Ergodic and chaotic behaviour of partial differential equations and applications to biological models

Ryszard Rudnicki
Institute of Mathematics
Polish Academy of Sciences
IPPT Seminar on Mechanics
6.2.2023

by Pavel Borisenko

When can we say that a system is chaotic?

Answer: A system is chaotic if it has a simple and deteministic description, but it behavies in a complicated and "random" way.
R.R. Math. Meth. Appl. Sci. 27 (2004), 723-738.
R.R. Discrete and Continuous Dynamical Systems 35 (2015), 757-770.

1. Macroscopic approach: The existence of global attractors with complicated structure (strange attractors).
2. Microscopic approach: The existence of trajectories which are unstable, turbulent or dense in the phase space; topological mixing.
3. Stochastic approach: The existence of invariant measures having strong ergodic and analytic properties.
X - metric space
$\left\{S_{t}\right\}_{t \geq 0}$ - semiflow on X
a) $S_{t}: X \rightarrow X$, for $t \geq 0$,
b) $S_{0}=\mathrm{Id}, S_{t+s}=S_{t} \circ S_{s}, t, s \geq 0$,
c) $S_{t}(x)$ is a continuous function of (t, x).

Example:

$$
\begin{gathered}
x^{\prime}(t)=f(x(t)), \quad x(0)=x_{0} \in \mathbb{R}^{n} \\
S_{t}\left(x_{0}\right)=x(t) .
\end{gathered}
$$

Iterates of a transformation $S: X \rightarrow X$ (discrete time semiflow).

Macroscopic approach - strange properties of attractors of a semiflow.

Attractor - a compact set A for which there is an open set U such that:
$A \subset U$,
$S_{t}(\mathrm{cl} U) \subset U$ for $t>0$,
$A=\cap_{t>0} S_{t}(U)$.
An attractor is called a strange attractor if it is a fractal set, i.e. if it has different topological and Hausdorff dimensions.

Dynamics (on the vertical part of Sh) similar to the shift transformation on Cantor set:

$$
\begin{gathered}
C=\prod_{n \in \mathbb{N}}\{0,2\}_{n}, \quad(T x)_{n}=x_{n+1} . \\
C=\left\{a \in[0,1]: a=\sum_{n=1}^{\infty} a_{n} 3^{-n}, a_{n} \in\{0,2\}\right\}
\end{gathered}
$$

C is a strange set and trajectories expands: $\left|T^{n}(x)-T^{n}(y)\right|=3^{n}|x-y|$ for $n=1, \ldots, n(x, y)$, $n(x, y)$ is large if $|x-y|$ is small.

Examples: the logistic map $T(x)=4 x(1-x)$, the Smale's horseshoe, the Lorenz' flow and $T: H(\mathbb{C}) \rightarrow H(\mathbb{C}), T f=f^{\prime}$.

Microscopic approach:

Chaos in the sense of Auslander-Yorke:
(a) each trajectory is unstable,
(b) there exists a dense trajectory.

Chaos in the sense of Devaney: (b) + the set of periodic points is dense in X

Topological mixing: for any two open subsets U, V of X there exists $t_{0}>0$ such that

$$
S_{t}(U) \cap V \neq \emptyset \quad \text { for } t \geq t_{0}
$$

Turbulent trajectory (Lasota-Yorke): no periodic points in the closure of the trajectory.

Turbulent trajectory (Bass):
$\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} S_{t}(x) d t=x_{0}$
$\lim _{t \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left[S_{t}(x)-x_{0}\right]\left[S_{t+\tau}(x)-x_{0}\right] d t=\gamma(\tau)$
$\gamma(0) \not \equiv 0, \quad \lim _{\tau \rightarrow \infty} \gamma(\tau)=0$.

Stochastic approach: probabilistic properties of dynamical systems
μ - probability measure on the σ-algebra $\mathcal{B}(X)$ of Borel subsets of X.
μ invariant w.r. $\left\{S_{t}\right\}_{t \geq 0}$ if for $A \in \mathcal{B}(X), t>0$

$$
\mu\left(S_{t}^{-1}(A)\right)=\mu(A)
$$

μ is ergodic if

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f\left(S_{t}(x)\right) d t=\int_{X} f(x) \mu(d x) \quad \mu \text {-a.e. } \\
& \left.f=1_{A} \Rightarrow \text { (mean time of visiting } A\right)=\mu(A)
\end{aligned}
$$

