Stepwise drainage of thin liquid films stabilized by colloidal particles

Jerzy Bławzdziewicz¹

and Eligiusz Wajnryb^{1,2}

¹Mechanical Engineering, Yale University ²IPPT, Warsaw, Poland

Quasi-two-dimensional colloidal suspension

particle trajectories at different area fractions $\phi_{\rm a}$

Cui, Lin & Rice (2001)

Structural interactions

without macromolecules

with macromolecules

Dinsmore, Yodh, & Pine (2000)

Effective structural force

Stratification of particle-stabilized liquid films

Early observations: Johnot (1906), Perrin (1918)

Sethumadhavan, Nikolov & Wasan (2001)

100 µm

Standard explanation:

Missing: lateral force balance

Outline

- Normal and lateral structural forces
- Thermodynamics of particle-stabilized films
- Constrained and unconstrained phase equilibria
- Irreversible thermodynamics
- Evaluation of transport coefficients
- Interfaces with different boundary conditions

• Normal and lateral structural forces

confined suspension of hard spheres

z

9

Lateral pressure

$$\implies \mathbf{p}_{c} = p_{c\perp} \hat{\mathbf{e}}_{z} \hat{\mathbf{e}}_{z} + p_{c\parallel} \mathbf{I}_{s}$$
$$\mathbf{I}_{s} = \hat{\mathbf{e}}_{x} \hat{\mathbf{e}}_{x} + \hat{\mathbf{e}}_{y} \hat{\mathbf{e}}_{y}$$

Non-isotropic particle distribution

Lateral pressure

$$\implies \mathbf{p}_{c} = p_{c\perp} \hat{\mathbf{e}}_{z} \hat{\mathbf{e}}_{z} + p_{c\parallel} \mathbf{I}_{s}$$
$$\mathbf{I}_{s} = \hat{\mathbf{e}}_{x} \hat{\mathbf{e}}_{x} + \hat{\mathbf{e}}_{y} \hat{\mathbf{e}}_{y}$$

Lateral pressure

$$\Rightarrow \qquad \mathbf{p}_{c} = p_{c\perp} \hat{\mathbf{e}}_{z} \hat{\mathbf{e}}_{z} + p_{c\parallel} \mathbf{I}_{s}$$
$$\mathbf{I}_{s} = \hat{\mathbf{e}}_{x} \hat{\mathbf{e}}_{x} + \hat{\mathbf{e}}_{y} \hat{\mathbf{e}}_{y}$$

Components of pressure tensor

• Thermodynamic description

Gibbs free energy

 $dF = -S dT - p_{\perp} dV + \gamma dA + \mu_{c} dN_{c} + \mu_{f} dN_{f}$

V, A extensive p_{\perp}, γ intensive

Phase equilibria

$$\begin{split} \mathbf{p} &= p_{\perp} \mathbf{I} + (p_{\parallel} - p_{\perp}) \mathbf{I}_{s} & \text{inside} \\ \mathbf{p} &= p^{(e)} \mathbf{I} & \text{outside} \\ \gamma &= h(p_{\perp} - p_{\parallel}) & \frac{\text{excess}}{\text{lateral force}} \end{split}$$

Equilibrium conditions

mechanical $p_{\perp}^{(1)} = p_{\perp}^{(2)} = p^{(e)}$ $\gamma^{(1)} = \gamma^{(2)}$ chemical $\mu_{c}^{(1)} = \mu_{c}^{(2)}$ $\mu_{f}^{(1)} = \mu_{f}^{(2)}$

Colloidal contributions

$$p = p_f l + p_c$$

isotropic nonisotropic
fluid osmotic
pressure pressure

equilibrium conditions $p_{\rm c\perp}^{(1)} = p_{\rm c\perp}^{(2)}$ $\gamma_{\rm c}^{(1)} = \gamma_{\rm c}^{(2)}$

Fundamental relation

$$dF_{c} = -p_{c\perp} dV + \gamma_{c} dA + \mu_{c} dN_{c}$$
$$(T = \text{const})$$

Chemical potential

$$\mathrm{d}\mu_{\mathrm{c}} = v \,\mathrm{d}p_{\mathrm{c}\perp} - a \,\mathrm{d}\gamma_{\mathrm{c}}$$

Gibbs–Duhem relation

$$v = V/N_c, \qquad a = A/N_c$$

Equations of state (Volume fraction $\phi_c = 0.4$)

Stability condition

3

4

 $(\partial p_{c\perp}/\partial h)_{T\mu_c} < 0$

• Constrained and unconstrained phase equilibria

 $Three\ relaxation\ mechanisms \ (surfactant-free\ film)$

• volume exchange $au_2 \sim (l/h) au_1$

• particle exchange $\tau_3 \sim (l/h)\tau_2$

Energy-dissipation argument

$$\eta(\nabla u)^2 V_{\rm d} \sim n_{\rm c} k T \frac{\mathrm{d}V}{\mathrm{d}t}$$

dissipation

work of structural force

Anticipated equilibration phases

• Timescale τ_1 :

area exchange by film-tension relaxation

• Timescale $\tau_2 \gg \tau_1$:

normal-pressure relaxation by volume exchange at $\phi_{\rm c} = {\rm const}$

• Timescale $\tau_3 \gg \tau_2$:

chemical-potential relaxation by particle exchange

Determination of equilibrium conditions

$$\gamma_{\rm c}^{(1)} = \gamma_{\rm c}^{(2)}$$

 $\phi_{\rm c} = {\rm const}$

(partial equilibrium)

