ATOMIC FORCE MICROSCOPY COMBINED WITH OPTICAL TWEEZERS (AFM/OT): FROM DESIGN TO APPLICATIONS

Filippo Pierini

Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

SCOPE

AFM/OT SETUP

CALIBRATIONS

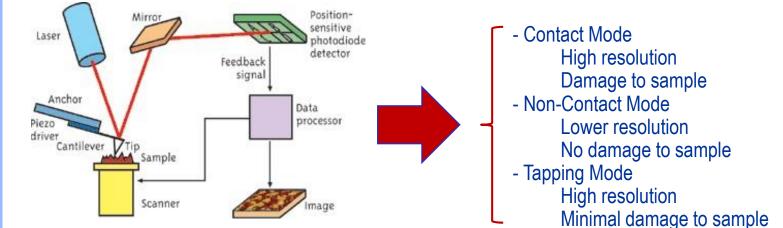
-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

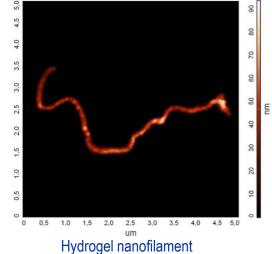
CONCLUSIONS


Atomic Force Microscopy (AFM)

Motivation 3-D Surface Topography

History 1986 – Binnig, Quate, Gerber 1989 – the first commercially available AFM

INTRODUCTION


How the AFM Works

Atomic Force Microscopy (AFM)

Results

(contour length 7 μ m, width 128 nm, height 39 nm)

Disadvantages

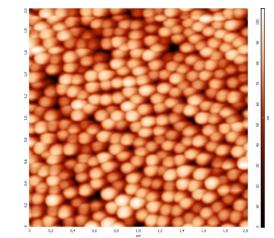
- Limited vertical range
- Limited magnification range
- Data not independent of tip
- Tip or sample can be damaged

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS


-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Polystyrene nanoparticles (diameter: 100 nm)

Advantages

- Easy sample preparation
- Accurate height information (sub-nanometer resolution)
- Works in vacuum, air, and liquids
- Living systems can be studied

INTRODUCTION

Atomic Force Microscopy (AFM)

Motivation

Forces evaluation Sample manipulation

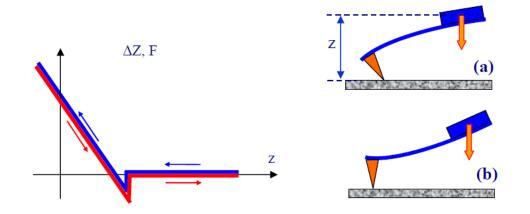
INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration


ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Force-distance curves

interaction forces between tip and sample are recorded

Applications

Study Unfolding Of Proteins Force Measurements In Real Solvent Environments Antibody-Antigen Binding Studies Ligand-Receptor Binding Studies Binding Forces Of Complimentary DNA Strands Study Surface Frictional Forces

Disadvantages

- Force evaluation: inadeguate LOD (pN scale)
- Sample manipulation: invasive method lack of a feedback system

SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

- -Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching
- OUTLOOKS
- CONCLUSIONS

Laser: "Stimulated Optical Radiation in Ruby"

T. Maiman, Nature 187, 493 – 494 ,1960

Optical Tweezers (OT)

➡

History

- In 1970 A. Ashkin proved that light can grab and release nanometer particles by its momentum
- In 1986, A. Ashkin trap 10nm diameter particles
- In 1987, A. Ashkin showed the damage-free manipulation on cell using an infrared laser

Nanotechnology: "There's plenty of room at the bottom" R.Feynman, 1959

INTRODUCTION

Arthur Ashkin

- In 1997, S. Chu won the Nobel Prize in Physics for the "development of methods to cool and trap atoms with laser light"

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment

-QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Optical Tweezers (OT)

What are Optical Tweezers?

Optical tweezers can trap and manipulate nanometer and micrometer-sized

Optical Tweezers - one of the techniques, which use a highly focused beam to control and hold microscopic particles.

In Optical Tweezers a tightly focused laser produces a force great enough to trap particles.

Optical trap: the most versatile single-molecule manipulation technique

Used to exert forces on particles ranging in size from nanometers to micrometers

Measuring the three-dimensional displacement of the trapped particle with sub-nanometer accuracy and sub-millisecond time resolution

Suitable for measuring force and motion

INTRODUCTION

Describtion

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

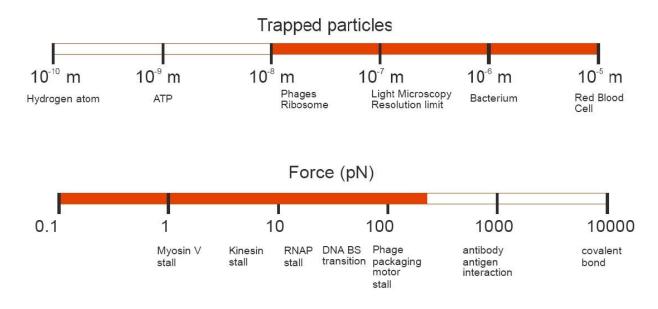
AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching


OUTLOOKS

CONCLUSIONS

objective into channel. Spheres with a higher index of refraction than the medium in will be trapped at the focus of the beam.