μ is mixing if $\lim _{t \rightarrow \infty} \mu\left(S_{t}^{-1}(A) \cap B\right)=\mu(A) \mu(B)$.

$$
\lim _{t \rightarrow \infty} P\left(S_{t}(x) \in A \mid x \in B\right)=\mu(A) .
$$

μ is exact if $\lim _{t \rightarrow \infty} \mu\left(S_{t}(A)\right)=1$ for $\mu(A)>0$.
exactness \Rightarrow mixing \Rightarrow ergodicity.
(\mathbf{P}) supp $\mu=X$ (positivity on open sets) Mixing $+(P) \Rightarrow$ chaos ($A-Y$)

Ergodicity $+(P) \Rightarrow$ a.a. traj. are dense in X Mixing $+(P) \Rightarrow$ unstability of all trajectories Mixing $+(P) \Rightarrow$ topological mixing Mixing $+(\mathrm{P})+$ exist. of the 2 -moment of μ \Rightarrow almost all trajectories are turbulent (Bass)

If X is a finite dimesional space, then ergodic properties of transformations and semiflows on X can be successfully investigated by means of Frobenius-Perron operators:
A. Lasota and M.C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, 1994.
(X, Σ, m) a σ-finite measure space, $S: X \rightarrow X$ a measurable transformation s.t.
if $m(A)=0$, then $m\left(S^{-1}(A)\right)=0$.
The operator $P: L^{1}(X) \rightarrow L^{1}(X)$ s.t.

$$
\int_{A} \operatorname{Pf}(x) m(d x)=\int_{S^{-1}(A)} f(x) m(d x)
$$

for all $f \in L^{1}$ and $A \in \Sigma$ is called FrobeniusPerron operator for S.
μ^{-}a probability measure $\mu<m$,
Let $f_{*}=\frac{d \mu}{d m}$ be a density of μ.
μ is invariant under $S \Leftrightarrow P f_{*}=f_{*}$ for $t>0$.
P F-P operator to the system (X, Σ, μ, S) :

S	P
ergodic	$\mathbf{1}_{X}$ is a unique invariant density of P
mixing	$w^{-\lim _{t \rightarrow \infty}} P^{t} f=\mathbf{1}_{X}$ for each $f \in D$
exact	$\lim _{t \rightarrow \infty} P^{t} f=\mathbf{1}_{X}$ for each $f \in D$

Invariant measure for p.d.e.

A.Lasota, Rend. Sem. Math. Univ. Padova 61 (1979), 40-48.

$$
\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=\lambda u
$$

$$
\begin{aligned}
S_{t} v(x) & =u(t, x) ; \quad S_{t} v(x)=e^{\lambda t} v\left(e^{-t} x\right) \\
X & =\{v \in C[0,1]: \quad v(0)=0\}
\end{aligned}
$$

Theorem 1 If $\lambda \geq 2$ then there is a continuous ergodic measure μ on X invariant w.r. $\left\{S_{t}\right\}$.
(continuous $\mu(P e r)=0$)

Lemma 1 Let $S: X \rightarrow X$ be a continuous map. If for some nonempty compact disjoint sets A and B we have

$$
A \cup B \subset S(A) \cap S(B)
$$

then there exists a turbulent trajectory ($L-Y$).

Lemma 2 (Bogoluboff-Kriloff). Let $S: X \rightarrow$ X be a continuous map of a compact metric space. Then there exists a probability Borel measure μ invariant and ergodic w.r. S.

Invariant measure for p.d.e.

R.R. (1985), (1988).

$$
\begin{gathered}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}(g(x) u)=f(x, u) \\
u(0, x)=v(x), \text { for } x \in[0,1] . \\
g(0)=0, g(x)>0 \text { for } x \in(0,1] \\
f\left(0, u_{0}\right)=0, \frac{\partial f}{\partial u}\left(0, u_{*}\right)>0 . \\
\left\{V_{t}\right\}_{t \geq 0}, \quad V_{t} v(x)=u(t, x) \\
X=\left\{v \in C[0,1]: \quad v(0)=u_{*}\right\} .
\end{gathered}
$$

Theorem 2 There exists a probability measure μ which satisfies:
(a) μ is invariant w.r. to $\left\{V_{t}\right\}$,
(b) μ is exact,
(c) $\operatorname{supp} \mu=X$,
(d) $\int_{X}\left\|v^{2}\right\| \mu(d v)<\infty$.

