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It is generally believed that, chaos in dynamical systems is a consequence of nonlinearity. In the case of finite 

dimensional systems defined by systems of ordinary differential equations this indeed is true. However, as it is 

well known, the dynamics defined on      S1= {R1, mod 1} by simple linear rule:  

                                                        Yn+1 = 2 Yn  ,     mod 1

 is chaotic, due to the nontrivial topology of S1.



It turns out, that nonlinearity is not needed also in the case of dynamical systems defined by partial differential 

equations, hyperbolic as well as parabolic. There are various definitions of chaos. We adopt here the definition of 

Devaney [1].

1.Chaos    (We use the definition of Devaney  .)  

X – separable metric space, XX:St →  continuous  semiflow

Def. xx:St →  is chaotic if

1) Periodic points (orbits) are dense in x  
2) S is transitive i.e. Any two neighbourhoods can be connected by an   

orbit
3) The flow has sensitive dependence on initial conditions  

.             One can prove that under these conditions the dynamical system defined by (2) is chaotic i.e. 
every orbit, ),( xtut → , is unstable and there are orbits, which are dense in the whole phase space    



1.   Partial differential equations exhibiting chaos

The simplest example of such an equation is given by:

                     )0,(,0,0, − ∞∈>>=+ xauauu xt λλ ,

another, more interesting for applications was proposed in 1977  by A. 
Lasota :

0],1,0[, >∈=+ axuaxuu xt λ       (5)

and has chaotic solutions in the space Ck(0,1) for k>λ !



Eq. (5) can be consider also in Lp-spaces, ],1[ ∞∈p , of functions which are 
integrable with the power p. In Lp the chaos appears even for negative 
amplification coefficient λ, provided that 

   
p
a−>λ     (6)

It turns out that under some conditions on the growth of f the results 
concerning Eq.(5) can be generalized to
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),,(),( uxtfuxtcu xt =+  ],[ bax ∈   (7)

provided that there exists a trapped characteristic.

The characteristic which 
stays all the time in [a,b] 
is called trapped 
characteristic.



We show also, that the quasilinear equation

                     ),,(),( uxtfuxucu xt =+

has chaotic solutions in some metric space X which is a certain open subset of space   C  1  . This shows that the 
results concerning chaos remain true when the semilinear equations are perturbed in such a way that the they 
become quasilinear.  This is an important remark since generally we do the linearization procedure. To be 
sure that the properties of solutions of linearized equations are still valid in a fully nonlinear case we need 
such a result.
       Finally, it can be shown that, these results can be generalized for hyperbolic system of equations, 
provided that: 
 a) there exists a trapped characteristics for at least one of waves existing in the system 
 b) this wave is amplified, when traveling along its characteristics, and the amplification   
     coefficient at the trapped characteristic is large enough. 
One may note, that in the problem of fluid (plasma) flow the trapped characteristic corresponds to  the sonic 
line (i.e. passage from subsonic to supersonic flow).

PARABOLIC EQUATIONS
      It is astonishing, that also the linear heat equation on the half line,
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with convective and a positive source terms, has chaotic solutions. Intuitively, this can be explained in a 
following way; The long waves of infinitely small amplitude (existing in the initial condition) are arriving 
from -∞ and are amplified. When reaching the vicinity of x=0, due to the boundary condition, they are 
converted into shorter waves, which are then dissipated. As a consequence the trajectory can  be erratically 
wondering in the phase space.

Applications
Consider a linear strictly hyperbolic system

UxtBUxtAU xt ),(),( =+ (1)



Let ),(...),(1 xtxt nµµ <<  be the eigenvalues of the matrix A. Let 
),(),...,,( xtXxtX n  and ),(),...,,(1 xtLxtL n  be respectively the left and right 

eigenvectors corresponding to eigenvalues nµµ ,...,1 . They can be normalized in 
such a way that α ββα δ=XL  .

Assuming the asymptotic form of the solution as

∞→+= ω
ω

σω ψ    ),1(),( ),( xtiextYU (2)

one arrives at

BYAYYYAIi xtxt =+++ )( ψψω
It follows that Y is an eigenvector, say XY σ=  and 
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−  is the corresponding 
eigenvalue. Than the highest order part in ω is vanishing and from the rest we 
obtain an overdetermined system of equations for σ

)()( 1 xxt AXXBX −−=+ σµ σσ (3)



Multiplying Eq. (3) by the left eigenvector we obtain finally

)(),( xtxt XXBxt µσσµσ −−=+ (4)

which is a scalar equation for the wave amplitude σ – so called transport 
equation.

FLOW EQUATIONS

Example of a plasma flow in a Hall Thruster
-Assuming for simplicity that the electron temperature Te is constant, the flow 
of plasma in the thruster is described by 



nvnun ixt =+ )(

uvu
n
Ivncuuu iexxt −−=++ )()(ln2 (8)

where n, u – ion density and velocity, 
m

kTc e= - ion sound velocity, m - ion 

mass, vi , ve  - ionization and collision frequencies, I(t) - total current density. 

In Riemann invariants ncuRncuR ln     ,ln −=+= −+   the system 
becomes
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which shows that indeed the linearized Eqs(9) as well as linearized equation 
for the R - - wave have trapped characteristics.

This leads to the linear equation for small perturbation  r of the invariant R-
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assuming that:    the given functions    v (x),   f(u,x)  satisfy:

1.       0)0(,0  xfor  ,0)(  ,0)0( >′>>= vxvv  ,

2.       0),0(   and   ,0),0( >≥
∂
∂= λx
u
fxf

  3.                       ||),( uKCxuf +≤



 Cond.3 assures the existence of global in time solutions.             One can prove that under these conditions 
the dynamical system defined by (2) is chaotic i.e.  every orbit, ),( xtut → , is unstable and there are orbits, 

which are dense in the whole phase space     
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It is important to notice that v(0,0) in (3a) can be replaced by v(0,x*) = 0, for some ).,0(* Lx ∈  In other words 
we assume the existence of a trapped characteristic, i.e. the line x(t) satisfying: *,)0(  ),()( xxxvtx ==′  and such 
that it never approaches the right boundary of [0,L].

References
[1] RL.Devaney. An Introduction to Chaotic Dynamical Systems (2nd edn), Addison-Wesley Studies in
    Nonlinearity. Addison-Wesley Publishing Company: Redwood City, CA. 1989.
[2] A.Lasota, Invariant measures and a linear model of turbulence. Rendiconti del Seminario Matematico dell’Universita di Padova 1979; 61:40-48.
[3] A. Lasota, Stable and chaotic solutions of a first-order partial differential equation. Nonlinear 
      Analysis 1981;  5: 1181-1193
 [4] J.Myjak, R.Rudnicki, Stability versus chaos for a partial differential equation, Chaos,  
      Solitions and Fractals 2002[6] 
 [5] Z. Peradzynski,  B. Hat „Trapped Characteristics and Chaotic Waves”,  in preparation


