Numerical Simulation of Cavitating Flows

Steffen Jebauer July 12th 2006

Motivation

- Cavitation is complex process
- Not completely understood
- Hardly to predict
- Testing of existing models and combination with others → Validation
- Estimation of numerical errors

Contents

- Cavitation modelling
 - Two-phase flow approach
 - Mass transfer model
 - Cavitation and cavitation inception
- Test cases
 - Two-dimensional
 - Three-dimensional
- Conclusion and outlook

Cavitation

Definition

Rupture of a liquid due to pressure decrease at roughly constant temperature.

- Saturation pressure p_s
- Problem

Rupture starts at inhomogenities in a liquid, so-called nuclei

- Lack of nuclei might postpone inception
- Integral measure by means of tensile strength $\Delta p_t = \frac{2S}{\Delta n n}$

$$\Delta p_t = p_S - \frac{2S}{R_B}$$

Cavitation modelling

- Large density differences between liquid and vapour
- Volume-of-Fluid method $\rightarrow r_v$, r_l
- Two-phase flow with source term Γ_{lv}

$$\frac{\partial}{\partial t}(r_V\rho) + \frac{\partial}{\partial x_i}(r_V\rho u_i) = \Gamma_{lv}$$

Homogenic description → number of equations

$$\vec{u}_v = \vec{u}_l$$

Cavitation modelling

Rayleigh-Plesset mass transfer model

$$\Gamma_{lv} = F_{evap} \frac{3r_{nuc}(1 - r_v)\rho_v}{R_B} \sqrt{\frac{2}{3} \frac{|p_s - p_B|}{\rho_l}} \cdot sgn(p_s - p_B)$$

$$\Gamma_{lv} = F_{cond} \frac{3r_v \rho_v}{R_B} \sqrt{\frac{2}{3} \frac{|p_s - p_B|}{\rho_l}} \cdot sgn(p_s - p_B)$$

- $F_{evap} = 50, F_{cond} = 0.01$
- $r_{nuc} = 5 \times 10^{-4}$, $R_B = 2 \times 10^{-6}$ m

Turbulence modelling

- RANS, URANS
- SST model, eddy viscosity model

$$\mu_t = \rho \frac{Ck}{f(\omega)}$$

• Blending via F_1 function in ω -equation between

$$-F_1 = 0 \rightarrow k - \varepsilon$$
 model, free stream

- $-F_1 = 1 \rightarrow k \omega \mod l$, near walls
- Curvature correction to the SST model

$$P_k = f_r \cdot \widetilde{P}_k; \quad f_r = 0 \dots 1.25$$

Numerical errors

- Errors regarding
 - Spatial discretisation
 - Time discretisation
 - Iteration number
- Time step studies
- Grid studies
- Abort at different residual norms

Symbol definitions

Gas holdup

$$G = \int_{(v)} r_G \cdot dV$$

- Lift coefficient
- Pressure coefficient

$$c_L = \frac{2 \cdot F_L}{\rho_f \cdot u_\infty^2 \cdot A_P}$$

$$c_p = \frac{2 \cdot p_{stat}}{\rho_f \cdot u_\infty^2}$$

$$\sigma = \frac{2 \cdot (p - p_s)}{\rho_f \cdot u_\infty^2}$$

- P_s Saturation pressure A_P
- *P*_{stat} Static pressure
- u_{∞} Inlet velocity
- ρ_f Density water

- Hydrofoil surface
- F_L Lift force
- r_{v} Vapour volume fraction
 - r_l Water volume fraction

Two-dimensional test case

Boundary conditions Wall, free slip

Pressure boundary condition

$$p_{out} = \sigma \cdot \frac{\rho}{2} u_{\infty}^2 - p_s$$

Test Case Summary

- Spatial discretisation

 HighResolution scheme, hybrid scheme
- Time discretisation
 - 2nd order Backward Euler
- Saturation pressure p_s=3240 [Pa]
- Standard SST turbulence model
- Outlet: Pressure boundary condition via σ
- Inlet: u_∞=10 m/s, Re≈2×10⁶

Grids				
Grid	(1)	(2)	(3)	(4)
Node number	14 306	56 452	224 264	893 986
Element number	6 960	27 840	111 360	445 440
Min. grid angle [°]	40	41	38	43
First layer width y [µm]	20	10	5	2,5
Average layer width y^+	8	4	2	1
July 2006				13

Experimental data

• Flow patterns in experiment

Case study, $\alpha=0^{\circ}$

Pressure coefficient/ Vapour volume fraction

Experimental data (2)

• Experiments Le et al. (1993)

– Pressure distributions

Validation

• Pressure distribution on upper side:

Pressure distribution

• Angle of attack: α =2.5° and 3.5°

URANS-Simulations, time averaged

Threedimensional test case

• Water test channel at SAFL (St. Anthony Falls Laboratory, Minnesota, U.S.A.)

Geometry

• NACA 66₂-415 profile

α...Angle of attack
 c₀...Chord length
 b...half span

Test case setup

- Spatial discretisation
 - HighResolution scheme for momentum
 - 1st order/ HighResolution for turbulence
- Time discretisation
 - 2nd order Backward Euler
- Single phase calculations, inception
- SST-model/ SST with curvature correction
- Inlet: $u_{\infty} = 5.73...12.13$ m/s, Re=5.2×10⁵...1.1×10⁶
- Outlet: Pressure boundary condition via $\boldsymbol{\sigma}$

Gitternetze Skalierfaktor 4^{1/3} in jeder Raumrichtung × Grid Grob (1) Mittel (2) Fein (3) 358 519 5 442 459 Knotenanzahl 1 394 862 Elementanzahl 341 596 1 352 603 5 337 217 Wandschichtdicke y [µm] 30 15 7,5 Durchschnittl. Dicke y^+ 7,1 14,3 3,6

Kavitationseinsatz

• Experimentelle Daten

Lift

• Lift coefficient – Eff. angle of attack (α - α_0)

• Experiment: $Re_c = 9.2 \times 10^5$

Cut planes

Tip vortex

- Medium(2) grid, $\alpha_{eff}=12^{\circ}$, Re=5.2×10⁵
- Different cut planes, vortex deflection

Tip vortex

- Fine(3) grid, α_{eff} =12°, Re=5.2×10⁵
- Model comparison

Tip vortex

- All grids, α_{eff} =12°, Re=5.2×10⁵
- Small distance to blade tip

Cavitation inception

• Decrease of σ according to:

Cavitation Inception

Results and experimental values

Summary

- Two-dimensional test case
 - Phase transition modelled
 - Averaged pressure distributions in good accordance
 - Transient behaviour detected
- Outlook
 - More experimental data
 - Vapour clouds
 - Volume fraction
 - Separation regions on foil surface

Summary

- Threedimensional test case
 - Lift forces evaluated and compared (less grid influence)
 - Trailing vortex examined
 - Cavitation inception with single phase flow
- Outlook
 - Further grid refinement
 - Reynolds stress turbulence model
 - Pressure fluctuations

Thank you very much for your attention.