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Many processes in physical chemistry and biology are dominated
by the process of diffusion.

In geometry on a small scale, i. e. membranes, thin liquid fims, pores,
one has to worry about the influence of geometry
on the diffusion coefficient.

Near a wall diffusion becomes anisotropic and one has to deal with
a diffusion tensor dependent on the distance h to the wall.

In bulk Einstein 1905

with friction coefficient Stokes 1850

shear viscosity particle radius

Near a wall with mobility tensor
parallel xy-plane
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At present the mobilities and              are known very precisely.

Similar results for a particle between two plane walls
and 
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So far we considered static diffusion tensor

For fast processes it may be necessary to generalize to a
frequency-dependent tensor

Again there is an Einstein-type relation

where is the admittance tensor for the geometry h, L
at frequency
For applied force
the particle velocity is
with
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The diffusion process is related to velocity relaxation by

with velocity correlation function

For
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More generally

Corresponding to admittance

In confined geometry
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At high frequency

The behavior at low frequency is of particular interest,
since it is related to the long-time behavior. This is affected by the geometry.

Alder and Wainwright found 1970 in computer simulation
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This was first understood from kinetic theory, later from hydrodynamics.

The admittance of a sphere in an incompressible fluid
behaves at low frequency as
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The converse theorem has also played a role in physics.
Following earlier remarks by Lorentz, and work by H. Weyl,
there is a famous paper by Mark Kac

„Can one hear the shape of a drum?“







In his paper Kac actually reduces the acoustic problem to a diffusion problem:

Consider the conditional probability of finding a particle at r at time t
when it starts out at 0 at time  0 ( , | ,0)P tr 0
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Write this as integral of decaying exponentials

2 2 ( , | ,0) 6r r P t d Dt= =∫ r 0 r

t

3/ 2

1( , | ,0)
(4 )

P t
Dtπ

=0 0 0t >

3/ 2
0

1( )exp[ ]
(4 )

g t d
Dt

λ λ λ
π

∞

− =∫

then
3/ 2

1( )
(4 ) (3 / 2)

g
D

λλ
π

=
Γ

1(3/ 2)
2

πΓ =

in agreement with Tauberian theorem
(3/ 2)
λ

Γ 3/ 2

1
t

large λ tsmall

small λ large t

In this case both types of behavior are realized at the same time.
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Similarly in a viscous incompressible fluid satisfies
the linearized Navier-Stokes equation
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corresponds precisely to the long-time behavior of Brownian particle
found from term in

This shows that the velocity correlation function of a Brownian particle
is closely related to the Green function of the hydrodynamic
equations of motion.
But the Green function depends on geometry.
One can expect that in particular the long-time behavior is
strongly dependent on geometry.

Gotoh and Kaneda (1982) found that in the presence of a single plane wall
the long-time behavior is
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I found (2005) that the latter result is incorrect. Both correlation functions
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Velocity correlation function for a fluid with a single wall
was studied in computer simulation by Pagonabarraga, Hagen, Lowe,

Frenkel 1998
It turned out that fluid compressibility has a significant effect.

In bulk compressible fluid one can calculate the velocity correlation
function again from the admittance
Result:
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with a coefficient A that is negative if the fluid is sufficiently compressible,
i.e. the decay is not monotonic, but can change sign

BUF, JChemPhys 2005
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Zwanzig, Bixon 1970
Bedeaux, Mazur 1974
Metiu et al. 1977

( )ζ ω depends on shear viscosity, bulk viscosity, density, compressibility

Again a wall causes modification of the behavior, but I found that
the coefficients Axx and Azz of the t-5/2 long-time behavior
are independent of compressibility,           BUF 2005
(limit to bulk behavior not simple)

For a fluid confined between two walls Pagonabarraga et al.
found a dramatic change of behavior (1997,1998)
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no details were shown
They made more elaborate analysis in 2D: fluid between two lines.
In that case
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They gave expression for A.
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Recently I have calculated the coefficient A of the t-3/2 long-time tail in 3D.
Result:
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0c is the adiabatic (long-wave) sound velocity

Note the result is independent of viscosity.

Again the behavior follows from a Tauberian theorem.

The admittance tensor in any geometry can be expressed as
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I have calculated for compressible viscous fluid
between two planes.

At              this gives results mentioned earlier:
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Tauberian theorem is applied to the low frequency behavior
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Here is given by a complicated integral over wavenumber q,
coming from Fourier expansion in the xy-plane.
This gives the steady-state results.

The next term leads to cancellation of the bulk t-3/2 tail.

The mathematical origin of this term is already quite subtle.
Usually the term linear in          comes from an integral over wavenumber
of the form
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Instead the term comes from a branch cut in the complex
q-plane, rather than a simple pole. 
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The singularity comes from an acoustic diffusion pole
(overdamped sound wave), but with weight q  rather than q2
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The corresponding diffusion coefficient is

The xx element of the reaction field tensor can be expressed as
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