A laser beam is expanded and collimated. This collimated beam is directed through a microscope

The scales of measurments

IPPT, April 04 2016, Warsaw

INTRODUCTION

Conditions of $OT - r > \lambda$

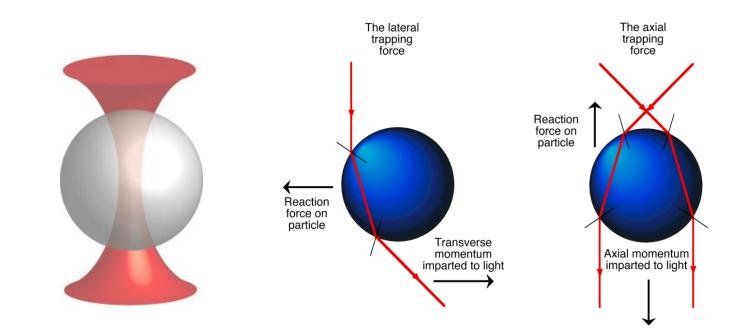
INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment

-QPD detector calibration -Force calibration


ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Conditions for Mie scattering when the particle radius a is larger than the wavelength of the light λ . We can use a ray optics treatment and look at the transfer of momentum

IPPT, April 04 2016, Warsaw

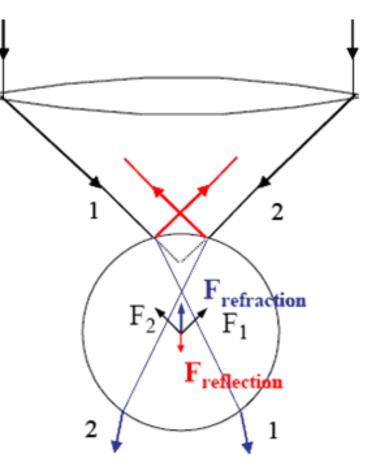
INTRODUCTION

The Ray Optics Approach

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP


CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

A) The reflected photons create a scattering force.

INTRODUCTION

B) The refracted photons create a restoring force towards the focus of the beam.

 $p=h/\lambda$

F= dp/dt

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

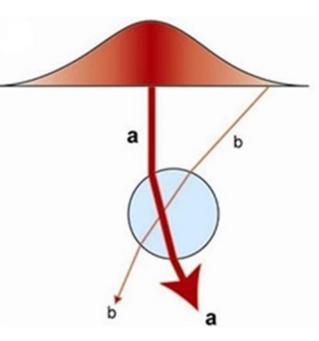
SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS


-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Bead moves to left or right

Newton's third law - for every action there is an equal and opposite react

The force from a single beam gradient optical trap with Gaussian intensity profile.

The central ray, a, is of higher intensity than ray b

INTRODUCTION

INTRODUCTION -Atomic Force Microscopy (AFM)

AFM/OT SETUP

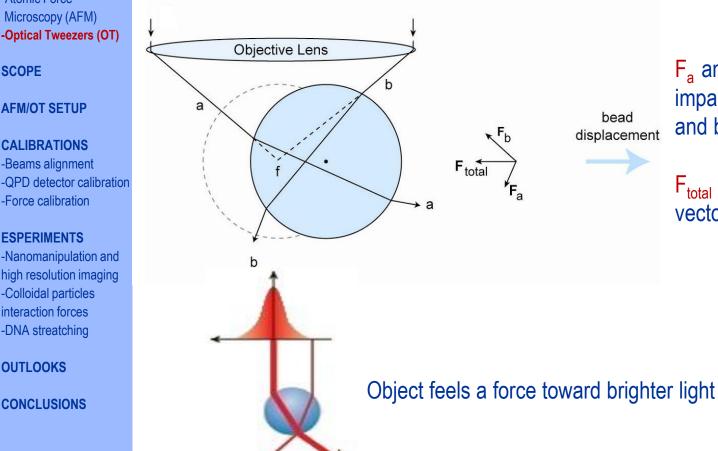
CALIBRATIONS -Beams alignment

-Force calibration

ESPERIMENTS

-Colloidal particles interaction forces -DNA streatching

OUTLOOKS


CONCLUSIONS

SCOPE

Optical Tweezers (OT)

Bead moves to left or right

Newton's third law – for every action there is an equal and opposite

 F_a and F_b represent the forces imparted to the bead by rays a and b

INTRODUCTION

F_{total} is the sum of these two vectors and points to the left.

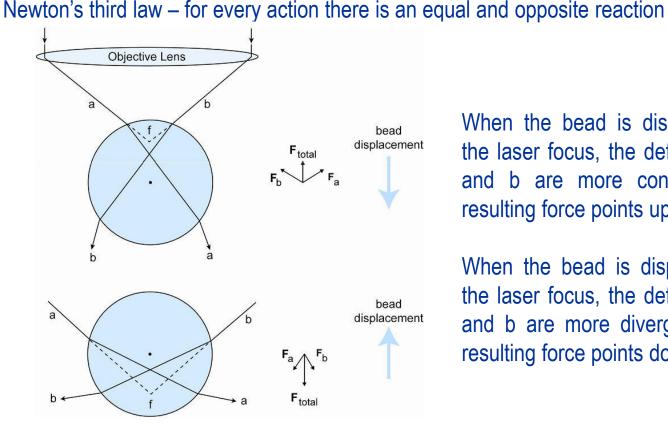
Bead moves forward or backward

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS


-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

When the bead is displaced below the laser focus, the deflected rays a and b are more convergent, and resulting force points upward

INTRODUCTION

When the bead is displaced above the laser focus, the deflected rays a and b are more divergent, and the resulting force points downward

Object feels a force toward focus Force ~ gradient intensity

SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Optical Tweezers (OT)

Technical requirements

INTRODUCTION

Trapping lasers: Gaussian output intensity profile to achieve the smallest focal spot producing the largest optical gradient

A trapping laser with superior pointing and power stability: fluctuations in beam pointing increase noise.

