Ergodic and chaotic behaviour of partial differential equations and applications to biological models

Ryszard Rudnicki Institute of Mathematics Polish Academy of Sciences

IPPT Seminar on Mechanics 6.2.2023

1

by Pavel Borisenko

When can we say that a system is chaotic?

Answer: A system is chaotic if it has a simple and **deteministic** description, but it behavies in a complicated and **"random"** way.

R.R. Math. Meth. Appl. Sci. 27 (2004), 723–738.
R.R. Discrete and Continuous Dynamical Systems 35 (2015), 757–770.

1. **Macroscopic approach:** The existence of global attractors with complicated structure (*strange attractors*).

2. Microscopic approach: The existence of trajectories which are unstable, turbulent or dense in the phase space; topological mixing.

3. **Stochastic approach:** The existence of invariant measures having strong ergodic and analytic properties.

$$\begin{array}{l} X \ - \ \mathrm{metric} \ \mathrm{space} \\ \{S_t\}_{t\geq 0} \ - \ \mathrm{semiflow} \ \mathrm{on} \ X \\ \mathrm{a)} \ S_t : X \to X, \ \mathrm{for} \ t\geq 0, \\ \mathrm{b)} \ S_0 = \mathrm{Id}, \ S_{t+s} = S_t \circ S_s, \ t,s\geq 0, \\ \mathrm{c)} \ S_t(x) \ \mathrm{is} \ \mathrm{a} \ \mathrm{continuous} \ \mathrm{function} \ \mathrm{of} \ (t,x) \ . \end{array}$$

Example:

$$x'(t) = f(x(t)), \quad x(0) = x_0 \in \mathbb{R}^n$$

 $S_t(x_0) = x(t).$

Iterates of a transformation $S: X \to X$ (discrete time semiflow).

Macroscopic approach – strange properties of attractors of a semiflow.

Attractor – a compact set A for which there is an open set U such that: $A \subset U$, $S_t(\operatorname{cl} U) \subset U$ for t > 0, $A = \bigcap_{t>0} S_t(U)$.

An attractor is called a *strange attractor* if it is a fractal set, i.e. if it has different topological and Hausdorff dimensions.

Dynamics (on the vertical part of Sh) similar to the shift transformation on Cantor set:

$$C = \prod_{n \in \mathbb{N}} \{0, 2\}_n, \quad (Tx)_n = x_{n+1}.$$
$$C = \{a \in [0, 1] : a = \sum_{n=1}^{\infty} a_n 3^{-n}, a_n \in \{0, 2\} \}$$

C is a strange set and trajectories expands: $|T^n(x) - T^n(y)| = 3^n |x-y|$ for n = 1, ..., n(x, y), n(x, y) is large if |x - y| is small.

Examples: the logistic map T(x) = 4x(1-x), the Smale's horseshoe, the Lorenz' flow and $T: H(\mathbb{C}) \to H(\mathbb{C}), Tf = f'.$

Microscopic approach:

Chaos in the sense of Auslander-Yorke:

(a) each trajectory is unstable,

(b) there exists a dense trajectory.

Chaos in the sense of Devaney: (b) + the set of periodic points is dense in X

Topological mixing: for any two open subsets U, V of X there exists $t_0 > 0$ such that

 $S_t(U) \cap V \neq \emptyset$ for $t \ge t_0$.

Turbulent trajectory (Lasota-Yorke): no periodic points in the closure of the trajectory.

Turbulent trajectory (Bass):

 $\lim_{T \to \infty} \frac{1}{T} \int_0^T S_t(x) dt = x_0$ $\lim_{t \to \infty} \frac{1}{T} \int_0^T [S_t(x) - x_0] [S_{t+\tau}(x) - x_0] dt = \gamma(\tau)$ $\gamma(0) \neq 0, \quad \lim_{\tau \to \infty} \gamma(\tau) = 0.$

Stochastic approach: probabilistic properties of dynamical systems

 μ - probability measure on the σ -algebra $\mathcal{B}(X)$ of Borel subsets of X.

