Polish Academy of Sciences Institute of Fundamental Technological Research

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji

S. Błoński, P.Korczyk, T.A. Kowalewski

PRESENTATION OUTLINE

0 Introduction

- I Flow structure investigation in the vicinity of the processing element by Particle Image Velocimetry
- II Visualization of droplets break-up process and emulsion flow in the vicinity of the processing element
- III Numerical simulation of the flow through the planar emulsifier
- **IV** Summary and conclusions

Structuring nano-particles at the interface

The emulsion with thin layers of third substance The structure of nanomaterial after removing at the surface between oil and water

water and oil

MAIN IDEA

- 1. Well defined turbulent flow in emulsificator with micro-channel
- 2. Emulsification of oil in water to obtain uniform in size micro-emulsion in turbulent flow
- 3. Drop nano-particle interaction
- 4. Composite layer formation at the interface
- 5. Removal of both fluids to achieve new material

Production of droplets emulsion in turbulent flow

Experimental cell with optical access for flow investigation inside emulsifier

High speed imaging and velocity measurements gap: 0.4mm x 15mm, flow rate: up to 0.204 *dm*³/s

Primary aim of the experiment

- Instantaneous velocity and vorticity by micro-PIV technique
- Flow structure
- Turbulence structure
- Shear stress field
- Drops break-up

- Validation of the CFD models
- Optimisation of the drops size and shape
- Optimisation of the emulsifier geometry

EXPERIMENTAL METHODS

- Full Field Measurements of velocity and drops shape:
- Epifluorescent microscope Nikon ECLIPSE E-50i
- PIV Camera PCO SensiCam (resolution 1280x1024)
- Double Pulse Laser Nd-YAG SoloPIV NewWave (30mJ per pulse)
- High Speed CMOS Camera PCO 1200.hs (up to 40720 fps; 636fps in full resolution 1280x1024)
- Laser CW Ar 5W
- Fluorescent micro- and nanoparticles (30nm 7 μm)

Other equipment:

- Optical system for forming and redirection of laser light (lenses, mirrors, etc.)
- Pressure system (gas cylinder with argon, pressure regulator and conduits, pressure sensor)
- Two precision syringe pumps

Fluorescent particles under microscope

Schematic set-up for microPIV

micro-channel

GEOMETRY OF THE MODELS

Geometry G1 – non-transparent processing element size of the gap: 1 x 0.4 x 15 mm

Geometry G2 – transparent processing element size of the gap: 2 x 0.4 x 15 mm

Geometry G3 for jet breakup observation channel size: 30 x 8 x 10 mm needle diameter: 0.5 mm **OUR QUESTIONS TO ANSWER**

Production of droplets emulsion in turbulent flow

Is flow turbulent, what is the critical Re number?

EXPERIMENTAL INVESTIGATION

zone 1: 2.5 x 15 mm zone 2: 0.4 x 15 mm zone 3: 7.5 x 15 mm

Processing element

EXPERIMENTAL RESULTS

Laminar – turbulent transition

flow direction

Laminar flow v = ~ 0.1 *m/s R*e = ~ 250

processing element

Transition flow $v = \sim 0.4 \text{ m/s}$ $Re = \sim 1000$

Part I Micro-PIV RESULTS

1.4 mm

Processing element

Micro-PIV measurements was done for flow rate Q₂=0.204dm³/s using geometry G1 (non-transparent proc.el.)

Schematic view of the emulsifier with coordinates system and positions of selected profiles

Used tracers: fluorescent particles, 2µm in diameter Microscope lens: 10x/NA0.3/WD17.30mm Images width corresponds to 0.7mm

Velocity field

gaps

-

Position P1 flow rate = 0.204 dm³/s

Velocity field

gaps

Position P2 flow rate = 0.204 dm³/s

Instantaneous velocity field and fluctuations field

velocity field

fluctuations field

Position: 1mm behind processing element, 0.3mm below glass wall flow rate = 0.204 dm³/s

Instantaneous velocity field and fluctuations field

velocity field

fluctuations field

Position:

3mm behind processing element, 0.3mm below glass wall flow rate = 0.204 dm³/s

Instantaneous velocity field and fluctuations field

velocity field

fluctuations field

Position: 8mm behind processing element, 0.3mm below glass wall flow rate = 0.204 dm³/s

P3, P4 and P5 profiles of the X-Velocity and mean turbulent kinetic energy (xz)

Part II Drops break-up visualization RESULTS

Drops break-up visualization

Used geometry: G2 (emulsifier with transparent element)

Used materials:

- 1. de-ionized water + 10mM NaCl + S50 silicone oil (0.01)
- 2. de-ionized water + 10mM NaCl + S50 silicone oil (0.01) + 1%wt SDS
- 3. de-ionized water + 10mM NaCl + S500 silicone oil (0.01) + 1%wt SDS

Flow rate: $Q_2 = 0.204 \text{ dm}^3/\text{s}$

Used microscope lens: 10x/NA0.3/WD17.30mm

images width corresponds to 432µm

Interval time between images: 1µs or 5 µs

Position	Velocity V _d [m/s]	Comments			
water + 10mM NaCl + S50 oil					
Gap	12.1	lack of oil-drops deformations			
x = 0; y = - 0.3	10.8	lack of oil-drops deformations			
x = 2; y = - 0.4	4.5	oil-drops deformations occurs			
x = 5; y = - 0.4	6.7	lack of oil-drops deformations			
wate	r + 10mM NaCl + S5	0 oil + 1%wt SDS			
Gap	12.3	lack of oil-drops deformations			
x = 2; y = 0.0	10.3	lack of oil-drops deformations			
x = 2; y = - 0.1	10.9	lack of oil-drops deformations			
x = 2; y = - 0.2	9.7	oil-drops deformations occurs			
x = 2; y = - 0.4	4.7	oil-drops deformations occurs			
water + 10mM NaCI + S500 oil + 1%wt SDS					
Gap	12.6	lack of oil-drops deformations			
x = 0; y = -0.2	11.3	lack of oil-drops deformations			
x = 2; y = - 0.2	10.5	oil-drops deformations occurs			

drops in the gap v_d=12.1m/s

drops just behind processing element v_d=10.8m/s drops 5mm behind processing element v_d=6.7m/s

Non-deformed drops of S50 silicone oil Mixture without surfactant Image width corresponds to 432 µm

Deformed drops of S50 silicone oil 2mm behind processing element Mixture without surfactant Drops velocity: $v_d = 4.5$ m/s Image width corresponds to 432 µm

drops in the gap v_d=12.3 m/s

drops 2mm behind processing element just below wall v_d=10.3 m/s

drops 2mm behind processing element 0.1mm below wall v_d=10.9 m/s

Non-deformed drops of S50 silicone oil Mixture with 1%wt SDS surfactant Image width corresponds to 432 µm

Deformed drops of S50 silicone oil Mixture with 1%wt SDS surfactant Image width corresponds to 432 µm

drops 2mm behind processing element and 0.2mm below wall v_d=9.7 m/s

drops 2mm behind processing element and 0.4mm below wall v_d=4.7 m/s

drops in the gap v_d=12.6 m/s

drops just behind processing element 0.2mm below wall v_d=11.3 m/s

Non-deformed drops of S500 silicone oil Mixture with 1%wt SDS surfactant Image width corresponds to 432 µm

drops 2mm behind processing element And 0.2mm below wall v_d=10.5 m/s

Deformed drops of S500 silicone oil Mixture with 1%wt SDS surfactant Image width corresponds to 432 µm

S50 silicone oil + 1%wt SDS mean drops size: 10.1 µm

S500 silicone oil + 1%wt SDS

0.1 μm mean drops size: 20.7 μm

Motionless emulsion observer under microscope Image width corresponds to 432 µm

Part III Numerical simulation RESULTS

Numerical simulation was done using two geometries:

- G1 one quarter of the model with non-transparent processing element
- G1v full 3D geometry of the model with non-transparent processing element
- G2 one quarter of the model with transparent processing element

CFD Modelling Using Fluent 6.2

Numerical simulation was done in following steps:

- 1. 3D unsteady laminar flow
- 3D steady flow, turbulence model: k-ε with Standard Wall Function
- 3D steady flow, turbulence model: k-ε with Enhanced Wall Treatment
- 4. + grid adaptation based on the gradient of velocity magnitude
- 5. + grid adaptation based on the Y_{plus} value

NUMERICAL SIMULATION CFD Modelling Using Fluent 6.2

Mesh in the vicinity of the processing element for **Geometry G1**

Geometry G2

Generated mesh

Mesh size: 457473 cells, 1189395 faces, 302334 nodes

Laminar – unsteady simulations was done using:

Used package and version	Fluent 6.2.16, double precision, segregated		
Flow type	three-dimensional, laminar, unsteady, incompressible		
Flowed medium	water, constant density ρ = 998.2 kg/m ³ and viscosity μ =0.001003 kg/ms		
Mass flow-rate	0.204 kg/s or 0.051 kg/s		
Inlet	mass-flow inlet		
Outlet	pressure outlet		
Discretization Scheme	Pressure: standard Momentum: Second Order Upwind		
Time Step Size	1e ⁻⁷ s		
Geometry and grid	 one quarter of the model geometry (G1); 457473 cells whole model geometry (G1v); 1745830 cells 		

Contours of velocity magnitude

Geometry G1 – non-transparent processing element

Contours of Velocity Magnitude (m/s) (Time=2.1904e-04)

Oct 27, 2005 FLUENT 6.2 (3d, dp, segregated, lam, unsteady)

Laminar – unsteady flow, $Q_2 = 0.204 \text{ dm}^3/\text{s}$ time step $\Delta t = 1.10^{-7} \text{ s}$

Contours of velocity magnitude

Geometry G2 – transparent processing element

Contours of Velocity Magnitude (m/s) (Time=1.0000e-04)

Oct 27, 2005 FLUENT 6.2 (3d, dp, segregated, lam, unsteady)

Laminar – unsteady flow, $Q_2 = 0.204 \text{ dm}^3/\text{s}$ time step $\Delta t = 1.10^{-7} \text{ s}$

Contours of averaged velocity magnitude

Geometry G1v – non-transparent processing element

Laminar – unsteady flow, $Q_2 = 0.204 \text{ dm}^3/\text{s}$ time step $\Delta t = 1.10^{-7} \text{ s}$

Contours of averaged velocity magnitude

Geometry G1v – non-transparent processing element

Laminar – unsteady flow, $Q_2 = 0.204 \text{ dm}^3/\text{s}$ time step $\Delta t = 1 \cdot 10^{-7} \text{ s}$

Contours of mean square value of the velocity fluctuations

Geometry G1v – non-transparent processing element

$$tke_{xz} = \left\langle V_x^{\prime 2} \right\rangle + \left\langle V_z^{\prime 2} \right\rangle$$

Laminar – unsteady flow, $Q_2 = 0.204 \text{ dm}^3/\text{s}$ time step $\Delta t = 1 \cdot 10^{-7} \text{ s}$

Final simulations was done for geometry G1 and G2 using:

Used package and version	Fluent 6.2.16, double precision, segregated		
Flow type	three-dimensional, steady, incompressible		
Viscous	standard k – ε turbulence model with Enhanced Wall Treatment		
Mass flow-rate	0.051 kg/s (one quarter of Q=0.204 kg/s)		
Inlet	mass-flow inlet turbulence intensity 12.1% hydraulic diameter 0.0109		
Outlet	pressure outlet turbulence intensity 12.1% hydraulic diameter 0.0109		
Grid Adaptation	dynamic adaptation based on velocity magnitude gradient: refine threshold 0.0001, interval: 20 iterations Y_{plus} : allowed value 1 – 2		

Velocity vectors in the vicinity of the processing element k-ε model + Enhanced Wall Treatment, Q₂ = 0.204 dm³/s

