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Applications
Their very large surface-to-volume ratios make nano-sized fibers especially
suitable for:

Nano-biotechnology, tissue engineering, chemical catalysts, electronic
devices

Bio-active fibers: catalysis of tissue cells growth

New composite materials

Thin materials: solar and light sails, ...

Technologies
Air-blast atomization

Pulling from melts

Electrospinning of polymers and melts
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The electrostatic instability

Earnshaw’s theorem
“A collection of point charges
cannot be maintained in a stable
stationary equilibrium configuration
solely by the electrostatic
interaction of the charges”

D. H. Reneker, A. Yarin et al. (2000)
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Main assumptions

Main assumptions

The background electric field
created by the generator is
considered static

The fiber is a perfect insulator

The polymer solution is a
viscoelastic medium with constant
elastic modulus, viscosity and
surface tension
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Governing equations (1/3)

Governing equations for each bead

Mass conservation:

d
dt

(
π a2 l

)
= 0

Stress balance:

dσ
dt

= G
1
l

dl
dt
− G
µ
σ

a: fiber radius

l : bead length

σ: longitudinal stress

G: Young modulus
µ: viscosity
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Governing equations (2/3)

Momentum conservation for charges

mi
dv i

dt
= qi

∑
j 6=i

qjκ
r i − r j∣∣r i − r j

∣∣3

v: velocity vector

m: mass

q: electric charge
κ: Coulomb constant

r: position vector

E: electric field

a: bead radius
σ: longitudinal stress

External forces

Coulomb forces

Electric force

Mechanical forces
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v: velocity vector
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Governing equations (2/3)

Momentum conservation for charges

mi
dv i

dt
= qi

∑
j 6=i

qjκ
r i − r j∣∣r i − r j

∣∣3
+qiE

+πa2
i,i+1 σi,i+1

r i+1 − r i

|r i+1 − r i |

−πa2
i−1,i σi−1,i

r i − r i−1

|r i − r i−1|
v: velocity vector

m: mass

q: electric charge
κ: Coulomb constant

r: position vector

E: electric field

a: bead radius
σ: longitudinal stress

External forces

Coulomb forces

Electric force

Mechanical forces
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Governing equations (3/3)

Boundary conditions

A small initial perturbation is added to the position of the first
bead (“rotating tip”)

The background electric field is axial and uniform

The first bead is described by a stationary equation
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But ...is the discretization consistent?

liml→0 = ?
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The 1D discretized model is not consistent

...because the limit continuous model is
itself inconsistent
Electrostatic force exerted by a fiber portion of
length L1 on a contiguous fiber portion of length
L2, assuming a constant linear charge density ql :

F1→2 =

∫ 0

−L1

dz1

∫ L2

0
dz2

κq2
l

(z2 − z1)
2

= ∞ !!!
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Effect of surface charges (1/2)

Introduction of "ring-charges"
The 1D discrete model assumes
point-charges. In reality, charges migrate
to the surface of the fiber.

=⇒ Coulomb forces on neighboring
“ring-charges” are weaker than for
point-charges.

dFS2→S1
= −κ dQ1dQ2

(z2 − z1)
2 ×

2
π

∫ π
2

0

dψ[
1 +

(
2a

z2−z1

)2
sin2 ψ

]3/2
,
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Effect of surface charges (2/2)

Behavior of short-range cutoff
The former result can be generalized to
a weakly curved fiber (R � a),
replacing z2 − z1 by the distance d
between ring centers:

C =
2
π

Z π
2

0

dψh
1 +

`
2a
d

´2
sin2 ψ

i3/2

=
d→0∼ d

πa

=⇒ the longitudinal stress due to
Coulomb forces becomes finite
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Governing equations and BCs

Differences with D. H. Reneker’s model
Random perturbation of the initial
position

3D surface tension effects

Sphere-plate capacitor configuration for
the background field =⇒
No evaporation
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Simulations

Reference case

ρ = 1000 kg ·m−3

a0 = 150µm

h = 20 cm

d0 = 1µm

qe = 200 C ·m−3

Qv = 3.6 cm · h−1

Φ = 5000 V

µ = 10 Pa· s
G = 0.1 MPa

α = 0.07 N ·m−1

α× 3

α/3

Φ/2

µ× 5

G × 2

G/2
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Simulations results from ORNL

Courtesy of Srdjan Simunovic
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Open issues

Issues with the physical model

Very idealized rheological
model

No electrical conduction

No evaporation

...

Issues with the numerics
Coulomb forces are computed
pairwise
=⇒ N2 problem

Inefficient mathematical
discretization for coarse
meshes

Accuracy worsens as beads
elongate

...
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Mathematical discretization

Discretization error
Computed Coulomb stress in the
middle section of a fiber of length L,
using beads of length d . Possible solutions

For close Coulomb
interactions, use the exact
solution for weakly bent fibers
with constant radius

Dynamic mesh refinement by
dichtotomic splitting of long
beads
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Fast Coulomb interaction computation

Main idea

Solve a N-body force problem in
less than O

(
N2

)
by clustering the

N bodies into a smaller number of
”super”-bodies of various sizes.

The acceptable error defines the
largest cluster to be used in
computations.

Available methods

Barnes-Hut Algorithm
O (N ln N)
Simple implementation

Fast Multipole Method
O (N)
Implementation is intricate, not
very efficient for naturally
clusterized bodies
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Barnes-Hut Algorithm

Discretize at particle level

Discretize at level 2

Discretize at level 3

Discretize at top level

Determine interacting
clusters
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