
Background
Saturation of Estimates as Optimization Problem

Results

Saturation of Estimates for the Maximum
Enstrophy Growth in a Hydrodynamic System as

an Optimal Control Problem

Diego Ayala Bartosz Protas

Department of Mathematics & Statistics
McMaster University, Hamilton, Ontario, Canada
URL: http://www.math.mcmaster.ca/bprotas

Thanks to Ch. Doering (University of Michigan)
& D. Pelinovsky (McMaster)

Funded by Early Researcher Award (ERA)

November 2, 2011

D. Ayala & B. Protas Maximum Enstrophy Growth in Burgers Equation



Background
Saturation of Estimates as Optimization Problem

Results

Agenda

Background
Regularity Problem for Navier–Stokes Equation
Enstrophy Estimates

Saturation of Estimates as Optimization Problem
Instantaneous Estimates
Finite-Time Estimates
Burgers Problem

Results
Optimal Solutions for Wavenumber m = 1
Envelopes & Power Laws
Solutions for Other Initial Guesses m = 2, 3, . . .

D. Ayala & B. Protas Maximum Enstrophy Growth in Burgers Equation



Background
Saturation of Estimates as Optimization Problem

Results

Regularity Problem for Navier–Stokes Equation
Enstrophy Estimates

I Navier–Stokes equation (Ω = [0, L]d , d = 2, 3)8>>>>><>>>>>:

∂v

∂t
+ (v ·∇)v + ∇p − ν∆v = 0, in Ω× (0, T ]

∇ · v = 0, in Ω× (0, T ]

Initial Condition on Γ× (0, T ]

Boundary Condition (periodic) in Ω at t = 0

I 2D Case
I Existence Theory Complete — smooth and unique solutions

exist for arbitrary times and arbitrarily large data

I 3D Case
I Weak solutions (possibly nonsmooth) exist for arbitrary times
I Classical (smooth) solutions (possibly nonsmooth) exist for

finite times only
I Possibility of “blow–up” (finite–time singularity formation)
I One of the Clay Institute “Millennium Problems” ($ 1M!)

http://www.claymath.org/millennium/Navier-Stokes Equations
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What is known? — Available Estimates

I A Key Quantity — Enstrophy

E(t) ,
∫

Ω
|∇× v|2 dΩ (= ‖∇v‖2

2)

I Smoothness of Solutions ⇐⇒ Bounded Enstrophy
(Foias & Temam, 1989)

max
t∈[0,T ]

E(t) < ∞ ???

I Can estimate dE(t)
dt using the momentum equation, Sobolev’s

embeddings, Young and Cauchy–Schwartz inequalities, ...
I Remark: incompressibility not used in these estimates ....
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I 2D Case:
dE(t)

dt
≤ C 2

ν
E(t)2

I Gronwall’s lemma and energy equation yield ∀t E(t) < ∞
I smooth solutions exist for all times

I 3D Case:
dE(t)

dt
≤ 27C 2

128ν3
E(t)3

I corresponding estimate not available ....
I upper bound on E(t) blows up in finite time

E(t) ≤ E(0)√
1− 4CE(0)2

ν3 t

I singularity in finite time cannot be ruled out!
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Problem of Lu & Doering (2008), I

I Can we actually find solutions which “saturate” a given
estimate?

I Estimate dE(t)
dt ≤ cE(t)3 at a fixed instant of time t

max
v∈H1(Ω), ∇·v=0

dE(t)

dt

subject to E(t) = E0

where
I

dE(t)

dt
= −ν‖∆v‖2

2 +

∫
Ω

v ·∇v ·∆v dΩ

I E0 is a parameter

I Solution using a gradient–based descent method
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Problem of Lu & Doering (2008), II

[
dE(t)

dt

]
max

= 8.97× 10−4 E2.997
0

vorticity field (top branch)
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I How about solutions which saturate dE(t)
dt ≤ cE(t)3 over a

finite time window [0,T ]?

max
v∈H1(Ω), ∇·v=0

[
max

t∈[0,T ]
E(t)

]
subject to E(t) = E0

where
I

E(t) =

∫ t

0

dE(τ)

dτ
dτ + E0

I E0 is a parameter
I maxt∈[0,T ] E(t) nondifferentiable w.r.t initial condition

=⇒ non–smooth optimization problem

I In principle doable, but will try something simpler first ...

D. Ayala & B. Protas Maximum Enstrophy Growth in Burgers Equation



Background
Saturation of Estimates as Optimization Problem

Results

Instantaneous Estimates
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I Burgers equation (Ω = [0, 1], u : R+ × Ω → R )

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 in Ω

u(x) = φ(x) at t = 0

Periodic B.C.

