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When can we say that a system is chaotic?

Answer: A system is chaotic if it has a simple
and deteministic description, but it behavies
in @ complicated and " random’ way.



R.R. Math. Meth. Appl. Sci. 27 (2004), 723—738.
R.R. Discrete and Continuous Dynamical Systems 35
(2015), 757—770.

1. Macroscopic approach: The existence
of global attractors with complicated structure
(strange attractors).

2. Microscopic approach: The existence of
trajectories which are unstable, turbulent or
dense in the phase space; topological mixing.

3. Stochastic approach: The existence of
invariant measures having strong ergodic and
analytic properties.



X - metric space

{St}tZO - semiflow on X

a) S;: X —- X, fort>0,

b) So =1d, S;4s=S;0Ss, t,5 >0,

c) S¢(x) is a continuous function of (¢,x) .

Example:

z'(t) = f(z(t)), =(0) =z €R"
St(xo) = x(t).

Iterates of a transformation S: X — X (dis-
crete time semiflow).



Macroscopic approach — strange properties of
attractors of a semiflow.

Attractor — a compact set A for which there
IS an open set U such that:

ACU,

Si(clU) Cc U for t > 0,

A= >0 S(U).

An attractor is called a strange attractor if it is
a fractal set, i.e. if it has different topological
and Hausdorff dimensions.
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Dynamics (on the vertical part of Sh) similar
to the shift transformation on Cantor set:

C= 1]{0,2}n, (Tz)n=zpyt1.

neN
00

C={ac[0,1]:a= > an3™" an€{0,2}}

n=1
C is a strange set and trajectories expands:
T"(z)—T"(y)| = 3"z—y|forn =1,...,n(x,y),
n(x,y) is large if |z — y| is small.

Examples: the logistic map T (z) = 4x2(1 — x),
the Smale’'s horseshoe, the Lorenz' flow and
T:H(C) = H(C), Tf=/f.



Chaos in the sense of Auslander-Yorke:
(a) each trajectory is unstable,

(b) there exists a dense trajectory.

Chaos in the sense of Devaney: (b) + the set
of periodic points is dense in X

Topological mixing: for any two open subsets
U, V of X there exists tg > 0 such that

Se(U)NV #=O fort>tg.



Turbulent trajectory (Lasota-Yorke): no perio-
dic points in the closure of the trajectory.

Turbulent trajectory (Bass):

TIi_)moo%foT Si(x) dt = zo

im 7 + o [St(@) — 20][Spqr (x) — w0l dt = v(7)

10)£0, lim +(r) =0.
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Stochastic approach: probabilistic proper-
ties of dynamical systems

1 - probability measure on the o-algebra B(X)
of Borel subsets of X.

p invariant w.r. {Si}y>o if for Ae B(X), t>0

p(S; 1 (A)) = u(A).
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w is ergodic if

. 1 T
Jim 2 [ f(Su(@)) dt = /Xf(:v)u(dw) n—a.e.

f =14 = (mean time of visiting A) = u(A)

@ is mixing if limy_oo M(St_l(A)ﬂB) = u(A)u(B).

lim P(Si(x) € A|z € B) = u(A).
t—00
w is exact if limy_oo n(St(A)) = 1 for u(A) > 0.

exactness = mixing = ergodicity.
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(P) suppp = X (positivity on open sets)
Mixing 4+ (P) = chaos (A-Y)
Ergodicity + (P) = a.a. traj. are dense in X
Mixing + (P) = unstability of all trajectories

Mixing + (P) = topological mixing

Mixing + (P) 4 exist. of the 2-moment of u
= almost all trajectories are turbulent (Bass)
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If X is a finite dimesional space, then ergodic prop-
erties of transformations and semiflows on X can be
successfully investigated by means of Frobenius—Perron
operators:

A. Lasota and M.C. Mackey, Chaos, Fractals and Noise.
Stochastic Aspects of Dynamics, 1994.

(X,>,m) a o-finite measure space, S: X — X
a measurable transformation s.t.

if m(A) =0, then m(S~1(A)) = 0.

The operator P : L1(X) —» L1(X) s.t.

[Pi@mda) = [ f(2)m(da)
A S—1(A)

for all f € L1 and A € ¥ is called Frobenius—
Perron operator for S.
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u- a probability measure u < m,
Let fi« = j—#L be a density of wu.

@ is invariant under S & Pf. = fi« for t > 0.

P F—P operator to the system (X,>,pu,S):

S P

ergodic | 1x is a unique invariant density of P

mixing W-lim;_oo Pt f = 1y for each f € D

exact liMi—oo P'f = 1y for each f €D
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Invariant measure for p.d.e.

