Turbulence simulations

Broadband forced turbulence

Conclusions

Direct numerical simulations of modulated turbulence

Arkadiusz K. Kuczaj

A D N A D N A D N A D

Turbulence simulations

Broadband forced turbulence

Conclusions

Outline

Modulated turbulence

- General description turbulence problem
- Application context flow in complex geometries
- Modeling idea forcing
- Turbulence simulations
 - Numerical method
 - Computational effort
- 3 Broadband forced turbulence
 - Energy dynamics
 - Mixing quantification

Conclusions

Turbulence simulations

Broadband forced turbulence

Conclusions

Outline

Modulated turbulence

- General description turbulence problem
- Application context flow in complex geometries
- Modeling idea forcing
- Turbulence simulations
 Numerical method
 - Computational effort
- Broadband forced turbulence
 Energy dynamics
 Mixing quantification

Conclusions

< 47 ▶

Turbulence simulations

Broadband forced turbulence

Conclusions

What is turbulence?

Properties of turbulence

- chaotic and random state of a fluid
- three dimensional and rotational
- space- and time-dependent
- deterministic
- sensitive to initial conditions
- wide range of nonlocally interacting degrees of freedom

• (1) • (1) • (1)

Turbulence simulations

Broadband forced turbulence

Why turbulence is important?

Studies of turbulence

- physics to understand
 - dispersion of pollution
 - ocean circulation
 - atmosphere dynamics (weather)
- engineering to control/use
 - combustion, mixing
 - multiphase flows
 - catalyst processes
 - complex fluids: jets, sprays, bubbles/particles interactions

A (1) > A (2) > A

Turbulence simulations

Broadband forced turbulence

Conclusions

Why turbulence is so difficult?

Mathematical description:

Newton's law (F = ma) written for a viscous fluid leads to...

...the Navier-Stokes equations

- nonintegrable
 - \hookrightarrow uniqueness of solution
- nonlocal
 - \hookrightarrow sensitivity to small changes
- nonlinear
 - \hookrightarrow enormous amount of interacting scales

イロン イヨン イヨン イヨ

Turbulence simulations

Broadband forced turbulence

Navier-Stokes equations

Velocity u(x, t) and pressure p(x, t)
 Reynolds number: Re = inertial forces / viscous forces = UL/v

Flow around a car: $L = 1 \ [m]; \ U = 10 \ [\frac{m}{s}]; \ \nu = 10^{-5} \ [\frac{m^2}{s}] \rightarrow \text{Re} = 10^6$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Turbulence simulations

Broadband forced turbulence

Conclusions

How to solve these equations?

Direct Numerical Simulations

- numerically exact solution of NS equations
- need to capture all scales by resolution

(I)

Turbulence simulations

Broadband forced turbulence

Reynolds number sets the smallest scales of turbulent motion

Computational challenge

- L characteristic length
- η size of the smallest scales (Kolmogorov scale)
- from dimensional analysis: $\frac{L}{\eta} \sim \text{Re}^{3/4}$
- discretization accounts the smallest scales: $N > \frac{L}{n}$
- 3D problem: $N^3 > \text{Re}^{9/4}$ computational points

Flow around a car: Re = $10^6 \rightarrow N > 32.000; N^3 > 32 \cdot 10^{12}$ points

- $\hookrightarrow \text{computationally not feasible}$
- \hookrightarrow need for a theory or modeling!

• • • • • • • • • • • • •

Turbulence simulations

Broadband forced turbulence

Conclusions

Kolmogorov K41 description - universal cascade of eddies

Richardson (1920) eddies break up

• • • • • • • • • • • • •

Turbulence simulations

Broadband forced turbulence

Motivation

K41 theory serves well in many cases

Turbulence simulations

Broadband forced turbulence

Conclusions

Motivation

K41 theory serves well in many cases ... but turbulent flows in complicated geometries

... do not follow K41 theory.