 $\mu_c = \text{const}$

full equilibrium

Explanation of plot shape:

$$\left(\frac{\partial \gamma_c}{\partial p_{c\perp}}\right)_{T\mu_c} = h,$$

which follows from Gibbs-Duhem relation $d\mu_c = v dp_{c\perp} - a d\gamma_c$

• Film hydrodynamics

long-wavelength limit \Rightarrow 2D "compressible" flow

Conservation equationsConstitutive relations
$$\nabla_{s} \cdot (\gamma I_{s} + \tau_{s}) = -F_{s}$$
momentum $\tau_{s} = 2\eta_{s} [\nabla_{s} \mathbf{v}_{s}]_{d} + \kappa_{s} (\nabla_{s} \cdot \mathbf{v}_{s}) I_{s}$ stress tensor $\frac{\partial \nu_{c}}{\partial t} = -\nabla_{s} \cdot (\nu_{c} \mathbf{v}_{s} + \mathbf{j}_{s})$ particle number $\frac{\partial h}{\partial t} = -\nabla_{s} \cdot (h \mathbf{v}_{s})$ volume

$$\mathbf{f}_{\mathrm{f}} = -\boldsymbol{\nabla}_{\mathrm{s}}\psi_{\mathrm{f}}, \qquad \mathbf{f}_{\mathrm{c}} = -\boldsymbol{\nabla}_{\mathrm{s}}\psi_{\mathrm{c}}$$

 $\mathbf{F}_{\mathrm{s}} = h\mathbf{f}_{\mathrm{f}} +
u_{\mathrm{c}}\mathbf{f}_{\mathrm{c}}$

 $\nu_{\rm c} = N_{\rm c}/A$ (particles per unit area)

• Evaluation of transport coefficients

Multiple-reflection method (free interface)

periodic representation

Surface viscosity

Numerical results

$$\mu_{\rm coll} = h^{-1} (\nu_{\mu} + n_{\rm c}^{-1} \nu_{\rm p})$$

• Different boundary conditions

- surfactant-covered interfaces
- biological membranes
- rigid walls

collaborators: S. Bhattacharya M. Ekiel–Jeżewska

Image method

Image singularities

Double reflection identity

 $\mathsf{R}^{\mathrm{sw}}(h) \cdot \mathsf{R}^{\mathrm{sw}}(-h) = \mathsf{I} \qquad \implies \qquad \text{commutation relations}$

Convergence problem

Cartesian representation method

Spherical and Cartesian basis fields

Transformation relations Spherical \leftrightarrow Cartesian $\mathbf{v}_{lm\sigma}^{\pm} = \int d\mathbf{k} T_{SC}^{\pm\pm} (lm\sigma \mid \mathbf{k}\sigma') \mathbf{v}_{\mathbf{k}\sigma'}^{\pm}$ $\mathbf{v}_{\mathbf{k}\sigma}^{\pm} = \sum_{lm\sigma'}^{\pm} T_{CS}^{\pm\pm} (\mathbf{k}\sigma \mid lm\sigma') \mathbf{v}_{lm\sigma'}^{\pm}$

Displacement relations

Linear polymer chains

Forces on individual spheres

Far-field pressure

-10

-20 ∟ -20

-10

0

10

10

12.5

h = 1.05d

 $\mathbf{\Lambda}$

Far-field approximation

Hele–Shaw flow

$$\mathbf{v}^{\mathrm{as}} \sim z(H-z) \boldsymbol{\nabla} p^{\mathrm{as}}$$

 $\nabla^2 p^{\mathrm{as}}(x,y) = 0$

flow determined by scalar field

Mutual friction matrix

$$p^{\rm as} \sim \rho^{-1} \cos \phi$$
 far-field pressure
 \downarrow
 $\zeta_{12}^{yy} \approx -\zeta_{12}^{xx} = A\tilde{\rho}^{-2} + O(\tilde{\rho}^{-4})$

In free space $\zeta_{12}^{xx}, \zeta_{12}^{yy} = O(\tilde{\rho}^{-1}) > 0$

$$\begin{split} \tilde{a} &= a/h \\ \tilde{\rho} &= \rho/h \end{split}$$

Conclusions and future work

- Phase transitions in thin films
 - More realistic potentials
 - Transport through junction between regions of different thickness
 - Dynamics in presence of surfactants
 - Experimental: construct two-phase system in full equilibrium
- Development of hydrodynamic algorithms
 - Periodic systems
 - Iterative solvers
 - Fast-multipole or PPPM methods
- Cylindrical geometry: Blood microcirculation!

Czarnecki, Masliyah, Panchev, & Taylor (2005)