Formation of photonic crystals on block copolymer templates

Robert Hołyst

Presented in IPPT PAN, 20 Nov. 2002

DEPARTMENT III Soft Condensed Matter

Institute of Physical Chemistry Polish Academy of Sciences PhD students: P.Garstecki (Harvard) W.Góźdź(Max Planck I.) A.Aksimentiev(U. of Illinois) V.Babin

What is a photonic crystal?

Aluminium oxide bars

Stuk e 200 0 LCV D THz Freq

analogy to semiconductors

electron traveling in a periodic atomic potentiaer Richard S. Quimby, Degierer

Polytechnic Inst.

photon traveling in a periodic

modium

3D Photonic crystals are difficult to make

man-made

Nature-made

selective etching

Lin, Fleming Sandia NL, USA

colloidal self-assembly

Yuri Vlasov, Nec NJ, USA

Block copolymers

- self-assembly forming 3D periodic structures which are easy to tailor
- application as photonic crystals

DIDIOCK COPOLYMERS – CUDIC DICONTINUOUS

Block A. Block

P periodic surface. The simplest of the family.

Periodicity

Called also : plumbers nightmare

Bicontinuity – in general multi-continuity

triblock copolymer

parallel surfaces

Structure: **Symmetry** Surface (P,D,G,I-WP...)

Arrangement of AB blocks

balanced templates: a D TPMS

BA architecture AB architecture

unbalanced templates: an I-WP TPMS

BA architecture

AB architecture

b

SAXS

Millions of atoms in a unit cell. No commercial software is available. Most of the experiments leave unanalyzed data and give only the symmetry.

ABC triblock copolymers

ABC, CBA, ABCBA, CBABC

Comparison with experiment:

Reconstructed gyroid structure, Based on a G surface, Ia3d symmetry We change the volume of the channels and for each of them compute the photonic band gaps

Computing the photonic band gaps for different structures

Ρ

D G Three most common structures

Also for triblock copolymers with three channels

results: 2 channels

results: F-RD

results: I-WP

results: C(P)

results: P

$\Delta \omega / \omega_0 = 0.1$

results: G

$\Delta \omega / \omega_0 = 0.2$ 5

G phi1=0.17(13.0) phi2=0.83(1.0)

results: D

$\Delta \omega / \omega_0 = 0.2$ 8

0

D phi1=0.17(13.0) phi2=0.83(1.0)

results: D 3 channels

core-snell particles on a cubic lattice

В

Α

Highly asymmetric copolymer

core-shell particles

Most promising

core-shell: DFCC

DFCC, ebg=1.0r1=0.22e1=13.0r2=0.04e2=1.0

Diamond FCC Cover the core-shell particle with one shell

DEFORMATIONS

• What happens with photonic band gaps under compression?

cc band gaps-non-compressed Fcc-compressed along 111

Diamond or gyroid symmetry with at most 3 channels are the best for 3D photonic crystals

diamond networks 4-

Gyroid networks –3-coordinated

block copolymer ordering as a possible cheap and effective method for producing 3D photonic crystals

- easy to obtain
 long range order
- scalable geometry
 - known and practised chemistry

uble gyroid phase in triblock copolymers, MIT group,1999

1D photonic crystal (lamellar phase) based on block copolymers

Achieving high dielectric contrast

PhD, 2000 at MIT on block-copolymers as photonic crystals (in E.L.Thomas, group)

Yoel Fink He won a grant of 2 500 000 \$ for Long distance, high-data rate quantum communication with ultralow loss photonic band gap fiber

We can't beat nature. So why don't we use its precision

n my opinion the future of modern naterials is hidden in the world of elf-assembling phenomena

good lesson can be taken from he molecular biology: etermine the structure+ se the forces of nature