Stochastic model of p53 regulation

Krzysztof Puszynski, Beata Hat, Tomasz Lipniacki

Why p53?

- p53 is a transcription factor that regulates hundreds of resposible for - DNA repair,
 - cell cycle arrest
 - apoptosis (programmed cell death)
- p53 is mutated (or absent) in 50% of solid tumors, in other 50% gene controlling p53 are mutated.

• 50 000 experimental citations, less than 100 theoretical papers

It is difficult !

10 or more feedbacks,100 or more components,Stochastic noise

Kohn and Pommier 2005

Experiments

- proteins and mRNA levels, kinase activity
- System perturbations
 - gene, mRNA, protein knockouts
 - protein (gene) modifications
- Various stimulation protocols

Single cell experiment (Geva-Zatorski et al. 2006)

- continuous oscillations for 72 hour after gamma irradiation

- fraction of oscillating cells increases with gamma dose reaching about 60% for 10 Gy.

- even after 10 Gy dose, analyzed cells proliferated

Inputs and outputs

"Our pathway"

Negative feedback loop

Positive feedback loop

Stochasticity in eukaryotic cell regulation

Stochastic gene expression

The main steps in gene expression

Stochastic receptor activation may result in a large number of II kinase molecules.

No PTEN (positive feedback blocked); No DNA repair Oscillations

DNA damage = p53 phosphorylation + MDM2 degradation

No PTEN (positive feedback blocked); No DNA repair

DNA damage = p53 phosphorylation

DNA damage = MDM2 degradation oscillations

PTEN ON (positive feedback active); No DNA repair Apoptosis

DNA damage = p53 phosphorylation + MDM2 degradation

PTEN ON (positive feedback active); No DNA repair

DNA damage = p53 phosphorylation

DNA damage = MDM2 degradation oscillations

PTEN ON (positive feedback active); DNA repair ON cell fate decision

p53 produces proapoptotic factor, which cut DNA

Cell fate decision

Cell population separates into surviving and apoptotic cells 48 hours after gamma radiation.

ODEs

$$\frac{d}{dt}PTEN(t) = t_1 PTEN_t(t) - d_2 PTEN(t).$$

$$\frac{d}{dt}PIP_p(t) = a_2 \left(PIP_{tot} - PIP_p(t)\right) - c_0 PTEN(t) PIP_p(t).$$

$$\frac{d}{dt}AKT_p(t) = a_3 \left(AKT_{tot} - AKT_p(t)\right) PIP_p(t) - c_1 AKT_p(t).$$

$$\frac{d}{dt}MDM(t) = t_0 MDM_t(t) + c_2 MDM_p(t) -a_4 MDM(t) AKT_p(t) - \left(d_0 + d_1 \frac{N^2(t)}{h_0^2 + N^2(t)}\right) MDM(t).$$

$$\begin{aligned} \frac{d}{dt}MDM_p(t) &= a_4 MDM(t) AKT_p(t) - c_2 MDM_p(t) - i_0 MDM_p(t) \\ &+ e_0 MDM_{pn}(t) - \left(d_0 + d_1 \frac{N^2(t)}{h_0^2 + N^2(t)}\right) MDM_p(t). \end{aligned}$$

$$\frac{d}{dt}MDM_{pn}(t) = i_0 MDM_p(t) - e_0 MDM_{pn}(t) - \left(d_0 + d_1 \frac{N^2(t)}{h_0^2 + N^2(t)}\right) MDM_{pn}(t).$$

$$\frac{d}{dt}P53_n(t) = p_0 - \left(a_0 + a_1 \frac{N^2(t)}{h_0^2 + N^2(t)}\right) P53_n(t) + c_3 P53_{pn}(t) - \left(d_3 + d_4 MDM_{pn}^2(t)\right) P53_n(t).$$

$$\begin{aligned} \frac{d}{dt} P53_{pn}(t) &= \left(a_0 + a_1 \frac{N^2(t)}{h_0^2 + N^2(t)}\right) P53_n(t) - c_3 P53_{pn}(t) \\ &- \left(d_5 + d_6 MDM_{pn}^2(t)\right) P53_{pn}(t). \end{aligned}$$

$$\frac{d}{dt}MDM_t(t) = s_0\left(G_{M1}+G_{M2}\right) - d_7 MDM_t(t).$$

$$\frac{d}{dt}PTEN_t(t) = s_1 \left(G_{P1} + G_{P2} \right) - d_8 PTEN_t(t).$$

$$\frac{d}{dt}A(t) = p_1 \frac{q_3 P 53^2_{np}(t)}{q_4 + q_3 P 53^2_{np}(t)} - d_9 A(t)$$

Transition probabilities governing dynamics of discrete variables; Gм, GP, N

Gene activation:
$$P^b(t, \Delta t) = \Delta t \times (q_0 + q_1 \times P53^2_{np}(t)).$$
Gene inactivation: $P^d(t, \Delta t) = \Delta t \times q_2.$ DNA damage: $P^{DAM}(t, \Delta t) = \Delta t \times d_{DAM} \times R + \Delta t \times a_6 \left(\frac{A(t)}{A_{max}}\right)^4$ DNA repair: $P^{REP}(t, \Delta t) = N(t) \frac{\Delta t \times d_{REP} \times P_A(t)}{N(t) + N_{SAT} \times P_A(t)}$

Piece-wise deterministic, time continuous Markov process

Numerical implementation

• At the simulation time t for given A_{Mdm2} , A_{PTEN} and NB calculate total propensity function of occurrence of any of the reaction

$$r(t) = r_{DNA}^{a} + r_{DNA}^{d} + r_{Mdm2}^{a} + r_{Mdm2}^{d} + r_{PTEN}^{a} + r_{PTEN}^{d}$$

- Select two random numbers p₁ and p₂ from the uniform distribution on (0,1)
- Evaluate the ODE system until time $t+\tau$ such that:

$$\log(p_1) + \int_t^{t+i} r(s)ds = 0$$

9. Determine which reaction occurs in time t+ τ using the inequality: $\sum_{k=1}^{k-1} r(t + \tau) < n + r(t + \tau) < \sum_{k=1}^{k} r(t + \tau)$

$$\sum_{i=1}^{n-1} r_i(t+\tau) < p_2 * r(t+\tau) \le \sum_{i=1}^{n} r_i(t+\tau)$$

where k is the index of the reaction to occur and $r_i(t+\tau)$ individual reaction propensities

5. Replace time $t+\tau$ by t and go back to item 1