

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Konwekcja magnetyczna cieczy paramagnetycznej w naczyniu zamkniętym

Elżbieta Fornalik-Wajs Akademia Górniczo-Hutnicza, Kraków

IPPT PAN Warszawa 2010

- Dawno dawno temu (<4000 p.n.e) pierwsze ślady obiektów ferromagnetycznych
- I w. w chińskich źródłach pojawia się informacja o pierwszym "directional tool" – pierwowzorze kompasu
- **1086 r.** pierwszy prawdziwy kompas
- 1600 r., Wiliam Gilbert stwierdza, że Ziemia jest wielkim magnesem i wyjaśnia zasadę działania kompasu
- 1820 r., Hans Christian Oersted zauważył, że przepływ prądu elektrycznego odchylił igłę kompasu
- W **1824 r.**, William Sturgeon skonstruował pierwszy elektromagnes

- 1831 r. Michael Faraday odkrył, że poruszający się magnes generuje przepływ prądu elektrycznego, w 1845 r. stwierdził, że każda substancja posiada własności magnetyczne, a w 1847 r. zaobserwował, że w polu magnetycznym bańki mydlane wypełnione tlenem poruszają się w innym kierunku, niż bańki wypełnione azotem
- 1873 r., Maxwell napisał "A Treatise on Electricity and Magnetism", w którym zawarł słynne równania
- **1895 r.** prawo Curie
- **1986 r.** nadprzewodniki wysokotemperaturowe
- • •

do 15 T

Lewitująca żaba w polu magnetycznym o indukcji 16 T

Struga azotu (Wakayama jet)

Diamagnetic levitation: Flying frogs and floating Quantitative analysis of air convection caused by magnets (invited) Simon MD, Geim AK JOURNAL OF APPLIED PHYSICS 87 (9): 6200-6204

magnetic-fluid coupling Bai B, Yabe A, Qi JW, Wakayama NI AIAA JOURNAL 37 (12): 1538-1543

ma zastosowanie w

- generacji sił (działających na płyny oraz ciała stałe), np. siła Lorentz'a
- zmianie lub tworzeniu mikrostruktury podczas krzepnięcia
- rozwoju perspektyw na procesy "bezstykowe"
- separacji magnetycznej
- tłumieniu konwekcji
- •

konwekcja naturalna

konwekcja termo-magnetyczna

Analiza wpływu pola magnetycznego na zjawisko konwekcji cieczy paramagnetycznej, ze szczególnym uwzględnieniem wymiany ciepła w wybranych geometriach (sześcian, termosyfon).

Przeprowadzone zostały:

- badania eksperymentalne
- symulacje numeryczne
- analiza wielkościowa

Zbadana została możliwość kontroli konwekcji cieczy eksperymentalnej w silnym polu magnetycznym.

Zakres analizy

Ishihara I. et al. (2002), Int'l. Journal of Heat and Fluid Flow 23

Van Dyke, M., 1982: An Album of Fluid Motion

Konwekcja naturalna

H. Bénard (1901), L. Rayleigh (1916) i in.

• Konwekcja naturalna w sześcianie

G.K. Batchelor (1954), G. de Vahl Davis (1968), H. Ozoe and S.W. Churchill (1973), J.C. Patterson and J. Imberger (1980), prace IPPT PAN i in.

• Konwekcja naturalna w termosyfonie

D. Japikse et al. (1971), G.D. Mallinson et al. (1981), G.S.H. Lock and J.D. Kirchner (1992), I. Ishihara et al. (2002) i in.

Struktura przepływu

H. Bénard (1901), G.D. Mallinson et al. (1981), B. Hof et al. (1999), R. Touihri et al. (1999), K. Boronska and L.S. Tuckerman (2004) i in.

g – przyspieszenie ziemskie, ρ_0 – gęstość w temperaturze odniesienia T_0 , β – współczynnik rozszerzalności termicznej, T - temperatura

Własności magnetyczne

1																	2
Ĥ															не		
3	4											5	6	7	8	9	10
Li	Be											B	С	N	0	F	Ne
11	12	12										13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	-V	Cr	Mn	Fe	Со	Ni	Си	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88																
Fr	Ra	Ac-															

