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INTRODUCTION: Modeling multicellular behavior
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Example 1: Life cycle of slime mold Dictyostelium discoideum

http://biology.kenyon.edu/Microbial Biorealm/eukaryotes/dictyosteliida/dictyosteliida.html
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Composite photograph of Dictyostelium discoideum life cycle

Photo by Mark Grimson and Larry Blanton, Texas Tech University
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Example 2: Cell Sorting

Randomly mixed differentiated cells can sort out

Simulation by James Glazier and F. Graner
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Example 3: Organogenesis in early development:

Precartilage condensation

Stuart A. Newman, NYMC
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Basic “Ingredients” for pattern formation in multicellular

systems

1. cell movement

2. cell differentiation

3. cell proliferation and death

4. cellular secretion and absorption of extracellular scaffolding
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Goals of Mathematical Modeling
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Goals of Mathematical Modeling

• to explain biological processes that result in observed phenomena

• to predict previously unidentified phenomena

• to guide experiments
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Why Modeling?

• simplify overwhelming complexity by forcing a hierarchy of importance
- identify key mechanisms

• failure of models can identify missing components
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Model modules
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Discrete vs. continuous models

• discrete models:
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Discrete vs. continuous models

• discrete models:
represent cells as (collections of) lattice sites
(simplest model: green· · · cell; red· · ·ECM)

• continuous models:
represent cells via cell density ρ(x, t) (continuous variable of space x

and time t)
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ρ(x, t) =density of cells at location x, time t
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Continuous Models

ρ(x, t) =density of cells at location x, time t

spatiotemporal evolution governed by partial differential equations

∂ρ

∂t
= −∇ · J + cell death/proliferation + cell differentiation

Here J =cell flux due to various phenomena, e.g.

• Jdiffusion = −D∇ρ Brownian motion (Fickian diffusion)

• Jchemotaxis = χ∇c(x, t) chemotaxis up the gradients of a chemical
c(x, t)
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Discrete models
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Discrete models

• Cellular Automata Models
at every time, situation is represented by a configuration of the lattice
time evolution: deterministic or probabilistic rules for updating lattice
Examples: · Brownian motion: each cells jumps to a randomly se-
lected neighboring lattice site with a certain fixed probability
· Conway’s “Game of Life”

• Lattice-gas Cellular Automata
every occupied lattice site has a (discretized) velocity
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Cellular Potts Model

Cellular Potts Model (CPM):
→ computational framework for simulating multicellular behavior
→ based on Potts model from statistical physics

(Incomplete) List of Applications:

• Glazier/Graner(early 90s): testing Steinberg’s differential adhesion hy-
pothesis

• Marée et al. (late 1990s+): fruiting body formation of Dictyostelium
discoideum

• COMPUCELL group (2000s): modeling chondrogenesis in vertebrate
embryos

• Turner/Sherratt (1990s): tumor growth

• ETC
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Cellular Potts Model: Set-up

Hamiltonian (energy)= interaction energy + volume constraint energy + sur-
face constraint energy+chemical energy

E =
∑

sites i,j

Jτ(σi),τ(σj)
+ cV

∑
cells σi

(Vi − Vtarget)
2

+ cS

∑
cells σi

(Si − Starget)
2 +

∑
cells σi

µσiCi
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1. Choose a random site i
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Cellular Potts Model: Metropolis Monte Carlo Algorithm

1. Choose a random site i

2. Choose a random cell index σ′

3. Decide if the index σ of the site i should be “flipped” to σ′:

Prob(σ → σ′) =

1 ∆E < 0

exp(−β∆E) ∆E ≥ 0
.

(Here ∆E = Eafter − Ebefore and β . . .1/temperature.)
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Example 1

Picture of Chondrogenesis Simulation with CPM (COMPUCELL group)
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Example 2: Cell Sorting

Randomly mixed differentiated cells can sort out

Simulation by James Glazier and F. Graner
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THE GENERAL PROBLEM OF THE CONTINUOUS LIMIT OF A
DISCRETE MODEL
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Continuous Limit

Suppose we consider some discrete model
Let PCPM(x, t) =probability that location x is a center of mass of a cell at
time t

Problem of continuous limit: For a given discrete model, find a PDE
governing the temporal evolution of PCPM(x, t)

Vast literature for point-wise discrete models (Alt, Othmer, Stevens, T. New-
man, etc.)
Turner, Sherratt, Painter, Savill (2004) Derivation of diffusion equation for
1-D Potts without chemical energy
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Why is the continuous limit intersting?

• more analytical, more and faster computational tools are available for
PDEs

• often matching parameter values of discrete models to measurements
is hard. (Example: Cell-cell interaction strength in CPM.) Parameters
in PDEs are often easier to determine.

