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1. Periodicity and bifurcation in capillary boiling



1. Motivation.
Nucleate boiling transfers large amounts of heat per

unit mass.
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Artificial nucleation sites:
Commercially available surface geometries that promote high performance
nucleate boiling.
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Sintered material copper mesh: 100um-150um




Two models considered for studying artificial nucleation sites.

DC Source DC Source

Laser beam Thermocouple

(5lass capillary

T Heating wire —

Heating plate Heating plate

Model 1. Model 2.
Heating wire at the bottom of the capillary. Concentric heating wire
Capillary diameter= 0.5 mm , length=4 mm Capillary diameter= 0.7 mm, length = 60 mm



Capillary model 1

Diameter 0.85 mm

|“| Diameter 1.4 mm



Observations with Model 1: Bubble transit at the tip of the capillary

Presence of bubble

Absence of bubble

Long interval between bubbles Short interval between bubbles



Observations with Model 1
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Average long interval ~ 0.18 s : - .0-10 0.5
Average short interval ~0.075 s Time between bubbles (s)




Visualization

Gray level

monitor

[0A9]

Aein)




Origin of the double frequency...

monitor 1

liquid packet

monitor 1

monitor 2
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...but liquid packet and natural bubble departure sometimes
coincide

liquid package

Velocity of the liquid

packet inside the capillary
~32 mm/s

Gray level



Observations indicate that the liquid packets can be formed by
two mechanisms:

waves on the descending

liquid accumulation at the
liquid films.

bottom of the capillary.



Power spectrum

Single bubbles (~5.5 Hz) Short period events (~12 Hz)

* 1000 bubbles, 160 packages.



Return map for the time interval T "between subsequent bubbles.

Long === Long
Short === [.ong
Long ™ Short



Model for the time interval T between subsequent bubbles.

»_Jatp)+e(@,-by +ng, T, <d(,)
" 16+n¢, T, >d(p,)

E white noise

(£,)=0 (£E,)=5,,

a(g,)=31+1.2cos(¢p,)
b=19.5
c =0.0205
d(p,)=36.84+2.9cos(p,)
n=0.13




Experiment

Model with ¢ =0

counts

Experiment 20 Model

5 10

Number of bubbles per package



Capillary model 2

60 mm

Wire diameter
0.254 mm

Capillary
Internal diameter
1.4 mm

Upper and lower
ends move



Observations with Model 2: Bubble transit at the tip of the capillary
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Period doubling
a) 15 W/m, b) 18 W/m, ¢) 22 W/m, d) 24 W/m



Observations with Model 2: Return maps

Period doubling
a) 15 W/m, b) 18 W/m, ¢) 22 W/m, d) 23 W/m



Observations with Model 2: Bifurcation diagram
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Summary

*We studied capillary boiling as a model of artificial
nucleation.

* Bubble emission (and heat transfer) depend strongly on the
geometry and on the dynamical interaction of liquid and vapor
inside the capillary.

* Period doubling of bubble emissions has been observed for
long capillaries.



2. Quasi 2D-vortices generated by the Lorentz force
1in an electrolyte



Electrolyte container

Working fluid: Sodium bicarbonate solution
Fluid layer depth: 4 mm
Maximum magnetic field: 0.33 T
Magnet diameter: 19 mm
Electrical current : Jo = 5-100 mA



Experimental setup

Particle Image Velocimetry



Scaling

Distance: magnet diameter D)

fluid layer depth h
Time: D /v
Velocity (1): Uv=v/D
Electrical current: Jo
Magnetic field: Bo
Lorentz force: JoBo

Velocity (2): vU/D “JoBo U=JoBoD/v
Electrical conductivity G



Nondimensional parameters

* Reynolds number

Re = UD/v =JoBoD7v = U/Uv
e Hartmann number

Ha =Bo D (c/pv)"?
* Depth of the fluid layer

h=h/D



Experimental observations.

Ha=0.3
h=0.21
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Velocity field, upper layer (z=3.75 mm)




Stream lines
Jo =25 mA, Re =75, Ha =0.3




Velocity

. = 6.7 mm/s

Vorticity

M =1.05¢"!
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Velocity profiles as functions of z

Free surface

Bottom

N

Transversal section



Camera

Laser beam !
- Beam splitter

Layer of electrolyte

Glass \
Magnet



Contours of velocity magnitude
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Velocity profiles as functions of z

(Upstream of the center of the magnet)
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J,=25mA, Re=75, h=4mm



Velocity profiles as functions of z

(Downstream of the center of the magnet)
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Steady, two dimensional model
(likely to be useful for the upper regions of the fluid layer)

(,v,w) = (u(x, y),v(x, y),0)

EOZBZO(X,y)le, E:bz(x’y)le

J =140+,



Governing equations, two dimensional model
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Magnetic field for a point dipole
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Vorticity equation
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Stream function
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Magnetic induction
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For small Re

. =o'” +Rew!” +Re* 0.

u® +Reu +Re* ...
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A linearized solution may be attempted with
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Vorticity equation order Re
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The solution diverges for =0 and r—oo:

(1)
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similar to the Stokes paradox



The solution is not altogether usless...

GK Batchelor
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Salas, Cuevas & Ramos, Magnetohydrodynamics, 37 (2001)



Numerical solution is required




Numerical results
Stream lines dipolar magnetic filed

Re=60, Ha=0.2 Re=300, Ha=0.2




Comparison with experiments

Re= 30 (60), Ha=0.2



Comparison with experiments

Re=300, Ha=0.2



Summary

*A class of electromagnetically driven flows 1n shallow
fluid layers has been observed.

*For the experimental conditions examined, the influence of
the bottom wall extends up to approximately 3 mm.

*A two dimensional model that includes nonlinear effects
captures some features of the experimental observations.



3. Natural convection 1n a centrifuge



No rotation
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With rotation




Centrifuge
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I — Centrifuge 1nertia
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Summary

* No Rotation: One single, no axisymmetric cell
(AA’), four vortices (BB’)

* Rotation: Time dependent flow, characteristic time
55 s.



The End