Contours of velocity magnitude

k-ε model + Enhanced Wall Treatment, $Q_2 = 0.204$ dm³/s

Contours of velocity magnitude – selected cross-sections

k-ε model + Enhanced Wall Treatment, $Q_2 = 0.204$ dm³/s

Contours of velocity x-component

k-ε model + Enhanced Wall Treatment, $Q_2 = 0.204$ dm³/s

Contours of turbulent kinetic energy

k- ϵ model + Enhanced Wall Treatment, Q₂ = 0.204 dm³/s

Horizontal profile (P01) of the averaged Turbulent Dissipation Rate *Epsilon* through the gap

k-ε model + Enhanced Wall Treatment, $Q_2 = 0.204$ dm³/s

k- ϵ model + Enhanced Wall Treatment, geometryG1; Q₂ = 0.204 dm³/s

NUMERICAL SIMULATION Vertical profiles of Turbulent Dissipation Rate

k- ϵ model + Enhanced Wall Treatment, Q₂ = 0.204 dm³/s

1mm (P3)

3mm (P4)

8mm (P5)

behind processing element

g1ke – non-transparent processing element g2ke – transparent processing element

k- ϵ model + Enhanced Wall Treatment, Q₂ = 0.204 dm³/s

1mm (P3)

3mm (P4)

8mm (P5)

behind processing element

g1ke – non-transparent processing element g2ke – transparent processing element

NUMERICAL vs. EXPERIMENTAL RESULTS

Comparison of the numerical and experimental x-velocity profiles:

1mm (P3)3mm (P4)behind processing element

8mm (P5)

<u>Fluent:</u> k- ε model + Enhanced Wall Treatment, Q₂ = 0.204 dm³/s, geometry G1 P3 P4 P5

THEORETICAL ESTIMATION OF DROPS SIZE

Kolmogorov-Hinze theory

for turbulent flows and small differences of the fluids viscosity

$$d = 0.749 \frac{\sigma^{3/5}}{\rho_c^{3/5} \cdot \epsilon^{2/5}}$$

Davis theory

for turbulent flows and significant differences of the fluids viscosity

$$d = \frac{K}{\rho_c^{\frac{3}{5}} \cdot \varepsilon^{\frac{2}{5}}} \left(\sigma + \frac{\mu_d \sqrt{2} \left(\varepsilon \cdot d_{\max}\right)^{\frac{1}{3}}}{4} \right)^{\frac{3}{5}}$$

Where: d – drops diameter, σ – interfacial tension ρ_c – medium density, μ_d – drops viscosity, ε - turbulent dissipation rate, K – constant (K=0.748)

DROPS SIZE ESTIMATION

Estimated dependence between Turbulent Dissipation Rate Epsilon and oil-drops diameter

Estimation for two silicone oils:S50 oil: $\mu_d^{S50} = 50mPas$ S500 oil: $\mu_d^{S500} = 500mPas$

Dispersing medium properties: $\rho_c = 998 \text{ kg/m}^3$

σ=5.5 mN/m

which corresponds to properties of de-ionized water with 1%wt SDS

DROPS SIZE ESTIMATION

Results of the oil drops diameter estimation

	Hinze model both oils [<i>µm</i>]	Davis model oil S50 [<i>µm</i>]	Davis model oil S500 [<i>µm</i>]
max. epsilon value in gap ϵ_{max} =1.160·10 ⁶ m ² /s ³	1.97	6.46	32.77
avg. epsilon value in gap ε_{avg} =3.599 \cdot 10 ⁵ m ² /s ³	3.14	8.95	44.01

Experiment: mean oil-drops size: 10.1 μm for S50 oil 20.7 μm for S500 oil

CONCLUSIONS

- Almost uniform velocity flow field in the gap region turbulence is still not fully developed
- Transition from laminar to turbulent flow regime occurs probably behind the processing element (strong recirculation zone, fluctuations of the velocity, asymmetry of the flow)
- Numerical modelling can be applied for predicting conditions for oil-droplets break-up in a shear flow
- Turbulent-flow drop break-up model (Hinze) appears to work well
- Validation of the numerical models of turbulent flow in micro-channel using μPIV is possible but difficult due to:
 Iow particle concentration
 - short measurement time at high flow rates

ACKNOWLEDGMENTS

This investigation was conducted in the framework of EMMA project, supported by Austrian Ministry of Science and Education contract no.: GZ 45.534/1-VI/6a/2003 CONEX

