Analiza wpływu ścianki na dyfuzję nanocząstek w mikrokanale

Magistrant: Krzysztof Zembrzycki

Opiekun: Prof. Dr hab. Tomasz Kowalewski

Instytut Podstawowych Problemów Techniki PAN Zakład Mechaniki i Fizyki Płynów

Plan seminarium

Wstęp:

- przepływ w mikrokanale
- metody pomiaru poślizgu
- ruchy Browna przy ściance Symulacje numeryczne:
- model kanału
- wyniki symulacji
 Pomiary doświadczalne:
- środek kanału
- ścianka kanału
- komputerowa analiza obrazów
- wyniki pomiarów Konkluzje

Efekt ścianki

Model standardowy:

brak poślizgu V_s=0

paraboliczny rozkład prędkości płynu
 Najnowsze badania:
 prędkość płynu przy ściance V ≠0

Jak zmierzyć pole prędkości?

Pomiary poślizgu

Najczęściej używane metody:

r. 2002, 2004

- PIV (ang. Particle Image Velocimetry)
- FCS (ang. Fluorescence Correlation Spectroscopy)
- SFA (ang. Surface Force Apparatus)

	-					
PIV: Tretheway	Glass	Water	$pprox 0^{\circ}$	-	$10^2 \mathrm{s}^{-1}$	No-slip
[19.79, 80]	Glass+OTS		120°	2 Å		0.9 µm
PIV: Joseph [19.72]	Glass	Water	$pprox 0^{\circ}$	5 Å (rms)	$10^2 \mathrm{s}^{-1}$	50 nm
r. 2005	Glass+OTS		95°			No-slip
	Glass+CDOS		95°			50 nm
SP: Churaev [19.66]	Quartz	KCl solutions	_	2 nm (pp)	$10^5 \mathrm{s}^{-1}$	No-slip
r. 2002	Quartz+TMS	KCl solutions	80 - 90°	25 nm (pp)		5-8 nm
FC: Lumma [19.74]	Mica	Water	-	15 nm (pp)	$10 {\rm s}^{-1}$	$0.5-0.86\mu m$
r. 2003	Glass	Water	5-10°			0.6–1 μm
		NaCl solutions				$0.2-0.6\mu m$

Ruchy Browna Współczynnik dyfuzji D:

 $D = \frac{k_B T}{3 \pi \mu d_p}$

- T temperatura płynu
- μ lepkość płynu
- d_p średnica cząstki
 - średnia droga:

 $\langle s^2 \rangle = a D \Delta t$

a = 2,4,6 - współczynnik zależny od wymiaru

Ruchy Browna przy ścianie $D_{\perp} = \beta_{\perp} D,$ $D_{\parallel} = \beta_{\parallel} D,$

Model autorstwa E. Lauga i T. Squires (LS) (metoda Stokeslet'ów)

$$\beta_{\perp} = 1 - \frac{3d_p}{8h} [1 + 2I(Kn)] + O\left(\frac{d_p^3}{8h^3}\right),$$

$$\beta_{\parallel} = 1 + \frac{3d_p}{16h} [1 - 2J(Kn)] + O\left(\frac{d_p^3}{8h^3}\right),$$

$$Kn = \frac{\lambda}{h},$$

gdzie: $\lambda - diugość poślizgu,$ $d_p - średnica cząstki,$ h - odległość środka cząstki od ścianki.

Wykres współczynników β_{\perp} i β_{\parallel} w funkcji liczby Knudsena (różna długość poślizgu). W obliczeniach przyjęto wartości znormalizowane do promieni cząstki, tzn. $d_p = \frac{1}{2}$, h = 1

Symulacje numeryczne

- symulacje metodą dynamiki molekularnej
- program LAMMPS (ang. Large-scale Atomic/Molecular Massively Parallel Simulator) w wersji z 7 lipca 2009, Sandia National Laboratories
- granularny model oddziaływań (zmodyfikowany potencjał Lennarda-Jonesa)

 $\epsilon - g l \epsilon b o kość studni potencjału \left| \frac{k c a l}{m o l} \right|,$

 σ -skończona odległość [A], dla której $U(\sigma)=0$.

$$U(r) = 4 \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right],$$

• zasady mieszania Lorentza-Berthelota:

$$\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2},$$

$$\epsilon_{ij} = \sqrt{\epsilon_i \epsilon_j}.$$

Model ośrodka

• model molekuł wody TIP4P średnica $\phi_{H_2O}=2.81 \text{ Å } \epsilon_{H_2O}=0,155 \frac{kcal}{mol}, \sigma_{H_2O}=3,1536 \text{ Å}$ średni odstęp między molekułami wody wynosi 3.105 Å

gęstość w temperaturze 298K wynosi $18 \frac{g}{mol}$.