Turbulence simulations

Broadband forced turbulence

Conclusions

Flow through porous region

Porous object (metal foam) → thermo-acoustic pump application

Modeling attempts

- Macroscopic approximations
 → lack of incorporated scales
- Explicit boundary conditions
 → computationally not feasible

(I)

Forcing

Turbulence simulations

Broadband forced turbulence

Extended forcing strategy

Forcing as part of modeling

- Multi-scale application
- Energy spectrum modification
 → controlled non-Kolmogorov turbulence

Arkadiusz Kuczaj

Direct numerical simulations of modulated turbulence

Turbulence simulations

Broadband forced turbulence

Conclusions

Spatially localized broadband forcing of turbulent flow

Forced Navier-Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\mathsf{Re}} \nabla^2 \mathbf{u} + \nabla \boldsymbol{\rho} = \mathbf{F}(\mathbf{x}, t)$$

F(**x**, *t*) - force

- can be localized in physical space
- can explicitly agitate specified scales (fractal-like)
- can follow time-protocol (stirring, shaking)

Turbulence simulations

Broadband forced turbulence

Fractal stirrer

"Fractal generated turbulence",

- B. Mazzi, J.C. Vassilicos, JFM, 2004
 - $\bullet\,\,$ drag force \sim surface area
 - forcing amplitude ∼ number of boxes of size k⁻¹
 - fractal object described by the fractal dimension D_f

Forcing term in spectral space:

$$\mathbf{F}(\mathbf{k}, t) = k^{D_f - 2} f_{\varepsilon} \mathbf{e}(\mathbf{k}, t)$$
$$f_{\varepsilon} = \frac{\varepsilon_w}{\sum_{\mathbf{k} \in \mathbb{K}} |\mathbf{u}(\mathbf{k}, t)| k^{D_f - 2}}$$

$$\mathbf{e} = \gamma \left(\frac{\mathbf{u}(\mathbf{k},t)}{|\mathbf{u}(\mathbf{k},t)|} + \imath \frac{\mathbf{k} \times \mathbf{u}(\mathbf{k},t)}{|\mathbf{k}| |\mathbf{u}(\mathbf{k},t)|} \right)$$

(日)

e - unit vector ε_w - demanded energy input γ - normalization parameter

Turbulence simulations

Broadband forced turbulence

Conclusions

Influence of forced turbulence on transport properties

Passive scalar $T(\mathbf{x}, t)$

Quantified turbulent dispersion

- Schmidt number Sc
- Developed level-set integration method:
 - surface-area at specified iso-levels
 - surface-wrinkling: small-scale characteristics

Arkadiusz Kuczaj Direct numerical simulations of modulated turbulence

Turbulence simulations

0000

Broadband forced turbulence

Conclusions

Outline

Modulated turbulence

- General description turbulence problem
- Application context flow in complex geometries
- Modeling idea forcing
- 2 Turbulence simulations
 Numerical method
 Computational offert
 - Computational effort
- Broadband forced turbulence
 Energy dynamics
 Mixing quantification

Conclusions

< 47 ▶

Turbulence simulations

Broadband forced turbulence

Conclusions

Numerical implementation

3D parallel Navier-Stokes solver

- Canonical problem
 - \hookrightarrow Incompressible Navier-Stokes equations
 - \hookrightarrow Periodic geometry with pseudo-spectral method
 - \hookrightarrow Compact storage 4-stage Runge-Kutta method
- Parallel processing for various CPU topologies
 → Message Passing Interface (MPI)
- Fast Fourier Transforms
 → 3D with FFTW/SCSL-SGI libraries
- Data storage and parallel I/O
 → Hierarchical Data Format (HDF5)

< A > < 3

Turbulence simulations ○●○○ Broadband forced turbulence

Computational effort

Discretization

- goal: to simulate flows at moderate Reynolds number
- N = 512 in each direction
- $N^3 > 10^8$ grid points
- 3 velocity components: 3.2 GB
- stationary statistics
 - $\hookrightarrow \text{long-time simulations}$

 \hookrightarrow parallel processing needed

Memory requirements

Ν	Memory
32	0.8 MB
64	6 MB
128	50 MB
192	170 MB
256	0.4 GB
384	1.4 GB
512	3.2 GB
1024	26 GB
2048	206 GB
4096	1.6 TB

Turbulence simulations 0000

Broadband forced turbulence

Conclusions

Computational speedup - how much we can gain with parallelization

Amdahl's law

- Ideal speedup: S(n) = n
- p parallelized code

•
$$S(n) = \frac{1}{\frac{p}{n} + (1-p)}$$

• p = 0.994

Cost: communication between CPUs

Measured speedup at 4, 8, 16, 32 and 64 processors

Arkadiusz Kuczaj

Direct numerical simulations of modulated turbulence

Turbulence simulations

Broadband forced turbulence

Conclusions

Simulations on SGI Origin and Altix supercomputers

SARA Supercomputing Center

- resolution: 128³
 up to 512³
- simulations: 1 day up to a few weeks

▲掃▶ ▲ 臣▶

Arkadiusz Kuczaj Direct numerical simulations of modulated turbulence

Turbulence simulations

Broadband forced turbulence

Conclusions

Outline

Modulated turbulence

- General description turbulence problem
- Application context flow in complex geometries
- Modeling idea forcing
- Turbulence simulations
 Numerical method
 Computational effort
- Broadband forced turbulence
 Energy dynamics
 Mixing quantification