Moreover, we proved that the set of periodic points of $\left\{V_{t}\right\}$ is dense in X.

Draft of the proof:

$\left\{T_{t}\right\}$ left-side shift on

$$
\begin{gathered}
Y=\{\varphi:[0, \infty) \rightarrow \mathbb{R}\} \\
\left(T_{t} \varphi\right)(s)=\varphi(s+t) \text { for } t, s \geq 0
\end{gathered}
$$

1. Semiflows (V_{t}, X) and (T_{t}, Y) are conjugated (isomorphic), a.e. the map $Q: X \rightarrow Y$, given by $Q v_{0}(t)=v(t, 1)$ is a homeomorphism from X onto $Q(X) \subset Y$ and

$$
Q \circ S_{t}=T_{t} \circ Q, \quad \text { for } t \geq 0 .
$$

2. Let $\xi_{t}=e^{t} w_{e^{-2 t}}$, where $w_{t}, t \geq 0$ is the Wiener process. Then ξ_{t} is a stationary Gaussian process with continuous trajectories. Let

$$
m(A)=P\{\omega: \xi \cdot(\omega) \in A\} \quad A \in \mathcal{B}(Y)
$$

The measure m is invariant under $\left\{T_{t}\right\}$ and $m(Q(X))=1$. The measure $\nu(A)=m(Q(A))$ is invariant under $\left\{S_{t}\right\}$.
3. Exactness. (T_{t}, Y) is exact iff the σ-algebra $\mathcal{A}_{\infty}=\bigcap_{t>0} T_{t}^{-1}(\mathcal{B}(Y))$ contains only sets of measure zero or one.
Let $\mathcal{F}_{\leq t}$ be the σ-algebra generated by $w_{s}, s \leq t$. Then σ-algebra $T_{t}^{-1}(\mathcal{B}(Y))$ is generated by ξ_{s}, $s \geq t$, therefore, $T_{t}^{-1}(\mathcal{B}(Y))=\mathcal{F}_{\left[0, e^{-2 t]}\right.}$. Thus $\mathcal{A}_{\infty}=\bigcap_{r>0} \mathcal{F}_{[0, r]}$ and according to Blumenthal's zero-one law \mathcal{A}_{∞} contains only sets of measure zero or one.
4. Positivity of ν on open sets can be obtained from the following property of Wiener process:

$$
\operatorname{Prob}\left\{\omega: f(t)<w_{t}(\omega)<g(t) \text { for } t \in[a, b]\right\}>0
$$

for continuous functions $f<g$ and $0<a<b$.

Invariant measure for p.d.e.

$\frac{\partial u}{\partial t}+a_{1}(x) \frac{\partial u}{\partial x_{1}}+\cdots+a_{d}(x) \frac{\partial u}{\partial x_{d}}=f(x, u) \quad(*)$
$x \in D, D$ diffeomorphic with $B(\mathbf{0}, 1), 0 \in \operatorname{Int} D$. $a: D \rightarrow \mathbb{R}^{d}$ is C^{1} function, $a(0)=0$.
$x^{\prime}(t)=-a(x(t)), \quad x(0)=x_{0} \in D, \quad \pi_{t} x_{0}=x(t)$.
Assume that if $x_{0} \in D$ then $\pi_{t} x_{0} \in D$ for $t \geq 0$ and $\lim _{t \rightarrow \infty} \pi_{t} x_{0}=0$.

There exists $u_{0}^{0} \in \mathbb{R}$ such that $f\left(0, u_{0}^{0}\right)=0$ and $\frac{\partial f}{\partial u}\left(0, u_{0}^{0}\right)>0$;
there exist $u_{-}^{0} \in\left[-\infty, u_{0}^{0}\right)$ and $u_{+}^{0} \in\left(u_{0}^{0}, \infty\right]$ such that $f(0, u)<0$ for $u \in\left(u_{-}^{0}, u_{0}^{0}\right)$ and $f(0, u)>0$ for $u \in\left(u_{0}^{0}, u_{+}^{0}\right)$;
if $u_{-}^{0}>-\infty$, then $f\left(0, u_{-}^{0}\right)=0, \frac{\partial f}{\partial u}\left(0, u_{-}^{0}\right)<0$;
if $u_{+}^{0}<\infty$, then $f\left(0, u_{+}^{0}\right)=0, \frac{\partial f}{\partial u}\left(0, u_{+}^{0}\right)<0$;

Lemma 3 If $u_{-}^{0}>-\infty$, then there exists a unique stationary solution $u_{-}: D \rightarrow \mathbb{R}$ of (\star) such that $u_{-}(0)=u_{-}^{0}$. Analogously if $u_{+}^{0}<\infty$, then $\ldots u_{+}(0)=u_{+}^{0}$.

