Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

A 3D developed flow: the open cavity flow

F. Lusseyran, L. Pastur, T. Faure, Y. Fraigneau, B. Podvin

LIMSI, UPR CNRS 3251, Orsay

November 14th, 2007

Qualitative description of the flow-

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

U= 1.27 m/s, R= 2, \rightarrow Re= 8500

(U= 1.21 m/s)

Th. M. Faure, P. Adrianos, F. Lusseyran and L. R. Pastur, "Visualizations of the flow inside an open cavity at medium range Reynolds numbers", Experiments in Fluids, vol. 42, n°2, pp. 169-184 (2007) November 14th, 2007 IPPT- PAN, seminar

Qualitative flow description

les Sciences de l'Ingénieur

R= 2., U= 1.27 m/s Re= 8500

R= 1.5 , U= 1.27 m/s Re= 6350

R=1., U=1.27 m/s Re=4200

6060

Constant I

R=0.5, U=1.27 m/s Re=2100 Gö

November 14th, 2007

Tourbillons de Görtler = f(Re,R,F)

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

6 grandeurs: U_e, ρ, μ, L, H, S 3 unités fondamentales 3 nombres adimensionnels:

$$Re = \frac{U_e L}{\mu/\rho}$$
$$R = L/H,$$
$$F = H/S$$

Existence de pseudo Görtler = f(Re, R, F)

 $H \in \{0.025, 0.05, 0.10, 0.15\} m$ S = 0.3m \rightarrow 0.084 < F < 0.5

500 < Re < 4000 ($R \in \{0.25, 0.75, 1.0, 1.25, 1.5, 1.75, 2.5\}$

November 14th, 2007

Tourbillons de Görtler

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Space-time diagrams

F = 0,167 (H = 50 mm) atique pour la Mécanique et les Sciences de l'Ingénieur

Plan de l'expesé

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

- Open cavity flow phenomenology
 - Qualitative description
 - Görtler's instability
- Mixing layer instability
- 2D reduction of a 3D flow
 - POD 3D : full flow reconstruction
 - Validation POD 2D / POD 3D
 - Validation POD 2D with PIV 2C
- 3D information reconstruction from 2D

5

Dispositif métrologique

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Montages mesures synchronisées PIV-LDV

Champ de vitesse PIV-2C-2D

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Mesures PIV $U_e = 1,27 \text{ m.s}^{-1}$

PIV par flot optique utilisant une programmation dynamique (Quénot 1992)

Mesure localeu (I) par LDV

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Mesures LDV $U_e = 1,27$

Mesures LDV $U_e = 2,09$

40 50 60 Frequency (Hz)

IPPT-PAN, seminar

0.05

20

30

90

70

80

100

Spectrogramme

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Mesures LDV $U_e = 1,27$

Moyennes de phases

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Objectifs :

- mesure de la longueur d'onde des oscillations de la couche de cisaillement
- comparaison avec le modèle de stabilité linéaire d'une couche de Méaillement

recaler les champs PIV par rapport à la phase des oscillations de la couche de cisaillement (signal LDV)

1- Vitesse U_v pour U_e = 1.27 m.s⁻¹ \rightarrow f1

2- Vitesse Uy pour Ue = 2.09 m.s- $1 \rightarrow$ f1 et f2

Construction moyennes de phases

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

 rééchantillonnage du signal LDV à une fréquence multiple des champs PIV

filtrage autour de la fréquel (some d'some de la fréquel de

• construction de la matrice des retards (\mathbf{E}_1) $\mathbf{s}(t_2)$ $\mathbf{s}(t_3)$

 $\mathsf{B} = \mathsf{U} \cdot \mathsf{D} \cdot \mathsf{V}^{\mathsf{T}}$

décomposition aux valeurs singulières

 $X = U \cdot D = B \cdot V$

• matrice de la dynamique propre du système X

Moyennes de phases pour s1

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

portrait de phase réalisé à partir des 2 premières colonnes de la matrice X

Moyennes de phases pour s1-

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Moyennes des réalisations de l'écoulement par secteur de $\Delta \phi = 22.5^{\circ}$ phase