Trapping lasers: Near infrared wavelengths (800 – 1100 nm) minimize optically induced damage in biological specimens. Diode-pumped neodymium-doped yttrium aluminum garnet (Nd:YAG) with a wavelength of 1064 nm

Focused laser beam to a diffraction-limited spot with a high numerical aperture (NA) microscope objective: light-gathering ability and resolution

The NA of the trapping objective: at least 1.2 to achieve the steep focus needed to create a stable optical trap.

Types of OT

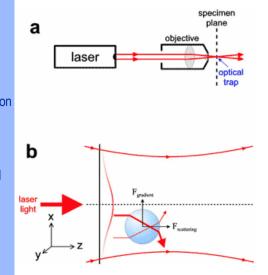
Dual beam Optical Tweezers

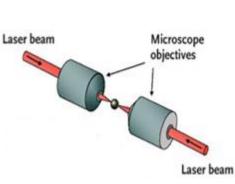
INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

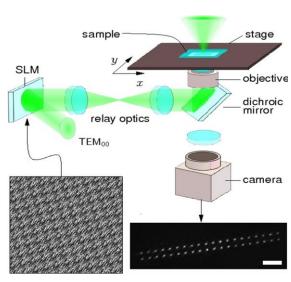
AFM/OT SETUP

CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration


ESPERIMENTS


-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS


CONCLUSIONS

Single Beam Optical Tweezers

Holographic Optical Tweezers

INTRODUCTION

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment

-QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

The aim of the present research is to demonstrate the possibility of extending the capability of a commercial AFM system by combining it with optical tweezers.

It permits to obtain a high-quality imaging instrument able to trap and modify nanometric materials and to measure force in the subpiconewton scale.

SCOPE

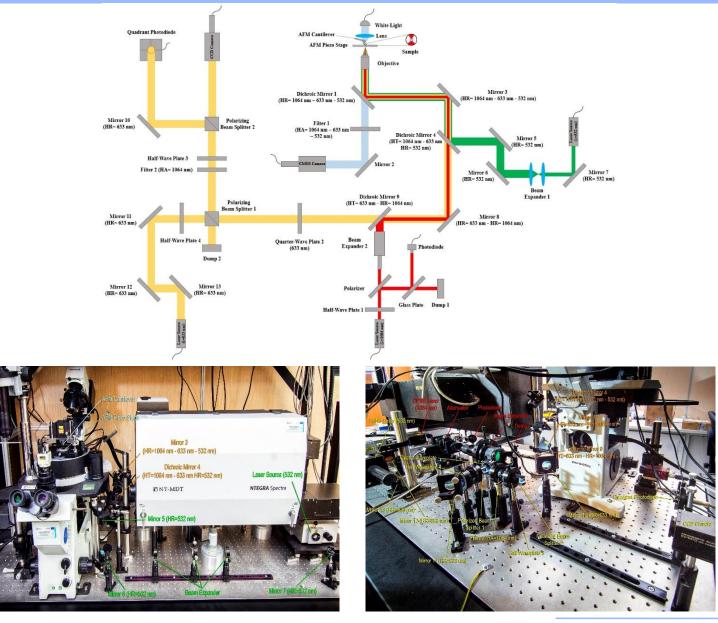
AFM/OT SETUP

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS


-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

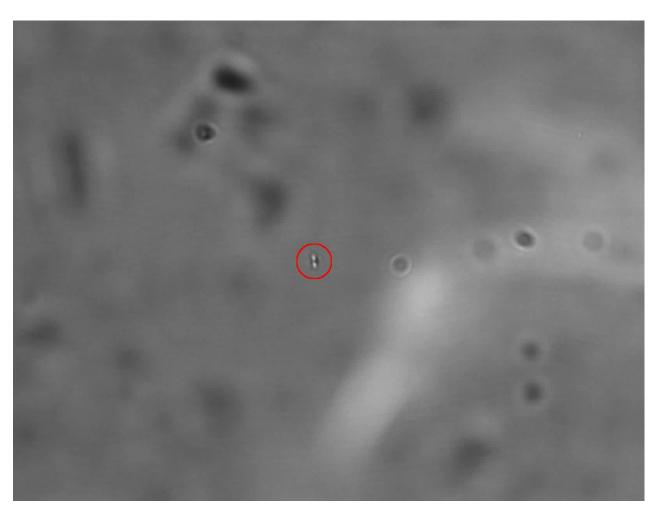
-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

SCOPE

AFM/OT SETUP


CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

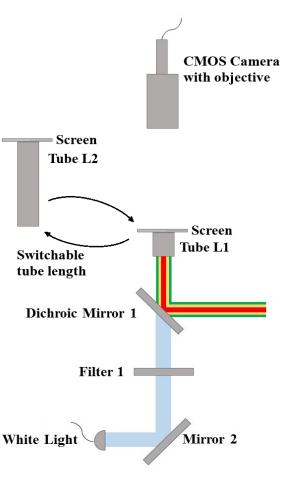
Polyacrylamide filament (length: 2 µm - diameter: 0.6 µm) (10 fps)

Beams alignment

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP


CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

The CMOS camera and the White Light source are swapped.

