated

(isomorphic), a.e. the map Q : X → Y , given

by Qv0(t) = v(t,1) is a homeomorphism from

X onto Q(X) ⊂ Y and

Q ◦ St = Tt ◦Q, for t ≥ 0.
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2. Let ξt = etwe−2t, where wt, t ≥ 0 is the

Wiener process. Then ξt is a stationary Gaus-

sian process with continuous trajectories. Let

m(A) = P{ω : ξ·(ω) ∈ A} A ∈ B(Y ).

The measure m is invariant under {Tt} and

m(Q(X)) = 1. The measure ν(A) = m(Q(A))

is invariant under {St}.
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3. Exactness. (Tt, Y ) is exact iff the σ-algebra

A∞ =
⋂
t>0 T

−1
t (B(Y )) contains only sets of

measure zero or one.

Let F≤t be the σ-algebra generated by ws, s ≤ t.
Then σ-algebra T−1

t (B(Y )) is generated by ξs,

s ≥ t, therefore, T−1
t (B(Y )) = F[0,e−2t]. Thus

A∞ =
⋂
r>0F[0,r] and according to Blumen-

thal’s zero-one law A∞ contains only sets of

measure zero or one.

4. Positivity of ν on open sets can be obtained

from the following property of Wiener process:

Prob{ω : f(t) < wt(ω) < g(t) for t ∈ [a, b]} > 0.

for continuous functions f < g and 0 < a < b.
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Invariant measure for p.d.e.

∂u

∂t
+ a1(x)

∂u

∂x1
+ · · ·+ ad(x)

∂u

∂xd
= f(x, u) (?)

x ∈ D, D diffeomorphic with B(0,1), 0 ∈ IntD.

a : D → Rd is C1 function, a(0) = 0.

x′(t) = −a(x(t)), x(0) = x0 ∈ D, πtx0 = x(t).

Assume that if x0 ∈ D then πtx0 ∈ D for t ≥ 0

and limt→∞ πtx0 = 0.

0

D
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There exists u00 ∈ R such that f(0, u00) = 0 and
∂f

∂u
(0, u00) > 0;

there exist u0− ∈ [−∞, u00) and u0+ ∈ (u00,∞]

such that f(0, u) < 0 for u ∈ (u0−, u
0
0) and

f(0, u) > 0 for u ∈ (u00, u
0
+);

if u0− > −∞, then f(0, u0−) = 0,
∂f

∂u
(0, u0−) < 0;

if u0+ <∞, then f(0, u0+) = 0,
∂f

∂u
(0, u0+) < 0;
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Lemma 3 If u0− > −∞, then there exists a

unique stationary solution u− : D → R of (?)

such that u−(0) = u0−. Analogously if u0+ <∞,

then ... u+(0) = u0+.

We set u− ≡ −∞ if u0− = −∞ and u+ ≡ ∞ if

u0+ =∞. Let

V0 = {v ∈ C(D): u−(x) < v(x) < u+(x) for x ∈ D
and v(0) = u00}.

If v(x) = u(0, x), v ∈ V0, then Stv = u(t, ·) ∈ V0.

Theorem 3 There exists a measure m sup-

ported on V0 s.t. (V0,B(V0),m;St) is exact.
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Idea of the proof.

1. We replace the Wiener process by Lévy d-

parameter Brownian motion, which is a Gaus-

sian random field (ξ(x)) on Rd with zero mean

and covariance function

c(x, y) = Eξ(x)ξ(y) =
1

2
(|x|+ |y| − |x− y|).

2. We set W = C([0,∞) × Sd−1) and de-

fine a semiflow (Tt)t≥0 on the space W by

Ttw(s, y) = w(s + t, y), s, t ≥ 0 and y ∈ Sd−1.

0

D

[0,∞)× Sd−1
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3. Starting from the random field (ξx) we con-

struct an invariant measure µ on the space W

invariant w.r. to (Tt)t≥0 supported on W .

4. We show that systems (V0,B(V0),m;St) and

(W,B(W ), µ;Tt) are isomorphic.

If f(x, u00) ≡ 0, then we can consider a semiflow

(St) restricted to the space

V +
0 = {v ∈ V0 : u00 ≤ v(x) < u+(x) for x ∈ D}.

Theorem 4 There exists a measure m sup-

ported on V +
0 s.t. (V +

0 ,B(V +
0 ),m;St) is exact.
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Equation in a divergence form

∂u

∂t
(t, x) + div(a(x)u(t, x)) = g(x, u(t, x)), (??)

where div(a(x)u(t, x)) =
∑d
i=1

∂(ai(x)u(t,x))
∂xi

.