Model ścian oraz cząstki koloidalnej

cząstka koloidalna: polistyren -> węgiel

$$\epsilon_c = 0,102 \frac{kcal}{mol}, \sigma_c = 3,35 \text{ Å} \qquad \phi_c = 240 \text{ Å}$$

• ściany kwarcowe SiO₂: $\epsilon_{si} = 3,15 \frac{kcal}{mol}; \sigma_{si} = 1,84 \text{\AA}$ $\epsilon_{siO_2} = \sqrt{\epsilon_{si} 2 \epsilon_0} = 0,9882 \frac{kcal}{mol},$ $\sigma_{siO_2} = \frac{\sigma_{si} + \sigma_0}{2} = 2,503 \text{\AA}$

Trapezoedr trygonalny

Obszar symulacji

- krok czasowy 0.01fs
- całkowita liczba cząstek ok. 243000
- liczba kroków
 2000000 = 20ps
- czas obliczeń ok 72h (24 CPU)
- cząstka R=12nm

L=155,25nm D=155,25nm

Wyniki R=12nm

Ze spadkiem odległości, współczynnik rośnie -> brak poślizgu

Badania eksperymentalne cz. 1

- pomiar ruchów Browna cząstek z dala od ścian kanału metodą mikroskopii fluorescencyjnej.
- cząstki fluorescencyjne o średnicy 300nm
- oświetlenie lampą rtęciową

Widmo cząstek fluorescencyjnych

e franti

Cząstka 300nm, odstęp czasu 0.5s

Badania eksperymentalne cz. 2

- badanie ruchów Browna cząstek blisko ściany
- oświetlanie metodą fali zanikjącej

Współczynniki załamania wody i szkła wynoszą odpowiednio $\eta_1 = 1.51 \eta_2 = 1.33$ Kąt graniczny wynosi $\theta_c \approx 61,7^0$

Obszar pomiaru (B) -> 300x250 μm

1 - Podstawa, 2,6 - przekładki silikonowe,
5,3 - płytki kwarcowe (ściany kanału),
4 - Przekładka teflonowa (kontur kanału).

Analiza obrazów

Metoda wykrywania cząstek

300x250 µm

Wyniki R=150nm

J

Pozycja w kanale	Współczynni k dyfuzji $D_{\parallel}*10^{-12}$	Wartość średnia 10 ⁻¹²	
środek	0,91	0.02	
środek	0,96	0,93	
ścianka	0,84	0.85	
ścianka	0,81	0,05	
Wartość teoretyczna w nieskończonym ośrodku	1,62		

$$\beta_{\parallel} = \frac{D_{\parallel s}}{D_{\parallel}} = \frac{0.83 * 10^{-12}}{0.93 * 10^{-12}} = 0.8892,$$

$$3r + 8h \left(1 + O\left(\frac{r^3}{h^3}\right) - \beta_{\parallel} \right)$$

$$Kn) = \frac{1}{6r} = 0.537993,$$

$$\lambda = Kn * h = 4.623 * 160 * 10^{-9},$$

$$\lambda \approx 740$$

$$\Delta \lambda = 250 \text{nm}$$

Dyskusja rezultatów

 hipoteza hydrofobowości powierzchni ściany

Seria pomiarowa	Kąt α [⁰]
1	36
2	29
3	48
4	33
5	36

 $\alpha < 90^{\circ}$ - hydrofilowa $90^{\circ} < \alpha < 150^{\circ}$ - hydrofobowa $\alpha > 150^{\circ}$ - superhydrofobowa

• hipoteza nanopęcherzyków powietrza (B. Borkent)

Powierzchnia pokryta rysami (~200nm), brak pęcherzyków.

Konkluzje

- brak poślizgu w symulacji
- duży rozrzut współczynników dyfuzji otrzymanych w wyniku symulacji i teoretyczych
- konieczność przeprowadzenia symulacji 3D z większą ilością kroków czasowych
- potwiedzenie istnienia poślizgu na ścianie w eksperymencie
- duża wartość wyznaczonego poślizgu
- konieczność przeprowadzenia dalszych badań z użyciem mniejszych cząstek.