Conclusions

Turbulence simulations

Broadband forced turbulence

Key-research questions

- How forcing influences turbulence (flow-structuring)?
- How forcing changes energy dynamics?
- How forcing modulates transport properties?
- Is there an efficient way to stir/force turbulence?

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

4 Th

Turbulence simulations

Broadband forced turbulence

Conclusions

Spatially localized broadband forcing of tubulence

Arkadiusz Kuczaj Direct numerical simulations of modulated turbulence

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Turbulence simulations

Broadband forced turbulence

Conclusions

Numerical experiments

- How broadband forcing changes the energy dynamics?
 → varying the location (k₁, k₂) ↔
 - \hookrightarrow varying the power ε_{w} \uparrow
- Consequences for mixing?
 → passive scalar simulations

Canonical problem ($R_{\lambda} \cong 50, 100$)

- Large-scale forcing $k_0 \le 1$ $\varepsilon_w = 0.15$ or $\varepsilon_w = 0.60$
- Broadband forcing in (k₁, k₂) supplementary ε_w = 0.45 bands: (4,8) and (12,16)

Turbulence simulations

Broadband forced turbulence

Conclusions

Energy spectra - varying the location $(k_1 < k < k_2) \leftrightarrow$

Forcing modifies energy cascade \rightarrow different scaling

Turbulence simulations

Broadband forced turbulence

Conclusions

Energy spectra - varying the power ε_w

Forcing removes energy from large scales \rightarrow nonlocality

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Turbulence simulations

Broadband forced turbulence

Conclusions

Dispersion of a tracer in forced turbulence

Turbulence simulations

Broadband forced turbulence

Conclusions

Influence of forcing on the flow and its transport properties

Velocity (top) and passive scalar (bottom) snapshots

Turbulence simulations

Broadband forced turbulence

Quantified turbulent dispersion

Mixing process in time

- instantaneous
- cumulative
- final total effect

Developed level-set integration method

- surface area A at specified iso-levels
- surface wrinkling W small-scale characteristics

Averaged growth parameters of:

- surface area $\vartheta_A(t) = A(t)/A(0)$
- wrinkling $\vartheta_W(t) = W(t)/W(0)$
- accumulated area $\zeta_A(t)$ time-integrated
- accumulated wrinkling $\zeta_W(t)$ time-integrated

Turbulence simulations

Broadband forced turbulence

Conclusions

Surface area and wrinkling

Two-band forcing \rightarrow different localization of the second band

Turbulence simulations

Broadband forced turbulence

Conclusions

Cumulative surface area and wrinkling

Time-integral over area and wrinkling as the total effect

Turbulence simulations

Broadband forced turbulence

Cumulative surface area and wrinkling

Different energy-input proportions between two forced bands

Turbulence simulations

Broadband forced turbulence

Outline

Modulated turbulence

- General description turbulence problem
- Application context flow in complex geometries
- Modeling idea forcing
- Turbulence simulations
 Numerical method
 Computational offert
 - Computational effort
- Broadband forced turbulence
 Energy dynamics
 Mixing quantification

Conclusions

< 17 ×

Turbulence simulations

Broadband forced turbulence

Summary

Conclusions

- Feasibility of forcing application as a modeling tool
- Modification of cascading process in turbulence
- Small-scale forcing → nonlocal large-scale effects
- Spatially localized broadband forcing → modeling method
- Quantified mixing \rightarrow relevance for technological processes

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Turbulence simulations

Broadband forced turbulence

Acknowledgments

- Bernard Geurts (UT)
- Detlef Lohse (UT)
- Willem van de Water (TUe)
- Arkady Tsinober (Imperial College)
- David McComb (University of Edinburgh)
- Darryl Holm (Los Alamos Nat. Lab. & Imperial College)

A D N A D N A D N A D

Turbulence simulations

Broadband forced turbulence

Conclusions

Direct numerical simulations of modulated turbulence

Arkadiusz K. Kuczaj

A D N A D N A D N A D