CALIBRATIONS

The microscope objective is replaced with a short (L1) or a long tube (L2).

Semi-transparent screen on their top side of the tubes.

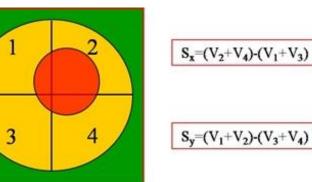
Alignment procedure :

- 1. Finding the center of the Tube L1 and L2.
- 2. Alignment of the trapping laser.
- 3. Alignment of the detection laser.
- 4. Alignment of the fluorescent laser. Each part is described in detail below.

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration


ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

QPD detector calibration

Calibration using a 1.0 µm polystyrene bead immobilized in hydrogel

Instrumental noise

0.025

Peak to peak (V) 00000

0,015

5

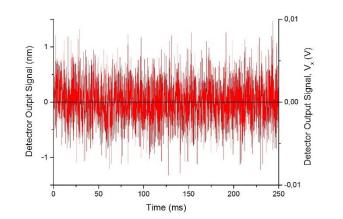


Diagram of photodiode output signal in X direction as a function of time (5000 samples per second) Instrumental noise highlighted as the peak to peak value

15

10

Acquisition frequency (kHz)

IPPT, April 04 2016, Warsaw

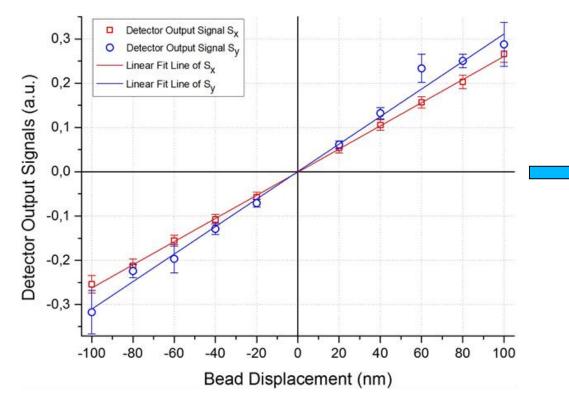
20

QPD detector calibration

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP


CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

The slope of the fit lines (α_x, α_y) for S_x and S_y are respectively 0.0026 and 0.0031 in arbitrary units.

CALIBRATIONS

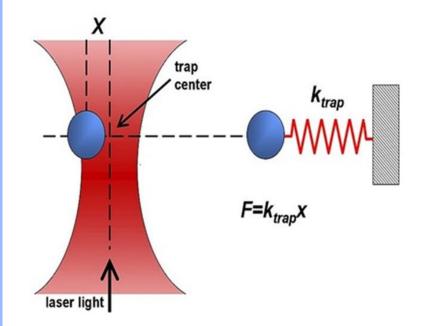
Quadrant photodiode output signals (S_x and S_y) versus particle displacement curves recorded by moving the bead through the optical trap.

Force Calibration

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP


CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Object is attracted to the center of the beam

CALIBRATIONS

The force applied on the object depends linearly on its displacement from the trap center just as with a simple spring system

The spring constant, or stiffness: optical gradient, laser power, properties of the trapped object and solvent

SCOPE

AFM/OT SETUP

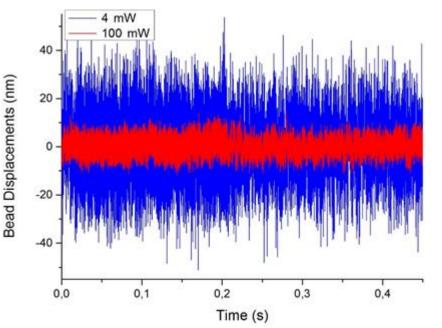
CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS -Nanomanipulation and high resolution imaging -Colloidal particles

interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS


Equipartition Calibration

- The trapped bead oscillates randomly near the focal point of the laser beam when it is in thermal equilibrium.
- The particle flocculation is due to the Brownian motion which tend to displace the bead stochastically.
- The bead spatial position is well-described by a Gaussian function centred in the focal laser point

The equipartition theorem defines the average translational kinetic energy of a particle for each translational degree of freedom as $\frac{1}{2} k_B T$ where k_B is the Boltzmann constant and T is the absolute temperature. According to the this theorem it is possible to evaluate the trap stiffness (k) by solving the equation

 $k = k_B T / \langle \Delta x^2 \rangle$

where $<\Delta x^2 >$ is the statistical variance in the particle position

Particle: 1.0 µm polystyrene bead Trapping laser: 4 mW and 100 mW Sampling: 10 kHz