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Се	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	<i>98</i>	99	100	101	102	103
Ac	Th	Pa	U	Np	Ри	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Paramagnetic Diamagnetic

Ferromagnetic No data available

- Paramagnetyki : $\chi_g > 0$,
- Diamagnetyki : $\chi_g < 0$, Ferromagnetyki : $\chi_g >> 1$,

aluminium, tlen, wolfram miedź, złoto, woda żelazo, kobalt, nikiel

Paramagnetyki :
$$\chi_g > 0$$
 Prawo Curie : $\chi_g = C / \theta$

 stała Curie
 stała Curie

 temperatura bezwzględna

<u>Podatność magnetyczna</u> χ_g [m³/kg] jest to wielkość fizyczna charakteryzująca zdolność substancji do zmian jej polaryzacji magnetycznej *J* pod wpływem pola magnetycznego o natężeniu H

$$J = \chi_g H$$

Siły działające na układ w polu magnetycznym

$$ig| f_V =
abla \cdot oldsymbol{ au}$$

magnetostrykcja

człon związany z gradientem przenikalności magnetycznej

 τ – tensor naprężeń, p_0 – ciśnienie w temperaturze odniesienia T_0 , H – natężenie pola magnetycznego, μ – przenikalność magnetyczna, η – lepkość dynamiczna, ρ – gęstość

$$+\frac{1}{2}\nabla\left[H^{2}\rho\left(\frac{\partial\mu}{\partial\rho}\right)_{T}\right] - \frac{H^{2}}{2}\nabla\mu \qquad \mu = \mu_{0}\left(1 + \chi_{g}\rho\right)$$
$$\mu_{r} = \frac{\mu}{\mu_{0}}$$
$$\mu_{r} - 1 = \chi_{g}\rho$$
$$F_{m} = \frac{1}{2}\mu_{0}\chi_{g}\rho\nabla H^{2} \qquad \chi_{g} = \frac{\chi}{\rho}$$

H – natężenie pola magnetycznego, μ – przenikalność magnetyczna, χ_g – masowa podatność magnetyczna, χ – objętościowa podatność magnetyczna, μ₀ – przenikalność magnetyczna próżni, μ_r – względna przenikalność magnetyczna, ρ – gęstość

Zakładając liniową zależność gęstości od temperatury oraz korzystając z prawa Curie otrzymuje się wzór

$$F_{m} = \frac{-\chi_{g0}\rho_{0}\beta\left(1 + \frac{1}{\beta T_{0}}\right)}{2\mu_{0}}(T - T_{0})\nabla B^{2}$$

określający siłę magnetyczną działającą na ciecz paramagnetyczną.

 χ_{g0} – masowa podatność magnetyczna w temp. odniesienia T_0 , ρ_0 – gęstość w temp. odniesienia T_0 , β – współczynnik rozszerzalności termicznej, T – temperatura, B – indukcja pola magnetycznego, μ_0 – przenikalność magnetyczna próżni

Badania eksperymentalne

 $\chi_g = +23.094 \times 10^{-8} [m^3/kg]$

• Pomiary temperatury (termopary)

określenie intensywności wymiany ciepła – liczba Nusselt'a

• Wizualizacja pola temperatury

termoczułe ciekłe kryształy

białe światło padające

fotografia cyfrowa

zakres temperatury 292.5 K ~ 295 K

$$\mathbf{N}\mathbf{u} = \frac{Q_{net_conv}}{Q_{net_cond}}$$

$$Q_{net_conv} = Q_{conv} - Q_{loss}$$

 $Q_{net_cond} = Q_{cond} - Q_{loss}$

 Q_{net_conv} – strumień ciepła oddawany na drodze konwekcji netto, Q_{conv} – strumień ciepła dostarczany do układu, Q_{loss} – tracony strumień ciepła, Q_{net_cond} – strumień ciepła oddawany na drodze przewodzenia netto, Q_{cond} – przewodzony strumień ciepła

Wiadomo,
$$\dot{z}e Nu = f(Ra)$$

$$Ra = \frac{g\beta(T_{hot} - T_{cold})l^3}{\alpha V}$$

v – współczynnik lepkości kinematycznej, a – dyfuzyjność termiczna, g – przyspieszenie ziemskie, T_{hot} – temperatura ścianki grzanej, T_{cold} – temperatura ścianki chłodzonej, / – wymiar charakterystyczny