A.Lasota, Rend. Sem. Math. Univ. Padova 61
(1979), 40-48.

ou, Ou_

AU
ot ox

Siv(x) =u(t,z); Spw(x) = eAtv(e_ta:).

X ={veC[o,1]: v(0) =0}

Theorem 1 If\ > 2 then there is a continuous
ergodic measure p on X invariant w.r. {S:}.

(continuous p(Per) = 0)
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Lemma l Let S : X — X be a continuous
map. If for some nonempty compact disjoint
sets A and B we have

AUB C S(A)NS(B),

then there exists a turbulent trajectory (L-Y).

Lemma 2 (Bogoluboff-Kriloff). Let S : X —
X be a continuous map of a compact metric
space. Then there exists a probability Borel
measure p invariant and ergodic w.r. S.

17



Invariant measure for p.d.e.

R.R. (1985), (1988).

ou
ot

0
+ - (g(@)w) = f(z,w)

w(0,2) = v(x), for = € [0, 1].
g(0) =0, g(x) >0 for x € (0,1],

£(0,u0) =0, 2L(0,us) > 0.

Viti>o0, Viv(z) = u(t, x)

X ={vel[0,1] : v(0) = ux}.
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Theorem 2 There exists a probability mea-
sure u which satisfies:

(a) w is invariant w.r. to {V4},
(b) u is exact,

(c) suppp =X,

(d) Jx o] p(dv) < oo.

Moreover, we proved that the set of periodic
points of {V;} is dense in X.
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Draft of the proof:

{T:} left-side shift on

Y ={p:[0,0) = R}
(Typ)(s) = (s +t) for t,s > 0.

1. Semiflows (V;, X) and (73, Y) are conjugated
(isomorphic), a.e. the map Q : X — Y, given
by Qug(t) = v(¢,1) is a homeomorphism from
X onto Q(X) CY and

QoS =1Tr0Q, fort>O0.
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2. Let & = elw,_2, where wy, t > 0 is the
Wiener process. Then & is a stationary Gaus-
sian process with continuous trajectories. Let

m(A) = P{w: &(w) € A} A eBY).

The measure m is invariant under {71} and
m(Q(X)) = 1. The measure v(A) = m(Q(A))
is invariant under {S;}.

21



3. Exactness. (13,Y) is exact iff the o-algebra
Ao = ﬂt>OTt_1(B(Y)) contains only sets of
measure zero or one.

Let F<; be the o-algebra generated by ws, s < t.
Then o-algebra Tt_l(B(Y)) iS generated by &g,
s > t, therefore, Tt_l(B(Y)) = Flpe-21- Thus
Aso = (r>0F[o,] @and according to Blumen-
thal’s zero-one law A contains only sets of
measure zero or one.

4. Positivity of v on open sets can be obtained
from the following property of Wiener process:

Prob{w : f(t) < w(w) < g(t) for t € [a,b]} > 0.

for continuous functions f < g and 0 < a < b.
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Invariant measure for p.d.e.

ou ou Ou

x € D, D diffeomorphic with B(0,1), 0 € Int D.
a: D — R%is C! function, a(0) = 0.
z'(t) = —a(z(t)), x(0) =z9€ D, mzxg=x(t).

Assume that if xg € D then mzg € D for t > 0O
and lim¢_soo mxg = 0.
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There exists u € R such that f(0,uQ) = 0 and

of .
%(o,ug) > 0;

there exist u? € [—oo,ud) and vl € (uf,o0]
such that f(0,u) < 0 for u € (u2,ud) and
f(0,u) >0 for u € (ug,u(_)l_),

if u9 > —c0, then 7(0,v%) =0, ?(O,ug) < 0;
u

_ of
0 0y — 0 :
if ul < oo, then f(O,ul)—O, 8u(0,u|)<0,
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Lemma 3 If u9 > —oco, then there exists a
unique stationary solution uw_: D — R of (%)
such that u_(0) = uY . Analogously ifug_ < 00,
then ... uy(0) = uf.

We set u_ = —co if u) = —0o0 and ug = o if
u(_)l_zoo. Let

Vo={velCD): u(z) <v(x) <ug(zx) forzx € D
and v(0) = u8}

If v(xz) = u(0,2), v e Vy, then Spv = u(t,-) € Vj.

Theorem 3 There exists a measure m Sup-
ported on Vy s.t. (Vo,B(Vp), m; St) is exact.
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Idea of the proof.

1. We replace the Wiener process by Lévy d-
parameter Brownian motion, which is a Gaus-
sian random field (£(z)) on RY with zero mean
and covariance function

o(z,y) = EE@EW) = S (el + Iyl — |z — ul),

2. We set W = C([0,00) x S 1) and de-
fine a semiflow (73);>0 on the space W by
Trw(s,y) = w(s +t,y), s,t > 0 and y € S¢-1,

5 (-

[0, 00) x S4—1
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3. Starting from the random field (£;) we con-
struct an invariant measure pu on the space W
invariant w.r. to (73);>0 supported on W.