 μ invariant w.r. $\{S_t\}_{t\geq 0}$ if for $A \in \mathcal{B}(X)$, t > 0 $\mu(S_t^{-1}(A)) = \mu(A).$

 μ is ergodic if

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(S_t(x)) dt = \int_X f(x) \mu(dx) \quad \mu - \text{a.e.}$$

 $f = 1_A \Rightarrow$ (mean time of visiting A) = $\mu(A)$

 μ is mixing if $\lim_{t\to\infty} \mu(S_t^{-1}(A)\cap B) = \mu(A)\mu(B)$.

$$\lim_{t \to \infty} P(S_t(x) \in A \,|\, x \in B) = \mu(A).$$

 μ is exact if $\lim_{t\to\infty} \mu(S_t(A)) = 1$ for $\mu(A) > 0$.

exactness \Rightarrow mixing \Rightarrow ergodicity.

(P) supp $\mu = X$ (positivity on open sets) Mixing + (P) \Rightarrow chaos (A-Y)

Ergodicity + (P) \Rightarrow a.a. traj. are dense in X

Mixing + (P) \Rightarrow unstability of all trajectories

Mixing + (P) \Rightarrow topological mixing

Mixing + (P) + exist. of the 2-moment of μ \Rightarrow almost all trajectories are turbulent (Bass)

If X is a finite dimesional space, then ergodic properties of transformations and semiflows on X can be successfully investigated by means of Frobenius–Perron operators:

A. Lasota and M.C. Mackey, *Chaos, Fractals and Noise. Stochastic Aspects of Dynamics*, 1994.

 (X, Σ, m) a σ -finite measure space, $S : X \to X$ a measurable transformation s.t. if m(A) = 0, then $m(S^{-1}(A)) = 0$. The operator $P : L^1(X) \to L^1(X)$ s.t.

$$\int_{A} Pf(x) m(dx) = \int_{S^{-1}(A)} f(x) m(dx)$$

for all $f \in L^1$ and $A \in \Sigma$ is called *Frobenius*– *Perron operator* for *S*.

 μ - a probability measure $\mu < m$, Let $f_* = \frac{d\mu}{dm}$ be a density of μ .

 μ is invariant under $S \Leftrightarrow Pf_* = f_*$ for t > 0.

P F–P operator to the system (X, Σ, μ, S) :

S	Р
ergodic	1_X is a unique invariant density of P
mixing	w-lim $_{t \to \infty} P^t f = 1_X$ for each $f \in D$
exact	$\lim_{t\to\infty}P^tf=1_X$ for each $f\in D$

Invariant measure for p.d.e.

A.Lasota, Rend. Sem. Math. Univ. Padova **61** (1979), 40-48.

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = \lambda u$$

 $S_t v(x) = u(t, x); \quad S_t v(x) = e^{\lambda t} v(e^{-t}x).$ $X = \{ v \in C[0, 1] : v(0) = 0 \}.$

Theorem 1 If $\lambda \ge 2$ then there is a continuous ergodic measure μ on X invariant w.r. $\{S_t\}$.

(continuous $\mu(Per) = 0$)

Lemma 1 Let $S : X \to X$ be a continuous map. If for some nonempty compact disjoint sets A and B we have

$A \cup B \subset S(A) \cap S(B),$

then there exists a turbulent trajectory (L-Y).

Lemma 2 (Bogoluboff-Kriloff). Let $S : X \rightarrow X$ be a continuous map of a compact metric space. Then there exists a probability Borel measure μ invariant and ergodic w.r. S.

Invariant measure for p.d.e.

R.R. (1985), (1988).