Szukany związek: Nu = f(Ra_m)

$$\operatorname{Ra}_{m} = \operatorname{Ra}\left[1 + \frac{\chi_{g0}}{g\mu_{0}}\left(1 + \frac{1}{\beta T_{0}}\right)(\boldsymbol{B}\nabla\boldsymbol{B})\right]$$

g – przyspieszenie ziemskie, β – współczynnik rozszerzalności termicznej, B –indukcja magnetyczna, χ_{g0} – masowa podatność magnetyczna, μ_0 – przenikalność magnetyczna próżni, T_0 - temperatura

solenoid

światła

COLD

 F_{g}

Analiza numeryczna

Równanie ciągłości

 $\nabla \cdot \boldsymbol{v} = 0$

Równanie Navier'a-Stokes'a

Równanie zachowania energii

Równanie Biot'a-Savart'a

$$\boldsymbol{B} = \frac{\mu i}{4\pi} \oint_{\text{solenoid}} \frac{ds_l \times \boldsymbol{r_p}}{r_p^3}$$

Równanie ciągłości

 $\nabla \cdot \boldsymbol{V}_n = 0$

Równanie Navier'a-Stokes'a

$$\frac{DV_n}{D\tau_n} = -\nabla P_n + \Pr \nabla^2 V_n + \operatorname{RaPr} T_n \left[1 - \gamma \frac{C_n}{2} \nabla B_n^2 \right]$$

$$\gamma = \frac{\chi B_0^2}{\rho \mu_m g r_0}$$

Równanie zachowania energii

$$\frac{DT_n}{D\tau_n} = \nabla^2 T_n$$

Równanie Biot'a-Savart'a

$$\boldsymbol{B}_{n} = \frac{1}{4\pi} \oint_{\text{solenoid}} \frac{d\boldsymbol{S}_{nl} \times \boldsymbol{R}}{\boldsymbol{R}^{3}}$$

sześcian

termosyfon

- Finite Volume Method (Metoda Objętości Skończonych)
- Staggered grid (siatka przestawna: temperatura i ciśnienie w środku komórki, prędkość na granicach komórek)

sześcian: 40×40×40

termosyfon: 16×37×45

 HSMAC algorytm (człon ciśnieniowy), 3rd order UPWIND (człon konwekcyjny)

Sześcian, odwrócenie przepływu obliczenia numeryczn

Wymiana ciepła

Wypadkowa siła

Sześcian, zatrzymanie konwekcji obliczenia numeryczne

Wymiana ciepła

Wypadkowa siła

AGH

Termosyfon, wzmocnienie konwekcji obliczenia numeryczne

Termosyfon, indukcja konwekcji obliczenia numeryczne

Analiza wielkościowa

Szukany związek: Nu = f(Ra_m)

• Rozwój warstwy przyściennej

 Podział równania zachowania pędu na człon: inercyjny, dyssypacyjny oraz wyporu

 równowaga między członem dyssypacyjnym i wyporu

 Podział równania zachowania energii na człon: inercyjny, konwekcyjny oraz przewodzenia

 równowaga między członem konwekcyjnym i przewodzenia

Grubość warstwy przyściennej

Zależność między Nu a Ra_m Nu $\approx \frac{\alpha l}{\lambda} \approx \frac{l}{\delta_T} \approx (\text{Ra}_m)^{1/4}$

Analiza wielkościowa, sześcian – odwrócenie konwekcji

Analiza wielkościowa, termosyfon – wzmocnienie konwekcji

Podsumowanie

Pokazano eksperymentalnie, że pole magnetyczne może

- wzmocnić konwekcję zachodzącą w układzie nieizotermicznym
- zainicjować konwekcję w układzie nieizotermicznym, ale stabilnym
- zahamować konwekcję w układzie nieizotermicznym, w którym zachodzi konwekcja

 Przedstawiono analizę numeryczną, której wyniki wykazują dobrą zgodność z badaniami eksperymentalnymi

 Zaprezentowano wyniki analizy wielkościowej zmierzającej do znalezienia Nu = f(Ra_m), które wskazują na potrzebę dokładniejszego prześledzenia pewnych przypadków szczególnych