 $U_{e} = 1,27 \text{ m.s}^{-1}$ 1 $\phi = 0^{\circ}$ $\phi = 90^{\circ}$ $\phi = 135^{\circ}$ $\phi = 45^{\circ}$ 0.04 0.04 0.04 0.04 U_v 0.02 0.02 0.02 0.02 0 0.6 -0.02 -0.02 -0.02 -0.02 0.4 -0.04 -0.04 -0.04 -0.04 0.2 -0.06 -0.06 -0.06 -0.06 0.02 0.04 0.06 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0 0 $\phi = 180^{\circ}$ $\phi = 225^{\circ}$ $\phi = 270^{\circ}$ $\phi = 315^{\circ}$ 0.04 0.04 0.04 0.04 -0.2 0.02 0.02 0.02 0.02 -0.4 0 0.6 -0.02 -0.02 -0.02 -0.02 0.8 -0.04 -0.04 -0.04 -0.04 -0.06 -0.06 -0.06 -0.06 0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0

Moyennes de phases pour s1

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

Relation de dispersion pour 61

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Instabilité linéaire convective $U_e = 1,27 \text{ m.s}^{-1}$

ϕ (°)	0	45	90	135	180	225	270	315
λ (cm)	4.01	5.2	4.77	4.63	4.56	5.12	5.04	4.45
β	66.11	66.92	64.25	72.67	61.4	54.90	68.75	62.22
·	-18. 	λ	moyen =	$= 4.75 \pm$	0.7cm		1990 201 	2

TAB. 3.1 – Longueurs d'onde et coefficient d'amplification spatiale obtenus pour 8 des 16 champs moyennés en phase, pour $u_e = 1.27 \text{m/s}$

November 14th, 2007

Relation de dispersion pour 61

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Longueur d'onde des oscillations de la couche de cisaillement $U_e = 1,27 \text{ m.s}^{-1}$

• Moyenne de phases $\rightarrow \lambda = 0.048 \pm 0.007$

m

pour une couche de cisaillement en tangente hyperbolique

$$u_{x}(y) = \frac{U_{1} + U_{2}}{2} + \frac{U_{1} - U_{2}}{2} \tanh(\frac{y - y_{0}}{\delta})$$

$$U_c = \frac{U_1 + U_2}{2} \approx \frac{U_e}{2} = 0.635 \,\mathrm{m.s^{-1}}$$

• Moyenne de phases $\rightarrow c = \lambda f = 0.61 \pm 0.09 \text{ m s}^{-1}$

November 14th, 2007

Moyenne de phase pour s2

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

1- Vitesse U_v pour U_e = 1.27 m.s⁻¹ \rightarrow f1

2- Vitesse U_v pour U_e = 2.09 m.s- 1 \rightarrow f1 et f2

Séparation des 2 tréquences

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

 filtrage du signal LDV autour du mode sur lequel on souhaite se recaler

Moyennes de phases

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Mesures PIV $U_e = 2,09 \text{ m.s}^{-1}$

filtrage successif sur chacun des deux modes avant la moyenne par phase

filtrage sur le mode 1 :

Moyennes desphases

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

Relation de dispersion pour 62

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

ϕ (°)	0	45	90	135	180	225	270	315
λ (cm)	5.33	5.67	5.95	4.79	4.83	4.54	4.58	4.74
β	35.2	37.38	42.57	51.34	69.3	70.26	62.25	36.52
	X.)	Λ_1 moyer	n = 4.95	$\pm 1 cm$	5	93 - S	

TAB. 3.2 – Longueur d'onde et coefficient d'amplification spatiale obtenues pour 8 des 16 champs moyennés en phase, sur le premier mode $f_1 = 23.2$ Hz pour $u_e = 2.09$ m/s

ϕ (°)	0	45	90	135	180	225	270	315
λ (cm)	3.92	3.64	3.38	3.80	3.61	3.79	3.55	4.07
β	35.74	39.60	34.74	55.34	64.52	55.54	34.84	35.08
		λ_2	moyen	$= 3.75 \pm$: 0.72 cn	ı		

TAB. 3.3 – Longueur d'onde et coefficient d'amplification spatiale obtenues pour 8 des 16 champs moyennés en phase, sur le second mode $f_2 = 31.0$ Hz pour $u_e = 2.09$ m/s

November 14th, 2007

Relation de dispersion pour s2

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Longueur d'onde des oscillations de la couche de cisaillement $U_e = 2,09 \text{ m.s}^{-1}$

vitesse de convection théorique de l'onde :

$$U_{c} = \frac{U_{1} + U_{2}}{2} \approx \frac{U_{e}}{2} = 1,045 \text{ m}.\text{s}^{-1}$$

ajustement de U_y sur une fonction d'onde spatiale amodé[†]é^e(f[:]₁ = 23,2 Hz) : $\lambda_1 = 0,0495 \pm 0,01$ m et U_{c,1}= 1,15 ± 0,23 m.s⁻¹

mode 2 ($f_2 = 31,0 Hz$) : $\lambda_2 = 0,0375 \pm 0,007 m et U_{c,2} = 1,16 \pm 0,22 m.s^{-1}$ on retrouve une vitesse de convection du même ordre de grandeur