Eq. (??) describes the growth of a population.

Any individual is characterized by a vector x

which changes according to Eq. x′ = a(x).

g(x, u) – is a growth rate, u(t, x) is the popu-

lation distribution w.r. to x.

0

D
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Eq. (??) can be written in the form (?) with

f(x, u) = g(x, u)− udiv a(x).

If g(0, u00) = u00 div a(0),
∂g

∂u
(0, u00) > div a(0)

then f(0, u00) = 0,
∂f

∂u
(0, u00) > 0.



Space structure population with logistic growth

We consider a population in which individuals

disperse according to equation x′(t) = a(x) and

then leave the set D.

Let g(x, u) = λ(1 − u/K(x))u be the growth

rate. Then the solution of Eq. (??) is the space

distribution of the number of individuals in D.

Here u0 ≡ 0. If λ > div a(0) and if

u0+ = K(0)
(
1− λ−1 div a(0)

)
,

then there is a stationary solution u+ of Eq. (??)

such that u+(0) = u0+.
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According to Theorem 4 there exists a measure

m supported on V +
0 s.t. (V +

0 ,B(V +
0 ),m;St) is

exact, where

V +
0 = {v ∈ C(D): 0 ≤ v(x) < u+(x) for x ∈ D,

v(0) = 0}.
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Flow with jumps

We consider a movement of particles with ve-

locity a(x) in the domain D. When a particle

reaches the boundary ∂D it jumps to the set D

and chooses its new position according to the

distribution v(t, x) of other particles.

∂v

∂t
(t, x) + div(a(x)v(t, x)) = (♣)( ∫

∂D
a(y) · n(y)v(t, y)σ(dy)

)
v(t, x).

Here n(y) is the outward pointing unit normal

to ∂D at y; σ(dy) is the surface measure on

∂D; and the term between large brackets is

the total flow across the boundary ∂D.
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If V d0 the subset of V +
0 consisting of probability

densities, then there exists a measure m sup-

ported on V d0 s.t. the semiflow (V d0 ,B(V d0 ),md;Pt)

is exact.

Proof. Let u(t, x) is a positive solution of

Eq. (?) with

f(x, u) = (λ− div a(x))u.

If U(t) =
∫
D u(t, x) dx, then v(t, x) = u(t, x)/U(t)

is a solution of (♣).
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Blood cell production system

R.R. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 19 (2009), 043112, 1–6.

0 1x

The evolution of maturity of blood cells in the

bone marrow (precursors of any blood cells).

x′ = g(x), x-maturity of a cell.

∂u

∂t
+

∂

∂x
(g(x)u) = g(1)u(t,1)u(t, x) (1)
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Corollary 1 The semiflow {Ut}t≥0 generated

by (1) is topologically mixing, chaotic in the

sense of Devaney and turbulent in the sense of

Bass.
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Size-structured cell population model

R.R. J. Math. Anal. Appl. 393 (2012), 151–

165.

x - cell size, x′ = g(x)

b(x), d(x) - birth i death coefficients,

∂

∂t
u(t, x) +

∂

∂x
(g(x)u(t, x)) =− µ(x)u(t, x)

+ 4b(2x)u(t,2x),

where µ(x) = d(x) + b(x).
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Theorem on stability. If g(2x) 6= 2g(x) at

least for one x, then there exist λ ∈ R and a

density v∗ s.t.

lim
t→∞

e−λtu(t, x) = C(u(0, x))v∗(x).

Question: What can happen when g(x) = x ?

∂u

∂t
+ x

∂u

∂x
= au(t, x) + bu(t,2x),

El Mourchid, G. Metafune, A. Rhandi and J.

Voigt, J. Math. Anal. Appl. 339 (2008),

918–924. : u(t,2x)1[0,1/2](x)
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Theorem 5 If 2ab log 2 < e−1 and if we choose

the space X in a ”proper way” then there ex-

ists a probability measure µ which satisfies:

(a) µ is invariant w.r. to {Ut},

(b) µ is mixing,

(c) suppµ = X,

(d)
∫
X ‖v2‖µ(dv) <∞.

The set of periodic points of {Ut} is dense.

Corollary 2 The semiflow {Ut}t≥0 is topolog-

ically mixing, chaotic in the sense of Devaney

and turbulent in the sense of Bass.
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Thank you!
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