HYDRODYNAMIC FOCUSING INSIDE RECTANGULAR CHANNELS

Piotr Domagalski Technical University of Lodz, Poland

Introduction

Applications Problem formulation Experimental description Results, discussion Summary

Schematic view of hydrodynamic focusing.

Index C refers to central inlet, A and B respectively to side streams. Focused stream width is marked δ_s .

Introduction Applications

Problem formulation Experimental description Results, discussion Summary

Cytometry, flow adressing in Lab-On-a-Chip systems

Problem formulation Experimental description Results, discussion Summary

Nguyen NT., Proc. of SPIE, 2005

Micromixing

Jahn A., J. Am. Chem. Soc., 2004Hyun J-O., J. Micromech. Microeng, 2006

Introduction Applications

Problem formulation Experimental description Results, discussion Summary

Reactors

Kenis P.J., Science, 1999

Microfabrication

Introduction **Applications**

Problem formulation Experimental description Results, discussion Summary

6

Introduction **Applications**

Problem formulation Experimental description Results, discussion Summary Utada A.S., Science, 2005, Raven J.P., The European Physical Journal, 2006, Xu Q., Appl. Phys. Lett., 2004

Two-phase systems generation

Takayama at al. Nature 2001

Kam at al. Langmuir 2003

Introduction Applications

Problem formulation Experimental description Results, discussion Summary

3D CLSM projection of hydrodynamic focussing

Increasing accuracy

Compilcated three-dimensional phenomenon

AIM: full description of 3D aspect

Introduction Applications

Problem formulation

Experimental description Results, discussion Summary

Confocal Laser Scanning Microscopy

- Carl Zeiss Axiovert 100 M +LSM 510 Meta
- Plan-Neofluar 20x/0.51, 10x/0.3
- C-Apochromat 10x/0,45
- Laser HeNe 543 nm Argon 488 nm from LASOS lasertechnik
- Alexa Fluor 546, FTIC
- Carl Zeiss LSM software
 Introduction
 Applications
 Problem formulation
 Experimental description

PIV Particle Image Velocimetry

- Olympus BX51
- Plan-Neofluar 20x/0.51, 10x/0.3
- Laser Nd-YAG 543 nm (MiniLite PIV from Continuum)
- Kodak MEGAPLUS ES1.0/10bit CCD
- 1 µm 540/560 polystyrene beads from Molecular Probes Inc.

 $C(s) = \iint_{A} l_1(x) \cdot l_2(x-s) dx \quad \begin{array}{c} Cross-\\ correlation \end{array}$ Peak detection
Subpixel interpolation
Vector output

The correlation of the two interrogation areas, I_1 and I_2 , results in the particle displacement ΔX , represented by a signal peak in the correlation $C(\Delta X)$.

DANTEC materials

Introduction Applications Problem formulation

Experimental description

ANSYS CFX10 software

- Unstructured tetragonal mesh 265k-460k nodes (1499k–2624k elements)
- Boundary conditions: inlet mass flowrates outlet pressure Newtonian fluid, noncompressible fow with no-slip condition
- Coupled algebraic multigrid method
- Bounded second oder upwind scheme
- Pentium 4 (3,2 -3,6 GHz), 2 GB RAM, Linux/Windows XP

Introduction Applications Problem formulation **Experimental**

description

Introduction Applications Problem formulation **Experimental** description

Results, discussion

Laboratory setup (Confocal Laser Scanning Microscopy)

- milled, thermally bonded PMMA microchannels
- Silicon/elastomer/glass microchannels
- Cross-sections 260x200 μm 800x1040 μm

Introduction Applications Problem formulation **Experimental** description

Introduction Applications Problem formulation Experimental description **Results, discussion** Summary 3D confocal projection of hydrodynamic focussing visible cross-sections of outlet channel. Mean flow velocity a) 1,66 cm/s; b) 3,32 cm/s; c) 6,65 cm/s, corresponding Reynolds number 3,23 6,46 and 12,92

Introduction Applications Problem formulation Experimental description **Results, discussion** Summary

Non symmetrical aspect of hydrodynamic focussing Comparison against CFD* (top) Side stream ratio (QA/QB):

a) 1; b) 1,73; c) 2; d) 3; e) 7,57

*Solli L., Mielnik M.M., Saetran L.R., Proc. of 2nd International Conf. 16 On Transport Phenomena in Micro and Nanodevices, Barga, Italy

Introduction Applications Problem formulation Experimental description **Results, discussion** Summary

Responsible mechanisms:

- Forehead collision of two laminar profiles
- Diffusion, surface tension (wetting angle)
 - Secondary flow pattern
 - Boundary layer separation
 - Moffatt vortices

CLSM cross-section of outlet channel Mean flow velocity v= 0.023 cm/s (a), v=0.9cm/s (b).

Summary:

- Two kinds of focused stream deformations
- Basic relations between parameters
- Mechanisms explained

Aplication: flow visualisation (SeSPIV)*

Influence of flow pattern on Selective Seeding PIV (SeSPIV)

1,0 0,9 0,8 0,7 0,6 ._____0,5 ™ 0,4 0,3 0,2 0,1 0,0 0,0 0.5 1,0 1,5 2,0 2.5 v [cm/s]

Introduction Applications Problem formulation Experimental description Results, discussion Summary **New applications**

Flowfield visusalisation problem in SeS PIV

SeS PIV limit of applicability

Acknolegewments

- Marek Dziubiński, Technical University of Lodz, Poland
- Lars Seatran, Norwegian University of Science and Technology
- Mick Mielnik, SINTEF ICT, Norway
- Ingrid Lunde, currently Safetec Inc., Norway
- Lars Solli, Norchip AS, Norway
- Ministry of Science and Higher Education of Poland for financial support

Thank you for attention