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(g(x)u) = f(x,u)$$

 $u(0,x) = v(x), \text{ for } x \in [0,1].$

 $g(0) = 0, \ g(x) > 0 \ \text{for} \ x \in (0, 1],$

$$\begin{aligned} f(0, u_0) &= 0, \ \frac{\partial f}{\partial u}(0, u_*) > 0. \\ \{V_t\}_{t \ge 0}, \quad V_t v(x) &= u(t, x) \\ X &= \{v \in C[0, 1] : \quad v(0) = u_*\}. \end{aligned}$$

Theorem 2 There exists a probability measure μ which satisfies:

(a) μ is invariant w.r. to $\{V_t\}$,

- (b) μ is exact,
- (c) supp $\mu = X$,
- (d) $\int_X ||v^2|| \mu(dv) < \infty$.

Moreover, we proved that the set of periodic points of $\{V_t\}$ is dense in X.

Draft of the proof:

 $\{T_t\}$ left-side shift on

$$Y = \{ \varphi : [0, \infty) \to \mathbb{R} \}$$
$$(T_t \varphi)(s) = \varphi(s+t) \text{ for } t, s \ge 0.$$

1. Semiflows (V_t, X) and (T_t, Y) are conjugated (isomorphic), a.e. the map $Q : X \to Y$, given by $Qv_0(t) = v(t, 1)$ is a homeomorphism from X onto $Q(X) \subset Y$ and

$$Q \circ S_t = T_t \circ Q$$
, for $t \ge 0$.

2. Let $\xi_t = e^t w_{e^{-2t}}$, where w_t , $t \ge 0$ is the Wiener process. Then ξ_t is a stationary Gaussian process with continuous trajectories. Let

 $m(A) = P\{\omega : \xi(\omega) \in A\} \quad A \in \mathcal{B}(Y).$

The measure *m* is invariant under $\{T_t\}$ and m(Q(X)) = 1. The measure $\nu(A) = m(Q(A))$ is invariant under $\{S_t\}$.

21

3. Exactness. (T_t, Y) is exact iff the σ -algebra $\mathcal{A}_{\infty} = \bigcap_{t>0} T_t^{-1}(\mathcal{B}(Y))$ contains only sets of measure zero or one.

Let $\mathcal{F}_{\leq t}$ be the σ -algebra generated by $w_s, s \leq t$. Then σ -algebra $T_t^{-1}(\mathcal{B}(Y))$ is generated by ξ_s , $s \geq t$, therefore, $T_t^{-1}(\mathcal{B}(Y)) = \mathcal{F}_{[0,e^{-2t}]}$. Thus $\mathcal{A}_{\infty} = \bigcap_{r>0} \mathcal{F}_{[0,r]}$ and according to Blumenthal's zero-one law \mathcal{A}_{∞} contains only sets of measure zero or one.

4. Positivity of ν on open sets can be obtained from the following property of Wiener process:

 $\mathsf{Prob}\{\omega : f(t) < w_t(\omega) < g(t) \text{ for } t \in [a, b]\} > 0.$

for continuous functions f < g and 0 < a < b.

Invariant measure for p.d.e.

$$\frac{\partial u}{\partial t} + a_1(x)\frac{\partial u}{\partial x_1} + \dots + a_d(x)\frac{\partial u}{\partial x_d} = f(x, u) \quad (\star)$$

 $x \in D$, D diffeomorphic with B(0, 1), $0 \in \text{Int } D$. $a \colon D \to \mathbb{R}^d$ is C^1 function, a(0) = 0.

 $x'(t) = -a(x(t)), \quad x(0) = x_0 \in D, \quad \pi_t x_0 = x(t).$

Assume that if $x_0 \in D$ then $\pi_t x_0 \in D$ for $t \ge 0$ and $\lim_{t\to\infty} \pi_t x_0 = 0$.