4. We show that systems (V, B(Vp), m; S¢) and
(W, B(W), u; T}) are isomorphic.

If f(x,ud) = 0, then we can consider a semiflow
(S;) restricted to the space

VO+ = {v e Vp: u8 <wv(zr) <ug(z) for x € D}.

Theorem 4 There exists a measure m Sup-
ported on Vo+ s.t. (VO+,B(VO+),m; St) is exact.
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Equation in a divergence form
2t 2) + div(a(@ult, 2) = g, u(t2)), ()

where div(a(z)u(t, z)) = 29, 6‘(@@(%);(’5@)).

Eqg. (xx) describes the growth of a population.
Any individual is characterized by a vector x
which changes according to Eq. z’ = a(2).
g(x,u) — is a growth rate, u(t,z) is the popu-
lation distribution w.r. to x.
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Eqg. (xx) can be written in the form (x) with
f(x,u) = g(x,u) —udiva(x).
. 0 .
If 9(0,u9) = ud div a(0), 8—Z(o,ug) > div a(0)

then f(0,u3) =0, ?(o,ug) > 0.
u



Space structure population with logistic growth

We consider a population in which individuals
disperse according to equation z'(t) = a(z) and
then leave the set D.

Let g(z,u) = M1 —u/K(x))u be the growth
rate. Then the solution of Eq. (xx) is the space
distribution of the number of individuals in D.

Here ug = 0. If A > diva(0) and if
ug = K(O)<1 . diVa(O)),

then there is a stationary solution uy of Eq. (%)
such that uy (0) = uj .
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According to Theorem 4 there exists a measure

m supported on Vo+ s.t. (VO+,B(VO+),m;St) is

exact, where

VO+ ={ved(D): 0<v(r) <uy(x) for z € D,
v(0) = 0}.
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Flow with jumps

We consider a movement of particles with ve-
locity a(xz) in the domain D. When a particle
reaches the boundary 0D it jumps to the set D
and chooses its new position according to the
distribution v(¢,z) of other particles.

(/(9D a(y) -n(y)v(t,y) o‘(dy)) v(t, x).

Here n(y) is the outward pointing unit normal
to 0D at y; o(dy) is the surface measure on
0D: and the term between large brackets is
the total flow across the boundary 0D.
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If V§ the subset of VO+ consisting of probability
densities, then there exists a measure m sup-
ported on Vi s.t. the semiflow (V, B(VE), mg; Pr)
IS exact.

Proof. Let u(t,z) is a positive solution of
Eqg. (x) with

f(x,u) = (A —diva(x))u.

IFU(t) = [pu(t,z)dx, thenv(t,z) = u(t,z)/U(t)
is a solution of (&).
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Blood cell production system

R.R. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 19 (2009), 043112, 1-6.

—

000%05
o o—0
oO~Yoo o0

0000
O oo
00~~0o

@)
*
a
=
v
o

0 x 1
The evolution of maturity of blood cells in the
bone marrow (precursors of any blood cells).
' = g(z), z-maturity of a cell.

ou 0
5 T2, 9@w) = g(Vult, Dut,z) (1)
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Corollary 1 The semiflow {U;};>0 generated
by (1) is topologically mixing, chaotic in the
sense of Devaney and turbulent in the sense of
Bass.
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Size-structured cell population model

R.R. J. Math. Anal. Appl. 393 (2012), 151—
165.

x - cell size, =/ = g(x)

b(x), - birth i coefficients,

%u(t, z) + (-%(Q(CC)U(L z)) = — p(z)u(t, z)
+ 4b(2x)u(t, 2x),

where u(x) = d(x) 4+ b(x).
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Theorem on stability. If g(2x) # 2g(x) at
least for one x, then there exist A € R and a
density v* s.t.

lim e Mu(t,z) = C(u(0, 2))v*(z).

t—00
Question: What can happen when g(z) =z 7
0 0
a—;b + aza—z = au(t,z) + bu(t, 2x),

El Mourchid, G. Metafune, A. Rhandi and J.
Voigt, J. Math. Anal. Appl. 339 (2008),
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Theorem 5 If 2%log?2 < e~ 1 and if we choose
the space X in a "proper way” then there ex-
ists a probability measure . which satisfies:

(@) p is invariant w.r. to {U:},
(b) u is mixing,

(c) suppp =X,

(d) Jx o]l p(dv) < oo.

The set of periodic points of {U:} is dense.

Corollary 2 The semiflow {U;}y>0 is topolog-
ically mixing, chaotic in the sense of Devaney
and turbulent in the sense of Bass.
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Thank youl
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