We set $u_{-} \equiv-\infty$ if $u_{-}^{0}=-\infty$ and $u_{+} \equiv \infty$ if $u_{+}^{0}=\infty$. Let

$$
\begin{aligned}
V_{0}=\{v \in C(D): & u_{-}(x)<v(x)<u_{+}(x) \text { for } x \in D \\
& \text { and } \left.v(0)=u_{0}^{0}\right\} .
\end{aligned}
$$

If $v(x)=u(0, x), v \in V_{0}$, then $S_{t} v=u(t, \cdot) \in V_{0}$.

Theorem 3 There exists a measure m supported on V_{0} s.t. $\left(V_{0}, \mathcal{B}\left(V_{0}\right), m ; S_{t}\right)$ is exact.

Idea of the proof.

1. We replace the Wiener process by Lévy d parameter Brownian motion, which is a Gaiussian random field $(\xi(x))$ on \mathbb{R}^{d} with zero mean and covariance function

$$
c(x, y)=\mathrm{E} \xi(x) \xi(y)=\frac{1}{2}(|x|+|y|-|x-y|) .
$$

2. We set $W=C\left([0, \infty) \times S^{d-1}\right)$ and define a semiflow $\left(T_{t}\right)_{t \geq 0}$ on the space W by $T_{t} w(s, y)=w(s+t, y), s, t \geq 0$ and $y \in S^{d-1}$.

3. Starting from the random field $\left(\xi_{x}\right)$ we construct an invariant measure μ on the space W invariant w.r. to $\left(T_{t}\right)_{t \geq 0}$ supported on W.
4. We show that systems ($V_{0}, \mathcal{B}\left(V_{0}\right), m ; S_{t}$) and ($W, \mathcal{B}(W), \mu ; T_{t}$) are isomorphic.

If $f\left(x, u_{0}^{0}\right) \equiv 0$, then we can consider a semiflow $\left(S_{t}\right)$ restricted to the space

$$
V_{0}^{+}=\left\{v \in V_{0}: u_{0}^{0} \leq v(x)<u_{+}(x) \text { for } x \in D\right\} .
$$

Theorem 4 There exists a measure m supported on V_{0}^{+}s.t. $\left(V_{0}^{+}, \mathcal{B}\left(V_{0}^{+}\right), m ; S_{t}\right)$ is exact.

Equation in a divergence form

$$
\frac{\partial u}{\partial t}(t, x)+\operatorname{div}(a(x) u(t, x))=g(x, u(t, x)), \quad(\star \star)
$$

where $\operatorname{div}(a(x) u(t, x))=\sum_{i=1}^{d} \frac{\partial\left(a_{i}(x) u(t, x)\right)}{\partial x_{i}}$.
Eq. ($\star \star$) describes the growth of a population. Any individual is characterized by a vector x which changes according to Eq. $x^{\prime}=a(x)$.
$g(x, u)$ - is a growth rate, $u(t, x)$ is the popuIation distribution w.r. to x.

Eq. ($* *$) can be written in the form (*) with

$$
f(x, u)=g(x, u)-u \operatorname{div} a(x)
$$

If $g\left(\mathbf{0}, u_{0}^{\mathbf{0}}\right)=u_{0}^{\mathbf{0}} \operatorname{div} a(\mathbf{0}), \frac{\partial g}{\partial u}\left(\mathbf{0}, u_{0}^{\mathbf{0}}\right)>\operatorname{div} a(\mathbf{0})$
then $f\left(0, u_{0}^{0}\right)=0, \frac{\partial f}{\partial u}\left(0, u_{0}^{0}\right)>0$.

We consider a population in which individuals disperse according to equation $x^{\prime}(t)=a(x)$ and then leave the set D.
Let $g(x, u)=\lambda(1-u / K(x)) u$ be the growth rate. Then the solution of Eq. ($* *$) is the space distribution of the number of individuals in D.