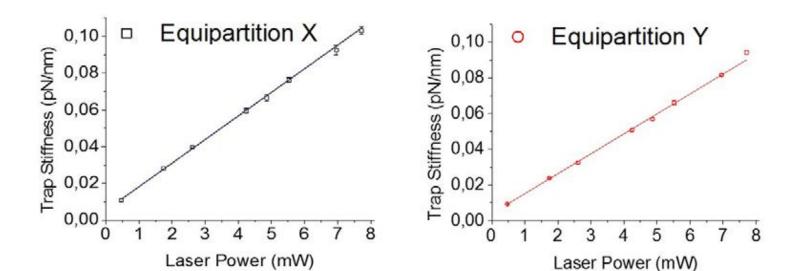
IPPT, April 04 2016, Warsaw

Equipartition Calibration

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP


CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Results

External Force Calibration

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

We apply a force to the trapped sphere by flowing water through the cell. This force is dependent on radius r, viscosity η , and velocity U of the water

$$F_{drag} = 6\pi\eta r U$$

Within the limits of the strength of the trap, the sphere remains trapped, but undergoes a displacement under the influence of this external force just like a mass on a spring

$$F = kx$$

External Force Calibration

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

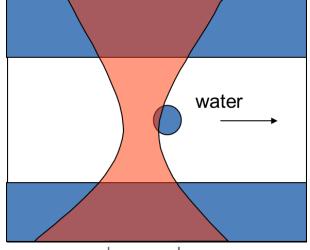
SCOPE

AFM/OT SETUP

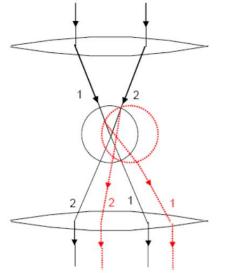
CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS


-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS


CONCLUSIONS

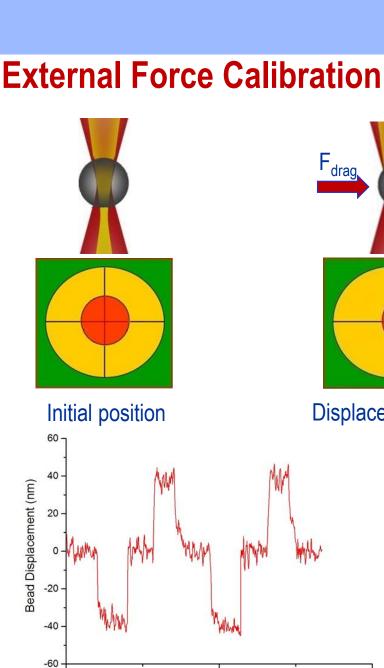
If a known force is applied, and the displacement is measured, the 'stiffness' of the optical trap may be determined

 $k = \frac{6\pi\eta r U}{x}$

CALIBRATIONS

SCOPE

AFM/OT SETUP

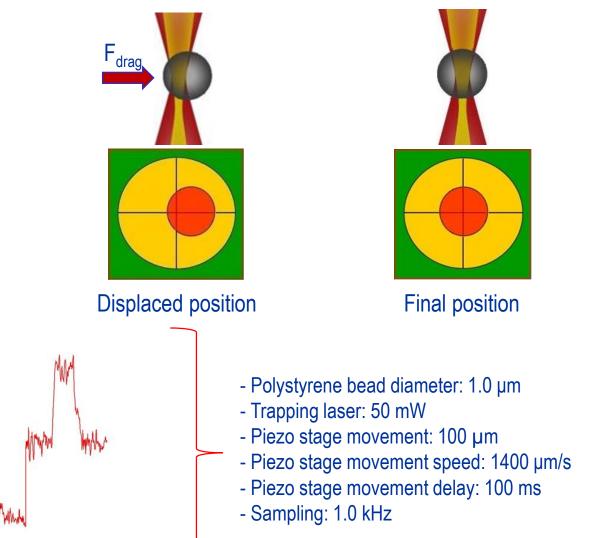

CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS



500

Time (ms)

1000

0

IPPT, April 04 2016, Warsaw

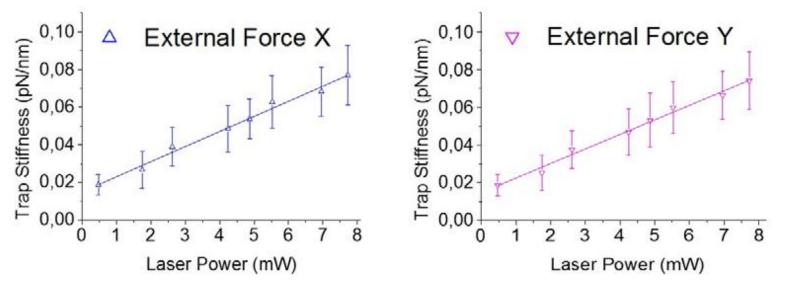
External Force Calibration

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration


ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

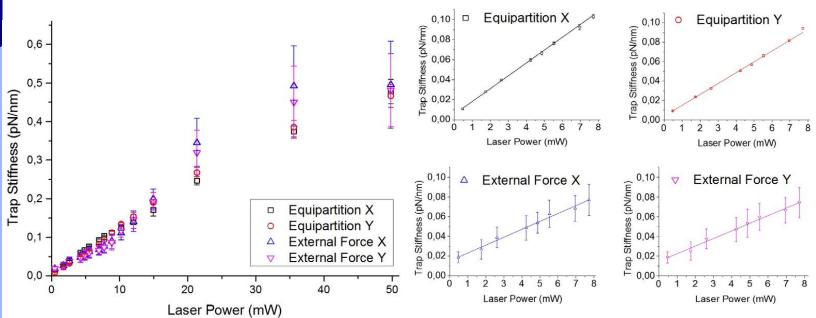
CONCLUSIONS

Results

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment


-QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Equipartition Calibration

Non-linear correlation over the studied range of trapping laser power due to:

- temperature increaseing (4°C/W)
- viscosity decreaseing
- convective flow generation

Force calibration

Low standard deviation for the calibration measurments obtained using low of trapping laser

External Force Calibration

CALIBRATIONS

Linear correlation over the studied range of trapping laser power

Large standard deviation for the calibration measurments obtained using low of trapping laser

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Escape Force

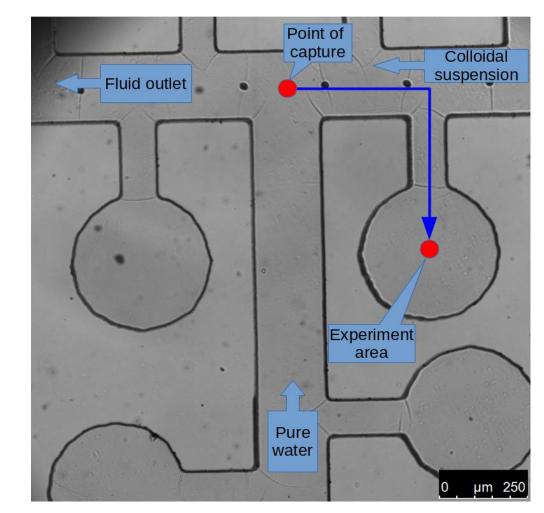
Particle: 1.0 µm diameter polystyrene bead

Trapping laser: from 1.74 mW to 2.24 mW

Stage speed: up to 1400 $\mu\text{m/s}$

Sampling: 1.0 kHz

Trapping laser power (mW)	Axes direction	Escape force (pN)	Escape force standard deviation (pN)		
1.74	X	4.91	0.35		
2.62	X	7.22	0.22		
4.24	X	11.17	0.74		
1.74	Y	4.89	0.11		
2.62	Y	7.26	0.13		
4.24	Y	10.89	0.18		


CALIBRATIONS

Equipartition Calibration

Microfluidic device

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

|PPT PAN

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

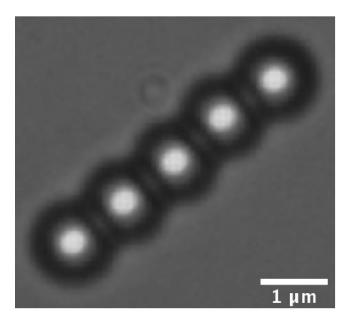
AFM/OT SETUP

CALIBRATIONS

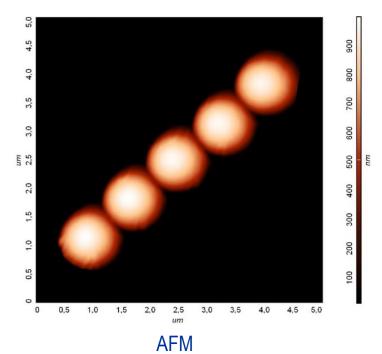
-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS -Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS


CONCLUSIONS

Nanomanipulation and high resolution imaging


Glass slide functionalization: 3-aminopropyltriethoxysilane (APTES)

AFM measurment:

- tapping mode
- · in water
- scan frequency of 0.2 Hz.
- 5.0 µm × 5.0 µm

Optical Microscope

Colloidal particles interaction forces

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

potential

CALIBRATIONS -Beams alignment -QPD detector calibration

-Force calibration

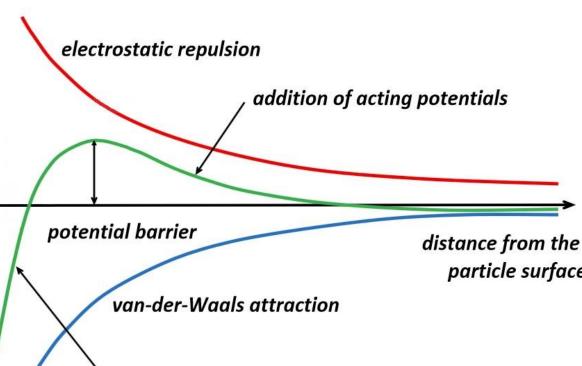
ESPERIMENTS -Nanomanipulation and high resolution imaging

-Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Lew Landau



particle surface

Evert J.W. Verwey

J.T.G. (Theo) Overbeek

addition of acting potentials including Born repulsion

EXPERIMENTS

Colloidal particles interaction forces

Solute concentration vs Stability and motion

 $\kappa^{-1} = 10^{10} \left[\frac{(2) \left(1000 \right) e^2 N_A I}{\varepsilon \varepsilon_0 \, kT} \right]^{-1/2} \label{eq:kappa}$

 κ^{-1} = double-layer thickness, Å

1010 = length conversion, Å /m

1000 = volume conversion, L/m³

e = electron charge, 1.60219 × 10⁻¹⁹ C

N_A = Avagadro's number, 6.02205 × 10²³/mol

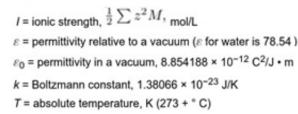
INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

