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Structures in alloys

The various structures present in alloys are:

@ the macro-structure (~10 pm) gives configuration of the
constituents of alloys — dendrite growth

@ different crystal configuration for each constituents

@ the temperature of solidification T; — solidification can be
quite complex (solidus-liquidus)
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Alloy macro-structure

WWW.Copper.org
copper Cu 80%, Pb 8%,
alloy Sn 10%, Zn 0.5%,

Ni 1%, S 0.5%

Y

0.5 mm

Examples of alloy macro-structures
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Cu 35.8%, Al 10.2%,
Fe 4.0%

50 um
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Crystal structure

cst-www.nrl.navy.mil/lattice

ccf crystal (Al)

Examples of crystals
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Examples of alloys

Most common alloys
@ bronze (Cu + Sn)
@ steel (Fe + C)
@ aluminum alloys (Al + Cu, Si, Mg, Zn, Ti, B, Sb, Na, Sr, Fe)
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Properties of alloy composition

The rate of the constituents and the conditions of solidification
have an impact on:

@ mechanical properties (elasticity, solidity)

@ electrostatic/electric properties

@ temperature of fusion

@ resistance to corrosion

@ behavior under manufacturing processes (cutting, molding)
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Aluminum alloys

Pure aluminum:
@ it forms a cubic centered face crystal,
@ it forms a thin impermeable layer at its surface.
@ it is a ductile, light material

Possibilities of alloying aluminum are:

@ + Mg — improves mechanical properties, most used
alloying element for Al.

@ + Cu — improves mechanical properties, repulsive to
aquatic life.

@ + Si — for complex molds

@ + Sb or Na or Sr — used in Al-Si alloys, modifies the
eutectic growth, not to be mixed!

Erwan Deriaz Erwan.Deriaz@ippt.gov.pl Nano-solidification



Introduction Alloy solidification
Lennard Jones model of atomic interaction
Molecular Dynamics

Overview

0 Introduction

@ Lennard Jones model of atomic interaction

Erwan Deriaz Erwan. z@ippt.gov.pl



Introduction Alloy solidification
Lennard Jones model of atomic interaction
Molecular Dynamics

Lennard-Jones potential

Ca
One-to-one interaction model with the potential:

vo=<((5)"-(?))

Two different potentials:

@ a pair potential to account for the repulsion resulting from
Pauli’s exclusion principle,

@ and the local electronic density accounting for cohesion.
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Lennard-Jones model properties

Lennard-Jones model:
@ Interactions between spherical non polar particles,
@ Very good model for noble gas,
@ Good model for liquids,
@ simple = fast and robust.
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Molecular Dynamics

Atoms are modeled by interacting points.
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Verlet algorithm:

X(t + dt) = 2x(t) — x(t — ot) + %51‘2 + O(5t%)

with f=-VV

http://lammps.sandia.gov
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Crystallization box

In a periodic box, we fix the volume V|, the density p, the rates
of each kinds of atoms, and the evolution of the temperature.

T

We observe the crystallization process and the resulting
structures of the alloys.
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Crystallization box

Numerical experiment figures:
@ 4 000 atoms,
@ 200 000 time steps,
@ ~2 hours of computing.
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Lennard-Jones parameters

@ energy of the link ¢,
@ specific distance of interaction o from:

@ mass m of the atom,
@ density p of atoms in the box.

From p and o we define the compactness x = po°.
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Lennard-Jones parameter calibration

Then we obtain numerically:
@ the mass per volume M = pm
@ the temperature of fusion Ty = ¢f(k)
@ the pressure P = P(k,0,e,m, T)
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LJ approximation of Al, Cu, Sn and Mg

We simulate Al, Cu, Sn and Mg atoms which have the following
properties:

Al Cu Sn Mg

m(g/mol) | 27.0 | 63.6 | 118.7 | 24.3
M (kg/m®) | 2719 | 8978 | 7310 | 1738
Tt (K) 934 | 1358 | 505 | 9283
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Periodic table

o Periodic Table of the Elements .