Here $u_{0} \equiv 0$. If $\lambda>\operatorname{div} a(\mathbf{0})$ and if

$$
u_{+}^{0}=K(0)\left(1-\lambda^{-1} \operatorname{div} a(0)\right),
$$

then there is a stationary solution u_{+}of Eq. ($* *$) such that $u_{+}(0)=u_{+}^{0}$.

According to Theorem 4 there exists a measure m supported on V_{0}^{+}s.t. $\left(V_{0}^{+}, \mathcal{B}\left(V_{0}^{+}\right), m ; S_{t}\right)$ is exact, where

$$
\begin{array}{r}
V_{0}^{+}=\left\{v \in C(D): 0 \leq v(x)<u_{+}(x) \text { for } x \in D,\right. \\
v(0)=0\} .
\end{array}
$$

Flow with jumps

We consider a movement of particles with velocity $a(x)$ in the domain D. When a particle reaches the boundary ∂D it jumps to the set D and chooses its new position according to the distribution $v(t, x)$ of other particles.

$$
\begin{align*}
& \frac{\partial v}{\partial t}(t, x)+\operatorname{div}(a(x) v(t, x))= \\
& \quad\left(\int_{\partial D} a(y) \cdot n(y) v(t, y) \sigma(d y)\right) v(t, x) .
\end{align*}
$$

Here $n(y)$ is the outward pointing unit normal to ∂D at $y ; \sigma(d y)$ is the surface measure on ∂D; and the term between large brackets is the total flow across the boundary ∂D.

If V_{0}^{d} the subset of V_{0}^{+}consisting of probability densities, then there exists a measure m supported on V_{0}^{d} s.t. the semiflow $\left(V_{0}^{d}, \mathcal{B}\left(V_{0}^{d}\right), m_{d} ; P_{t}\right)$ is exact.

Proof. Let $u(t, x)$ is a positive solution of Eq. (\star) with

$$
f(x, u)=(\lambda-\operatorname{div} a(x)) u .
$$

If $U(t)=\int_{D} u(t, x) d x$, then $v(t, x)=u(t, x) / U(t)$ is a solution of (\%).

Blood cell production system
R.R. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19 (2009), 043112, 1-6.

The evolution of maturity of blood cells in the bone marrow (precursors of any blood cells). $x^{\prime}=g(x), x$-maturity of a cell.

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}(g(x) u)=g(1) u(t, 1) u(t, x) \tag{1}
\end{equation*}
$$

Corollary 1 The semiflow $\left\{U_{t}\right\}_{t \geq 0}$ generated by (1) is topologically mixing, chaotic in the sense of Devaney and turbulent in the sense of Bass.

Size-structured cell population model
R.R. J. Math. Anal. Appl. 393 (2012), 151165.
x - cell size, $x^{\prime}=g(x)$
$b(x), d(x)$ - birth i death coefficients,

$$
\begin{aligned}
\frac{\partial}{\partial t} u(t, x)+\frac{\partial}{\partial x}(g(x) u(t, x))= & -\mu(x) u(t, x) \\
& +4 b(2 x) u(t, 2 x)
\end{aligned}
$$

where $\mu(x)=d(x)+b(x)$.

Theorem on stability. If $g(2 x) \neq 2 g(x)$ at least for one x, then there exist $\lambda \in \mathbb{R}$ and a density v^{*} s.t.

$$
\lim _{t \rightarrow \infty} e^{-\lambda t} u(t, x)=C(u(0, x)) v^{*}(x) .
$$

Question: What can happen when $g(x)=x$?

$$
\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=a u(t, x)+b u(t, 2 x),
$$

El Mourchid, G. Metafune, A. Rhandi and J. Voigt, J. Math. Anal. Appl. 339 (2008), 918-924. : $u(t, 2 x) 1_{[0,1 / 2]}(x)$

Theorem 5 If $2^{a} b \log 2<e^{-1}$ and if we choose the space X in a "proper way" then there exists a probability measure μ which satisfies:
(a) μ is invariant w.r. to $\left\{U_{t}\right\}$,
(b) μ is mixing,
(c) $\operatorname{supp} \mu=X$,
(d) $\int_{X}\left\|v^{2}\right\| \mu(d v)<\infty$.

The set of periodic points of $\left\{U_{t}\right\}$ is dense.

Corollary 2 The semiflow $\left\{U_{t}\right\}_{t \geq 0}$ is topologically mixing, chaotic in the sense of Devaney and turbulent in the sense of Bass.

Thank you!