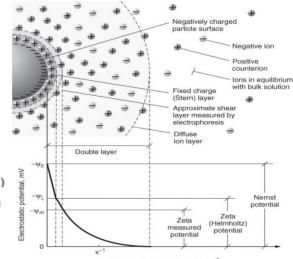
where

SCOPE

AFM/OT SETUP

CALIBRATIONS


-Beams alignment -QPD detector calibration -Force calibration


ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Distance from particle surface, Å

C in mol / L ³	$\begin{array}{c c} & \text{Debye length } \delta_{\kappa} \text{ of different} \\ & \text{types of electrolytes in nm} \end{array}$				
	(1,1)	(1,2)	(2,2)	(1,3)	
10 ⁻¹	0.96	0.55	0.48	0.39	
10 ⁻²	3.04	1.76	1.52	1.24	
10 ⁻³	9.60	5.55	4.81	3.93	
10-4	30.40	17.60	15.20	12.40	

layer radii in nm for different salt types in water at 298 K

IPPT, April 04 2016, Warsaw

distance from particle surface

SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment -QPD detector calibration

-Force calibration

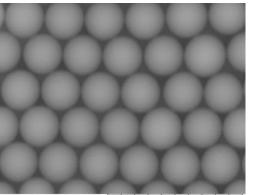
ESPERIMENTS

-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

1,5

0,5

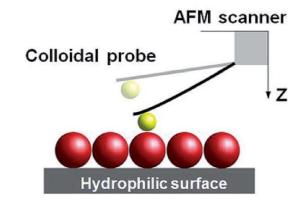
OUTLOOKS


CONCLUSIONS

Colloidal particles interaction forces (AFM)

Results

Poor sensitivity


Substrate preparation

Displacement (nm)

Method

EXPERIMENTS

Double layer perturbation by particle confinement

EXPERIMENTS

Colloidal particles interaction forces (AFM/OT)

Particle probe preparation

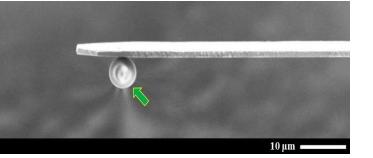
Method

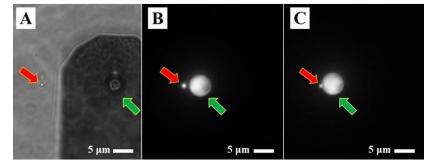
INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

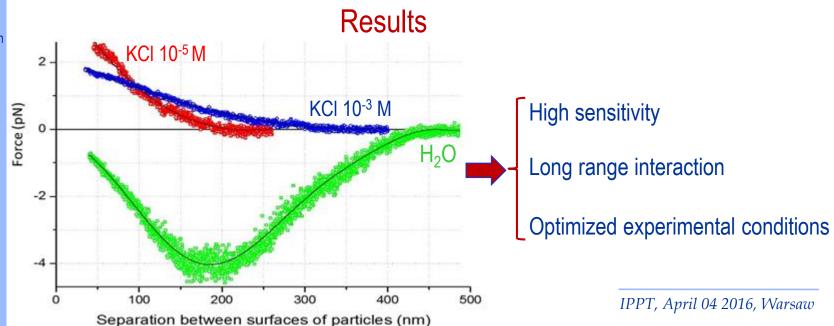
SCOPE

AFM/OT SETUP

CALIBRATIONS


-Beams alignment -QPD detector calibration -Force calibration


ESPERIMENTS


-Nanomanipulation and high resolution imaging -Colloidal particles interaction forces -DNA streatching

OUTLOOKS

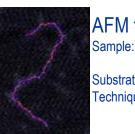
CONCLUSIONS

SCOPE

AFM/OT SETUP

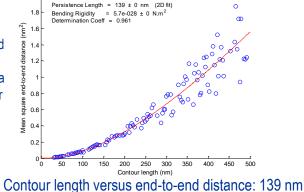
CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

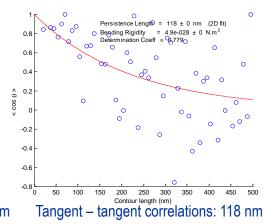

-Nanomanipulation and high resolution imaging Colloidal particles interaction forces -DNA streatching

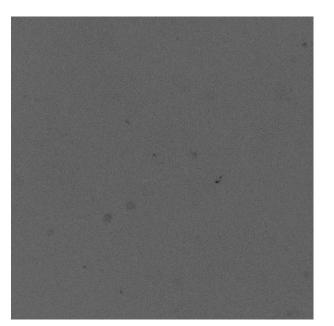
OUTLOOKS

CONCLUSIONS


DNA streatching

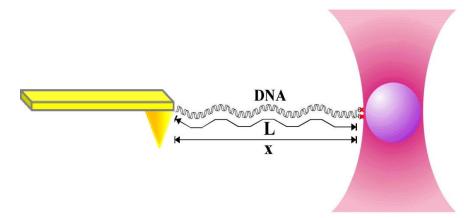
- Persistence Length




- Motion

AFM topography Sample: DNA in Tris buffer and NiCl₂ solution Substrate: freshly cleaved mica Technique: tapping mode in air

Preliminary studies



DNA streatching

Experimental method

DNA modification

-Force calibration

AFM/OT SETUP

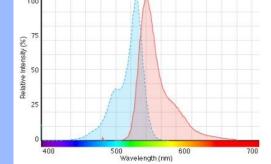
CALIBRATIONS

-Beams alignment -QPD detector calibration

INTRODUCTION -Atomic Force

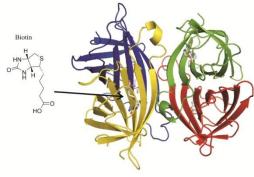
Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