Plan de l'exposé

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

- Open cavity flow phenomenology
 - Qualitative description
 - Görtler's instability
 - Mixing layer instability
- 2D analysis of a 3D flow from DNS
- POD 3D : full flow reconstruction
 - Validation POD 2D / POD 3D
 - Validation POD 2D with PIV 2C
 - 3D information reconstruction from 2D

Direct Numerical Simulation

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

CODE OLORIN (LIMSI) :

- 2D et 3D instationnaire isotherme et incompressible (Boussinescq)
- Volumes finis, schéma d'ordre 2 en temps et espace
- Flux convectifs \rightarrow schéma QUICK
- Flux de diffusion \rightarrow résolution implicite A.D.I (Alternating Direction Implicit)
- -méthode multigrille : 3D 259 x 131 x 194

Direct Numerical Simulation

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Maillage : 259x131x194 Domaine : 39.62 cm x 12.5 cm x 30 cm Cavité: L= 10 cm, H= 5 cm, R= L/H= 2 $t_i = 50.0167 \text{ s} \rightarrow t_f = 69.5882 \text{ s} \rightarrow \Delta t \approx 20 \text{ s}$

From LDV u measurement

November 14th, 2007

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

2D slide

Experience: Visualisation with smoke

3D isosurfaces Q factor

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Top view

Streamlines-sti

Laboratoire d'Informatique po

C4-Vmean 0.15 0.1 0.15 downstream 0.1 0.05 0.05 z (m -0.05 -0.02 z (m 0 upstream -0.04 -0.1 0.1 y (m) 0.05 x (m) -0.05 •flow -0.1 y 0.1 0 0.15 0.05 0.1 0 Z 0.05 IPPT- PAN, s -0.05

C4-Vmean

0

November 14th, 2007

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

Understanding of the flow morphology

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

First conclusions

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Lack of conceptual - mathematical tools

- for 3D vortex recognition (using: Q criterion, λ_2 , wavelets filtering, pathlin
- Automated topology classification method for instantaneous velocity fie
 - Space localization (visualization) and time characterization
 - Volume rendering
 - 3D immersion \rightarrow VR environment \rightarrow numerical wind tunnel

Résumé de la Procédure

Laboratoire d'Informatique pour l<u>a Mécanique et les Sciences de l'Ingénie</u>ur

$$\{u(x, y, z, t_i)\}_{i=1,N}$$
 \longrightarrow $u(x, y, z, t_i) = \sum_{n=1}^{N} a_n(t_i)\phi_n(x, y, z)$

$$M_{nm} = \int_{D} \{ \phi_{u}^{n}(x, y, z_{0}) \phi_{u}^{m}(x, y, z_{0}) + \phi_{v}^{n}(x, y, z_{0}) \phi_{v}^{m}(x, y, z_{0}) + \cdots \\ \phi_{w}^{n}(x, y, z_{0}) \phi_{w}^{m}(x, y, z_{0}) \} dxdy$$

$$\operatorname{si} D = \Omega \implies M = \mathsf{I}$$

[Podvin et al. 2006]

• [Pa

• [Podvin 2006] B. Podvin, Y. Fraigneau, F. Lusseyran, P. Gougat, "A reconstruction method for the flow past an open cavity", *JFE* **128**, May 2006.

November 14th, 2007

Définition de la POD

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

$$\{u(x, y, z, t_i)\}_{i=1,N} \longrightarrow u(x, y, z, t_i) = \sum_{n=1}^{N} \lambda_n a_n(t_i)\phi_n(x, y, z)$$

$$= \begin{pmatrix} u_x(r_i, t_1) & u_x(r_1, t_2) & \cdots & u_x(r_1, t_N) \\ \vdots & & & \\ u_x(r_M, t_1) & u_x(r_M, t_2) & \cdots & u_x(r_M, t_N) \\ u_y(r_1, t_1) & u_y(r_1, t_2) & \cdots & u_y(r_1, t_N) \\ \vdots & & & \\ u_z(r_1, t_1) & u_z(r_1, t_2) & \cdots & u_z(r_1, t_N) \\ \vdots & & & \\ u_z(r_M, t_1) & u_z(r_M, t_2) & \cdots & u_z(r_M, t_N) \\ \vdots & & & \\ u_z(r_M, t_1) & u_z(r_M, t_2) & \cdots & u_z(r_M, t_N) \\ \end{bmatrix}$$

$$= \sum_{n=1}^{N} \lambda_n a_n(t_i)\phi_n(x, y, z)$$

$$= \sum$$

1)