There exists $u_0^0 \in \mathbb{R}$ such that $f(0, u_0^0) = 0$ and $\frac{\partial f}{\partial u}(0, u_0^0) > 0;$

there exist $u_{-}^{0} \in [-\infty, u_{0}^{0})$ and $u_{+}^{0} \in (u_{0}^{0}, \infty]$ such that f(0, u) < 0 for $u \in (u_{-}^{0}, u_{0}^{0})$ and f(0, u) > 0 for $u \in (u_{0}^{0}, u_{+}^{0})$;

if
$$u_{-}^{0} > -\infty$$
, then $f(0, u_{-}^{0}) = 0$, $\frac{\partial f}{\partial u}(0, u_{-}^{0}) < 0$;
if $u_{+}^{0} < \infty$, then $f(0, u_{+}^{0}) = 0$, $\frac{\partial f}{\partial u}(0, u_{+}^{0}) < 0$;

Lemma 3 If $u_{-}^{0} > -\infty$, then there exists a unique stationary solution $u_{-}: D \to \mathbb{R}$ of (\star) such that $u_{-}(0) = u_{-}^{0}$. Analogously if $u_{+}^{0} < \infty$, then ... $u_{+}(0) = u_{+}^{0}$.

We set $u_{-} \equiv -\infty$ if $u_{-}^{0} = -\infty$ and $u_{+} \equiv \infty$ if $u_{+}^{0} = \infty$. Let

 $V_0 = \{ v \in C(D) \colon u_-(x) < v(x) < u_+(x) \text{ for } x \in D \\ \text{and } v(0) = u_0^0 \}.$

If v(x) = u(0, x), $v \in V_0$, then $S_t v = u(t, \cdot) \in V_0$.

Theorem 3 There exists a measure m supported on V_0 s.t. $(V_0, \mathcal{B}(V_0), m; S_t)$ is exact.

Idea of the proof.

1. We replace the Wiener process by Lévy *d*parameter Brownian motion, which is a Gaussian random field $(\xi(x))$ on \mathbb{R}^d with zero mean and covariance function

$$c(x,y) = \mathsf{E}\xi(x)\xi(y) = \frac{1}{2}(|x| + |y| - |x - y|).$$

2. We set $W = C([0,\infty) \times S^{d-1})$ and define a semiflow $(T_t)_{t\geq 0}$ on the space W by $T_tw(s,y) = w(s+t,y), s,t \geq 0$ and $y \in S^{d-1}$.

3. Starting from the random field (ξ_x) we construct an invariant measure μ on the space W invariant w.r. to $(T_t)_{t\geq 0}$ supported on W. 4. We show that systems $(V_0, \mathcal{B}(V_0), m; S_t)$ and $(W, \mathcal{B}(W), \mu; T_t)$ are isomorphic.

If $f(x, u_0^0) \equiv 0$, then we can consider a semiflow (S_t) restricted to the space

$$V_0^+ = \{ v \in V_0 : u_0^0 \le v(x) < u_+(x) \text{ for } x \in D \}.$$

Theorem 4 There exists a measure m supported on V_0^+ s.t. $(V_0^+, \mathcal{B}(V_0^+), m; S_t)$ is exact.

Equation in a divergence form

 $\frac{\partial u}{\partial t}(t,x) + \operatorname{div}(a(x)u(t,x)) = g(x,u(t,x)), \ (\star\star)$

where div $(a(x)u(t,x)) = \sum_{i=1}^{d} \frac{\partial(a_i(x)u(t,x))}{\partial x_i}$. Eq. (**) describes the growth of a population. Any individual is characterized by a vector xwhich changes according to Eq. x' = a(x). g(x,u) – is a growth rate, u(t,x) is the population distribution w.r. to x.

Eq. (**) can be written in the form (*) with

$$f(x,u) = g(x,u) - u \operatorname{div} a(x).$$

If $g(0, u_0^0) = u_0^0 \operatorname{div} a(0), \quad \frac{\partial g}{\partial u}(0, u_0^0) > \operatorname{div} a(0)$
then $f(0, u_0^0) = 0, \quad \frac{\partial f}{\partial u}(0, u_0^0) > 0.$

Space structure population with logistic growth

We consider a population in which individuals disperse according to equation x'(t) = a(x) and then leave the set D.

Let $g(x,u) = \lambda(1 - u/K(x))u$ be the growth rate. Then the solution of Eq. (**) is the space distribution of the number of individuals in D.