• Theoretical interest: Consistency of different models
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Basic Technique

∆x · · · constant spatial interval; ∆t · · · constant time interval
Scaling with small ε: ε∆x, ε2∆t
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Basic Technique

∆x · · · constant spatial interval; ∆t · · · constant time interval
Scaling with small ε: ε∆x, ε2∆t

P (x, t + ε2∆t) =(1− T−(x, t)− T+(x, t))P (x, t)

+T+(x− ε∆x, t)P (x− ε∆x, t)+T−(x + ε∆x, t)P (x + ε∆x, t)

Taylor expansion in ε, throw away terms O(ε3)
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= ε2
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∆t

∂2P

∂x2
+O(ε3)
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Example

T− = T+ = const :

ε2
∂P

∂t
= ε2

T∆x2

∆t

∂2P

∂x2
+O(ε3)

Diffusion equation, D = T∆x2/∆t
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CONTINUOUS LIMIT FOR A CPM CHEMOTAXIS MODEL
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1 2 3 4 75 6

0

0

���� ��� ����
����	 


��� �� �
�������� ����

� � �

�� ��� � �� ���� �� ���

� � �

� � �

���



Continuous Limit of a Chemotaxis Model A CPM chemotaxis model
25

Chemotaxis 1 D Cellular Potts Model

1 2 3 4 75 6

0

0

���� ��� ����
����	 


��� �� �
�������� ����

� � �

�� ��� � �� ���� �� ���

� � �

� � �

���

E = E(xCM , L) = Jcm(2L + 2∆x) + λ(L− LT )2 + µc(xCM)L

c(x) · · · external chemical field
L · · · cell length
xCM · · · center of mass
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Chemotaxis 1 D Cellular Potts Model
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E = E(xCM , L) = Jcm(2L + 2∆x) + λ(L− LT )2 + µc(xCM)L

c(x) · · · external chemical field
L · · · cell length
xCM · · · center of mass
Potts parameters:
LT · · · target length, λ · · · cell length constraint parameter, µ · · · chemical
energy parameter, Jcm · · · cell-medium interaction energy parameter
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Result 1: “Full” PDE

Let p(x, L, t) be the probability distribution for the cell location and cell
length.
Up to O(ε), one gets the following PDE:

∂tP (x, L, t) = D(∂2
x + 4∂2

L)P + 8Dβλ∂L(L̃P ) + DβLµ∂x

[
Pc′(x)

]
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Result 1: “Full” PDE

Let p(x, L, t) be the probability distribution for the cell location and cell
length.
Up to O(ε), one gets the following PDE:

∂tP (x, L, t) = D(∂2
x + 4∂2

L)P + 8Dβλ∂L(L̃P ) + DβLµ∂x

[
Pc′(x)

]
where:
D = (∆x)2

8∆t +O(ε),

L̃ = L− Lm(x), Lm(x) = 2Jcm+µ c(x)
2λ
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Result 2: “Reduced” PDE

Let p(x, t) =
∫ +∞
−∞ P (x, L, t)dL be the probability distribution for the cell

location. Assuming Boltzmann distribution of cell lengths, one gets:

∂p

∂t
= D · ∂2

xp + ∂x(χ(x) · p ∂xc).

where:

D = (∆x)2

8∆t +O(ε),

χ(x) = (∆x)2

8∆t βµ

. 1
Z0

∫∞
0 exp

(
−βλ (L− [LT − Lm(x)])2

)
L dL +O(ε)

with Lm(x) = 2Jcm+µ c(x)
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Result 2: “Reduced” PDE

Let p(x, t) =
∫ +∞
−∞ P (x, L, t)dL be the probability distribution for the cell

location. Assuming Boltzmann distribution of cell lengths, one gets:

∂p

∂t
= D · ∂2

xp + ∂x(χ(x) · p ∂xc).

where:

D = (∆x)2

8∆t +O(ε),

χ(x) = (∆x)2

8∆t βµ

. 1
Z0

∫∞
0 exp

(
−βλ (L− [LT − Lm(x)])2

)
L dL +O(ε)

with Lm(x) = 2Jcm+µ c(x)
2λ

For “reasonable” parameter ranges (
√

βλ[LT − Lm(x)] >> 0), approxi-
mation:
χ(x) = (∆x)2

8∆t βµ (LT − Lm(x)) +O(ε)
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Derivation of Keller-Segel model

If the cells also secrete the chemical, we get the Keller-Segel model

∂c

∂t
= Dc · ∂2

xc + kc p− kdp

∂p

∂t
= D · ∂2

xp + ∂x(χ(x) · p ∂xc)
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NUMERICAL VALIDATION
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Set up
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Time
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Time

Potts Monte Carlo Numerical solution of chemotaxis PDE
typically 200,000 single cell runs

100/ε lattice sites; 200/ε2 time steps
(For plots renormed to 100 Potts lattice sites;
Time t = 0 · · ·200; ∆x = ∆t = 1.)
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Test 1

Parameters λ = 4, LT = 5, Jcm = 2, β = 15,

µ = 0.1 (Chemorepellant)
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chem. conc.
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Chemical Concentration Initial Distribution of the Celll Centers
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Test 1: Comparisons for time t = 200
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Test 1: Comparisons for time t = 200

20 40 60 80 100
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0.07

ε = 0.02, p−val= 4.33·10−135 ε = 0.01, p−val= 1.47·10−14
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Test 1: Comparisons for time t = 200 cont’d
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Test 1: Comparisons for time t = 200 cont’d

20 40 60 80 100
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20 40 60 80 100

0.01
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0.05

0.06

0.07

ε = 0.005, p−val= 3.75·10−10 ε = 0.0025, p−val= 2.58·10−4
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Test 2

Same as Test 1, but β = 150

20 40 60 80 100

0.05

0.1
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0.2
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Test 3

Same as Test 1, but “double well” chemical potential

20 40 60 80 100
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Test 4

µ = −0.1 (Chemoattractant)
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