• Les colonnes de V_A = chronos ou coeff. temporels $a_n(t_i)$

• Les colonnes de U_A = topos ou modes spatiaux : $\phi_n(x, y, z)$ en 2D $N \approx 1000$ et $M \approx \frac{1000 \times 800}{10} \approx 80000$ $\rightarrow 2$ Go RAM November 14th, 2007 IPPT- PAN, seminar Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

Modes 3D: valeurs propres

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

Topos 3D: section longitudinale

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

39

Topos 3D: section transversale

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

40

Chronos 3D, t

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Plan de l'exposé

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

- Open cavity flow phenomenology
 - Qualitative description
 - Görtler's instability
 - Mixing layer instability
- 2D reduction of a 3D flow
 - POD 3D : full flow reconstruction
 - Validation POD 2D / POD 3D
 - Validation POD 2D with PIV 2C
- 3D information reconstruction from 2D

Résumé de la Procédure

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

 [Pastur 2005] L.R. Pastur, F. Lusseyran, Y. Fraigneau, B. Podvin, "Determining the spectral signature of spatial coherent structures in an open cavity flow", *PRE* 72, 2005.
 [Podvin 2006] B. Podvin, Y. Fraigneau, F. Lusseyran, P. Gougat, "A reconstruction method for the flow past an open cavity", *JFE* 128, May 2006. November 14th, 2007
 IPPT- PAN, seminar

modes 2D DNS:

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

$$\left\{u(x, y, z = 0, t_i)\right\}_{i=1,N} \longrightarrow \left\{u(x, y, t_i)\right\}_{i=1,N} \longrightarrow \left\{\varphi_n(x, y), \alpha_n(t_i)\right\}_{n=1,N}$$

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Topos 2D

45

Chronos 2D : calculés à partir de

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

Calcul 2D, question de convergence

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

November 14th, 2007

Plan de l'exposé

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

- Open cavity flow phenomenology
 - Qualitative description
 - Görtler's instability
 - Mixing layer instability
- 2D reduction of a 3D flow
 - POD 3D : full flow reconstruction
 - Validation POD 2D / POD 3D
- Validation POD 2D with PIV 2C
 - 3D information reconstruction from 2D

Plan de l'exposé

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

- Phénoménologie de l'écoulement en cavité ouverte
 - Description qualitative
 - Instabilité de Görtler
 - Instabilité de la couche de mélange
- Réduction 2D d'un écoulement fortement 3D
 - POD 3D : reconstruction de l'écoulement complet
 - Validation de la POD 2D / POD 3D
 - Validation de la POD 2D sur PIV 2C
- Reconstruction des informations 3D

5

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

• Les données: 2000 images 8 bits, 1032x768 pixels, de 4.6 μ m, f_e=10Hz , Δ t=2122 μ s • Traitement: algorithme de flot optique par programmation dynamique (G. Spectre de puissance, d'une série temporelle

Spectre de puissance, d'une série temporelle enregistrée par LDV: 810⁵ points, à 1500Hz.

100

Champ moyen sur 1098 instantanés. vecteurs:1/15 représentés

Mode 2D, calculés à partir

Mode 2D, calculés à partir «

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Mode 2D, calculés à partir $d_{(2/3)}(x, y, t_i)$ PIV, N=1098 $\varphi_n(x, y)$

November 14th, 2007

POD pour sl

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Equation de dispersion som paraison moy.

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Longueur d'onde des oscillations de la couche de cisaillement $U_e = 1,27 \text{ m.s}^{-1}$

- Moyenne de phases $\rightarrow \lambda = 0.048 \pm 0.007$ m $0.049^{+0.006}_{-0.004}$ m
- 1^{er} mode POD $\rightarrow \lambda =$

pour une couche de cisaillement en tangente hyperbolique

$$u_{x}(y) = \frac{U_{1} + U_{2}}{2} + \frac{U_{1} - U_{2}}{2} \tanh(\frac{y - y_{0}}{\delta})$$

$$U_c = \frac{U_1 + U_2}{2} \approx \frac{U_e}{2} = 0.635 \,\mathrm{m.s^{-1}}$$

- Moyenne de phases $\rightarrow c = \lambda f = 0.61 \pm 0.09 \text{m s}^{-1}$
- 1 er mode POD $\rightarrow c = \lambda f = 0.63^{+0.08}_{-0.05} \,\mathrm{m \, s^{-1}}$