Enstrophy : E(t) = 1
2

∫ 1
0 |ux(x , t)|2 dx

I Solutions smooth for all times
I Questions of sharpness of enstrophy estimates still relevant

dE(t)

dt
≤ 3

2

(
1

π2ν

)1/3

E(t)5/3

I Best available finite-time estimate

max
t∈[0,T ]

E(t) ≤

[
E1/3

0 +

(
L

4

)2 (
1

π2ν

)4/3

E0

]3

−→
E0→∞

C2E3
0
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“Small” Problem of Lu & Doering (2008), I

I Estimate dE(t)
dt ≤ cE(t)5/3 at a fixed instant of time t

max
u∈H1(Ω)

dE(t)

dt

subject to E(t) = E0

where
I

dE(t)

dt
= −ν

∥∥∥∂2u

∂x2

∥∥∥2

2
+

1

2

∫ 1

0

(
∂u

∂x

)3

dΩ

I E0 is a parameter

I Solution (maximizing field) found analytically!
(in terms of elliptic integrals and Jacobi elliptic functions)
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“Small” Problem of Lu & Doering (2008), II

[
dE(t)

dt

]
max

= 0.2476
E5/3

0

ν1/3

instantaneous estimate is sharp

10
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E0
m

ax
t>

0 E
(t

)

 

 

maxt∈[0,T ] E(t) ≤ CE1.048
0

finite–time estimate far from saturated
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Finite–Time Optimization Problem (I)

I Statement
max

u∈H1(Ω)
E(T )

subject to E(t) = E0

T , E0 — parameters
I Optimality Condition

∀φ′∈H1 J ′
λ(φ; φ′) = −

Z 1

0

∂2u

∂x2

˛̨̨
t=T

u′
˛̨
t=T

dx − λ

Z 1

0

∂2φ

∂x2

˛̨̨
t=0

u′
˛̨
t=0

dx
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Finite–Time Optimization Problem (II)

I Gradient Descent

φ(n+1) = φ(n) − τ (n)∇J (φ(n)), n = 1, . . . ,

φ(0) = φ0,

where ∇J determined from adjoint system via H1 Sobolev preconditioning

−∂u∗

∂t
− u

∂u∗

∂x
− ν

∂2u∗

∂x2
= 0 in Ω

u∗(x) = −∂2u

∂x2
(x) at t = T

Periodic B.C.

I Step size τ (n) found via arc minimization n

d
n

n+1

= {|| x||2 = E0}

D. Ayala & B. Protas Maximum Enstrophy Growth in Burgers Equation



Background
Saturation of Estimates as Optimization Problem

Results

Optimal Solutions for Wavenumber m = 1
Envelopes & Power Laws
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I Two parameters: T , E0 (ν = 10−3)

I Optimal initial conditions corresponding to initial guess with
wavenumber m = 1 (local maximizers)
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I Sol’ns found with initial guesses φ(m)(x) = sin(2πmx), m = 1, 2, . . .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

φ*  (
x)

m = 1, E0 = 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

x

φ(
x)

m = 2, E0 = 103

I Change of variables leaving Burgers equation invariant (L ∈ Z+):

x = Lξ, (x ∈ [0, 1], ξ ∈ [0, 1/L]), τ = t/L2

v(τ, ξ) = Lu(x(ξ), t(τ)), Ev (τ) = L4Eu

( t

L2

)
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I Solutions for m = 1 and m = 2, after rescaling
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I Using initial guess: φ(0)(x) = sin(2πmx), m = 1, or m = 2
φ(0)(x) = ε sin(2πmx) + (1− ε) sin(2πnx), m 6= n, ε > 0

πsin(2   x)

πsin(4   x)

H
1

* *
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πsin(4   x)

H
1

* *

I All local maximizers with m = 2, 3, . . . are rescaled copies of
the m = 1 maximizer
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Location of Singularities in C from the Fourier spectrum

|ûk | ∼ C |k|−αe iz∗ as k →∞

Im{z}

Re{z}

Z_{k−1}

Z_{k}

Z_{k+1}

Analyticity strip for a meromorphic function
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I red — instantaneously optimal (Lu & Doering, 2008)

I bold blue — finite–time optimal (T = 0.1)

I dashed blue — finite–time optimal (T = 1)
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Summary & Conclusions

I Some evidence that optimizers found are in fact global
I Exponents in maxt∈[0,T ] E(t) = CEα

0 as E0 →∞

theoretical
estimate

optimal
(instantaneous)

[Lu & Doering, 2008]

optimal
(finite–time)

[present study]

α 3 1 3/2

I more rapid enstrophy build–up in finite–time optimizers than in
instantaneous optimizers

I theoretical estimate not sharp =⇒ finite–time optimizers offer
insights re: refinements required (work in progress)

I Finite–time maximizers saturate Poincaré’s inequality (largest
kinetic energy for a given enstrophy)

I Future work: Navier–Stokes 2D, 3D...
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