Here $u_0 \equiv 0$. If $\lambda > \operatorname{div} a(0)$ and if

$$u^{\mathbf{0}}_{+} = K(\mathbf{0}) \Big(\mathbf{1} - \lambda^{-1} \operatorname{div} a(\mathbf{0}) \Big),$$

then there is a stationary solution u_+ of Eq. (**) such that $u_+(0) = u_+^0$.

According to Theorem 4 there exists a measure m supported on V_0^+ s.t. $(V_0^+, \mathcal{B}(V_0^+), m; S_t)$ is exact, where

 $V_0^+ = \{ v \in C(D) : 0 \le v(x) < u_+(x) \text{ for } x \in D, \\ v(0) = 0 \}.$

Flow with jumps

We consider a movement of particles with velocity a(x) in the domain D. When a particle reaches the boundary ∂D it jumps to the set Dand chooses its new position according to the distribution v(t, x) of other particles.

$$\frac{\partial v}{\partial t}(t,x) + \operatorname{div}(a(x)v(t,x)) = \qquad (\clubsuit)$$
$$\left(\int_{\partial D} a(y) \cdot n(y)v(t,y) \,\sigma(dy)\right) v(t,x).$$

Here n(y) is the outward pointing unit normal to ∂D at y; $\sigma(dy)$ is the surface measure on ∂D ; and the term between large brackets is the total flow across the boundary ∂D .

If V_0^d the subset of V_0^+ consisting of probability densities, then there exists a measure m supported on V_0^d s.t. the semiflow $(V_0^d, \mathcal{B}(V_0^d), m_d; P_t)$ is exact.

Proof. Let u(t,x) is a positive solution of Eq. (*) with

 $f(x, u) = (\lambda - \operatorname{div} a(x))u.$

If $U(t) = \int_D u(t, x) dx$, then v(t, x) = u(t, x)/U(t) is a solution of (\clubsuit).

Blood cell production system

R.R. Chaos: An Interdisciplinary Journal of Nonlinear Science, **19** (2009), 043112, 1–6.

The evolution of maturity of blood cells in the bone marrow (precursors of any blood cells). x' = g(x), x-maturity of a cell.

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(g(x)u) = g(1)u(t,1)u(t,x)$$
(1)

Corollary 1 The semiflow $\{U_t\}_{t\geq 0}$ generated by (1) is topologically mixing, chaotic in the sense of Devaney and turbulent in the sense of Bass.

Size-structured cell population model

R.R. J. Math. Anal. Appl. **393** (2012), 151– 165.

x - cell size,
$$x' = g(x)$$

b(x), d(x) - birth i death coefficients,

$$\frac{\partial}{\partial t}u(t,x) + \frac{\partial}{\partial x}(g(x)u(t,x)) = -\mu(x)u(t,x) + 4b(2x)u(t,2x),$$

where $\mu(x) = d(x) + b(x)$.

Theorem on stability. If $g(2x) \neq 2g(x)$ at least for one x, then there exist $\lambda \in \mathbb{R}$ and a density v^* s.t.

$$\lim_{t \to \infty} e^{-\lambda t} u(t, x) = C(u(0, x))v^*(x).$$

Question: What can happen when g(x) = x?

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = au(t, x) + bu(t, 2x),$$

El Mourchid, G. Metafune, A. Rhandi and J. Voigt, J. Math. Anal. Appl. **339** (2008), 918–924. : $u(t, 2x)1_{[0,1/2]}(x)$

Theorem 5 If $2^{a}b \log 2 < e^{-1}$ and if we choose the space X in a "proper way" then there exists a probability measure μ which satisfies:

(a) μ is invariant w.r. to $\{U_t\}$,

(b) μ is mixing,

(c) supp $\mu = X$,

(d)
$$\int_X \|v^2\| \mu(dv) < \infty$$
.

The set of periodic points of $\{U_t\}$ is dense.

Corollary 2 The semiflow $\{U_t\}_{t\geq 0}$ is topologically mixing, chaotic in the sense of Devaney and turbulent in the sense of Bass.

Thank you!