November 14th, 2007

Plan de l'exposé

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

- Phénoménologie de l'écoulement en cavité ouverte
 - Description qualitative
 - Instabilité de Görtler
 - Instabilité de la couche de mélange
- Réduction 2D d'un écoulement fortement 3D
 - POD 3D : reconstruction de l'écoulement complet
 - Validation de la POD 2D / POD 3D
 - Validation de la POD 2D sur PIV 2C
- Reconstruction des informations 3D

Résumé de la Procédure

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

$$\begin{array}{c} \begin{array}{c} \text{DNS 3D} \\ \left\{u(x, y, z, t_i)\right\}_{i=1,N} & \longrightarrow \end{array} & \left\{\phi_n(x, y, z), a_n(t_i)\right\}_{n=1,N} & \xrightarrow{z=z_0} & \left\{\phi_n(x, y, z_0), b_n(t_i)\right\}_{n=1,N} \\ & & \downarrow \end{array} & \left[\text{Podvin et al. 2006}\right] \\ & & b_n = M_{nm} a_m \\ & & \downarrow \end{array} & \left\{w_n(x, y), \alpha_n(t_i)\right\}_{n=1,N} & \longrightarrow \end{array} & \left\{\phi_n(x, y), \alpha_n(t_i)\right\}_{n=1,N} & \longrightarrow \end{array} & \left\{\phi_n(x, y, z_0), a_n(t_i)\right\}_{n=1,N} & \xrightarrow{q} \\ & & \downarrow \end{array} & \left\{\phi_n(x, y, z, t_i)\right\}_{i=1,N} & \left\{\phi_n(x, y, z, t_i)\right\}_{i=1,N} & \xrightarrow{q} \\ & & \downarrow \end{array} & \left\{\phi_n(x, y, z, t_i)\right\}_{i=1,N} & \left\{\phi_n(x, y, z, t_i)\right\}_{n=1,N} & \xrightarrow{q} \\ & & \downarrow \end{array} & \left\{\phi_n(x, y, z, t_i)\right\}_{i=1,N} & \left\{\phi_n(x, y, z, t_i\right\}_{i=1,N} & \left\{\phi_n(x, y, z$$

• [Pastur 2005] L.R. Pastur, F. Lusseyran, Y. Fraigneau, B. Podvin, "Determining the spectral signature of spatial coherent structures in an open cavity flow", PRE 72, 2005. • [Podvin 2006] B. Podvin, Y. Fraigneau, F. Lusseyran, P. Gougat, "A reconstruction method for the flow past an open cavity", JFE 128, May 2006. November 14th, 2007 **IPPT-PAN**, seminar

Reconstruction des champs de vitesse

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

$$\vec{u}_r(x, y, z, t) = \sum_{1}^{N} \left(\mathbf{M}^{-1} \boldsymbol{\alpha} \right) \vec{\phi}_n(x, y, z)$$

N = 60

Conclusion

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

« The peril of petascale : emerging challenges in large scale
 computational sciences », John Clyne, NCAR, Boulder

Dynamics reduction

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Mesure de la dimension de corrélation (Procaccia1988), sur série LDV filtrage non-linéaire déterministe (T. Schreiber PRE 47, 1993):

$$d_{c} = \lim_{N \to \infty} \lim_{r \to 0} \frac{\log_{2} C(r)}{\log_{2} r}$$
$$C(r) = \frac{1}{N_{ref}} \frac{1}{N} \sum_{i=1}^{N_{ref}} \sum_{j=1}^{N} H(r - \|\vec{x}_{i} - \vec{x}_{j}\|)$$

Exploring CFD data with Virtual Reality >>

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

LIMSI- VENISE VR team

- Work on clustering, multimodality, metaphors, AR
- Rendering and exploration of massive datasets using multiple modalities in VR.
- User is immersed in CAVE-like facility

multimodal outputs: visual, haptics, sound

November 14th, 2007

Exploring CFD data with Virtual Reality 🐢

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur

Virtual Reality : WHAT FOR ??

Not just a fancy high-tech "toy": perform some useful tasks. In our case: **better understanding** of phenomena, new findings.

CORSAIRE project: investigate how to combine output modalities in two scientific tasks: CFD and bioinformatics (molecular docking)

Participants: LIMSI (leader), IRCAM- CNRS, EBGM- INSERM, LEI- Paris 5, Haption S.A. funded by ANR (National French Funding Agency), started 2006 (3 years)

CFD: huge field, many different experimental and simulation settings.

« Typical » test case: simulation of cavity

November 14th, 2007