3| 4] B hydrogen W poor metals 5 6 7 8 9 10
Be alkali metals B nonmetals B|C|N|O|F]|Ne

o = [ | alkali.e.arth metals B noble gases = 7 BT = ' ]
Mg B transition metals B rare earth metals Si =] s cl | Ar

19 20 21 22, 23 24] 25 26 27 28 29 30 Fh] I - <] 34 35 k)
Ca|[Sc|Ti |V |Cr|Mn|Fe|Co|Ni |Cu|Zn |Ga|Ge|As| Se| Br |Kr

a7 3g] 39} 40 4 42 43 44 45 48 47 48] 49 50 51 52 53 b4
Sr|Y |Zr [Nb|Mo| Tc |Ru|Rh [Pd |Ag [Cd | | S Sb|Te| | Xe

85| 88| 57| 72| 73| 74 75 76| 77 78| 79| eo| 1| 82 83| 84| 85

Ba|La|Hf | Ta [W | Re|Os| Ir |Pt | Au|Hg| Ti | Pb| Bi | Po| At | Rn

87| 88| 89| 104| 105| 108| 107| 108 10| 110]
Ra| Ac (Ung|Unp|Unh|Uns [Uno|Une|Unn

58] 50| 60| 61] 62| 63| 64 70] 71
Ce| Pr|Nd|Pm|Sm|Eu |Gd Yb | Lu

B[ o1 92| 93 94| 95| 98 7
Th|Pa| U |[Np | Pu|Am|Cm No|Lr
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LJ parameters for Al, Cu, Sn and Mg

Al Cu Sn Mg
m (g/mol) | 27.0 | 63.6 | 118.7 | 24.3
M (kg/m3) | 2719 | 8978 | 7310 | 1738
Tt (K) 934 | 1358 | 505 | 9283
gives

Al Cu Sn Mg

e | 2748 | 4.715 0.504 2.027
o | 1.1336 | 1.0023 | 1.4554 | 1.2977
p | 0.7654 | 1.0726 | 0.46787 | 0.5435
k| 1.1150 | 1.0800 | 1.4424 | 1.1877
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Solidification of pure Al, Cu, Sn and Mg

T: (K) | 934 | 1358 | 505 923‘

Rate of crystallization during time for Al (in black), Cu (in blue),
Sn (in red) and Mg (in dark blue).
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Crystal lattice

In a crystal, atoms are located at:
X\ = a\i€q + a\.es + a\ze;  with )\ e 73

for some basis (e1, e5,e3) of RS.

In cubic centered-face, each atoms A have 12 neighbors A;,
and the next closest atoms are at a distance of v/2a of A.

We take e; = AA;. We write all atoms Bin a neighborhood
N(A) of A such that d(A, B) < 3a, in the (e1, e», e3) coordinates
centered on A:

AB = x1(B)AA; + xo(B)AAs + x3(B)AAg
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Crystal lattice

Then we compute the criterion p:

K= #I\;(A) > %(COS(ZWM(B)) + cos(27xz(B)) + cos(27rx3(B)))

BeN(A)

If > po (with ug =~ 0.5), Ais considered as being inside a
crystal structure.
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Solidification of LJ atoms with the Cu characteristics.

In blue:
In green: ccf crystal atoms.

Cu crystallization
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Cu-Sn crystallization

t=15
T=20

Solidification of LJ atoms with the Cu characteristics.
In blue: liquid Cu, in red: liquid Sn.
In green: ccf crystal Cu, in orange: ccf crystal Sn.
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Comparison for various concentration in Cu-Sn alloys

i

Rate of ccf crystal locus for various concentrations in Sn:
psn = 0,0.05,0.1,0.15and 0.2
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Green-Kubo diffusion

Green-Kubo formula:
D= 1/ <v(0)-v(t) > dt
3 Jo

where we noted < y > the space average of y.
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Diffusion for Al, Cu, Sn and Mg

Noisy Green-Kubo diffusion computed for Al, Cu, Sn and Mg in
the crystallization process.
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Mechanical properties of crystal

@ big atoms (Sn) — pressure force coherence
@ small atoms (Cu) — stirring force coherence
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Alloying improvement

T M

l } move

& N no move

stirring resistant
T M
move | & N
l L i\ resistant material

pressure resistant
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Experimental numerical test

left right
F probe probe

f T
1 ] :/ I
! ! 1
' N b periodic boundary
' e /‘;C\I ! ..
' A dx PN conditions
E e : = i
' v VA 1
! \)_/,II | \’\/’l |
YT ___'__l;' _________________ - __'_';I_J ___________

-F

Experimental numerical device to measure the deformation of a
crystal under a shear stress force.
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Elasticity

Stress = F
: d
Strain = %

Hence we obtain the following stress-strain relation:

%:aF

with « the elasticity constant of the material.
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In practice

Location of the probes on the device (top). The material
undergoes a shear stress (bottom).
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Result for pure LJ crystal

—— stress|
—— strain

stress and strain

B L T T T T T T T
5000 10000 15000 20000 25000 30000

time

Example of shear stress / strain deformation result for a crystal
with Lennard-Jones potential model.
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Conclusion

From solidification experiments we would like to:

@ observe the segregation of atoms during the crystallization
process,

@ observe the variations on T; depending on the
concentration of alloying components,

@ recreate the crystal structures of alloys,
@ test for the mechanical properties.
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