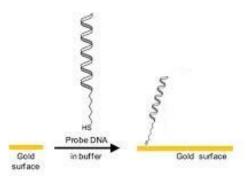

ESPERIMENTS

-Nanomanipulation and high resolution imaging Colloidal particles interaction forces -DNA streatching

OUTLOOKS


CONCLUSIONS

JOJO-1 IODIDE



(excitation/emission: 529/545 nm)

BIOTIN-STREPTAVIDIN

EXPERIMENTS

DNA streatching

Preparation of functionalized particles

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging Colloidal particles interaction forces -DNA streatching

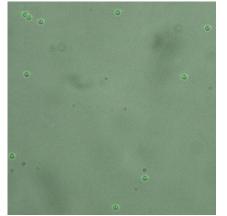
OUTLOOKS

CONCLUSIONS

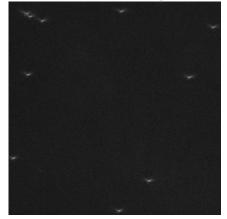
JOJO-1 interaction with biotinylated and thiole modified bacteriophage λ DNA

NaCl 10 mM; Glucose (0.1%); Tris 10 mM (pH 7.5); EDTA 1 mM β-mercaptoethanol (1%). glucose oxidase 10 μg/ml catalase 120 μg/ml

White light


°.

1 μm streptavidin-coated microspheres interaction with fluirescent funtionalized λ DNA


NaCl 1M; 20 mM Tris (pH 7.5); 1 mM EDTA; Triton X-100 (0.0005%)

Results

Fluorescent and white light

Fluorescent light

IPPT PAN

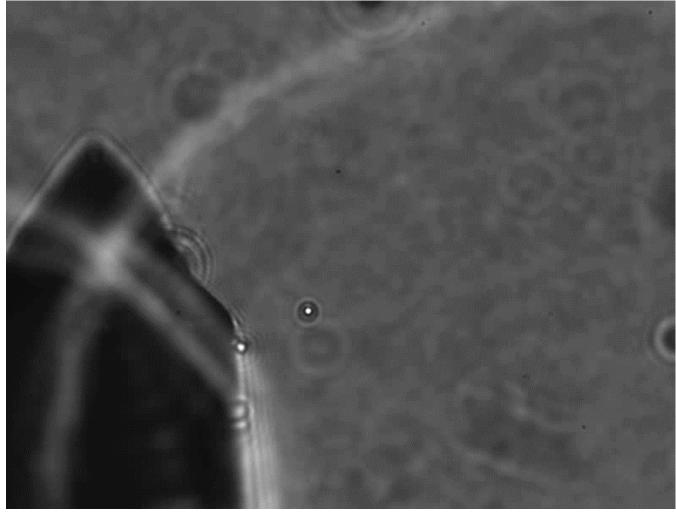
DNA streatching

AFM/OT experiment

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP


CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Buffer: NaCl 1M; 20 mM Tris (pH 7,5); 1 mM EDTA Triton X-100 (0,0005%)

OUTLOOKS

Ballistic Brownian Motion

INTRODUCTION -Atomic Force Microscopy (AFM) -Optical Tweezers (OT)

SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

 $\tau_p = M/6\pi\eta R$ \longrightarrow $t < \tau_p$

 $\begin{aligned} \tau_{p} &= \text{momentum relaxation time} \quad (\tau_{p} \text{ of } 1 \ \mu\text{m silica particle in water} \sim 10 \mu\text{s}) \\ \text{M} &= \text{particle mass} \\ \eta &= \text{viscosity of the fluid} \end{aligned}$

R = particle radius

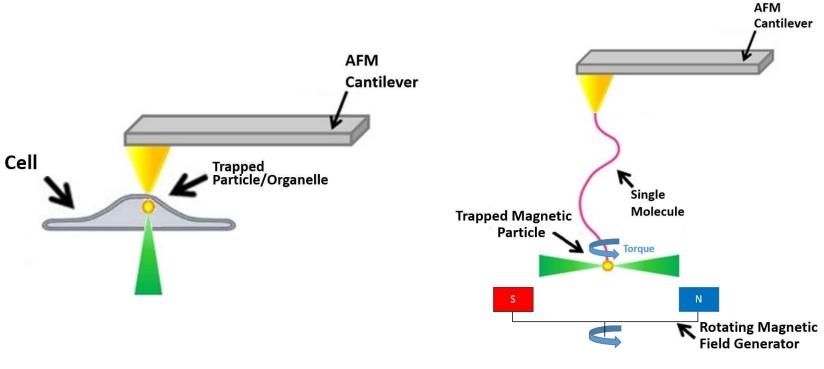
SCOPE

AFM/OT SETUP

CALIBRATIONS -Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging Colloidal particles interaction forces -DNA streatching


OUTLOOKS

CONCLUSIONS

Cell double probing by AFM/OT

Stretching and/or twisting of single molecules or nano-objects

OUTLOOKS

SCOPE

AFM/OT SETUP

CALIBRATIONS

-Beams alignment -QPD detector calibration -Force calibration

ESPERIMENTS

-Nanomanipulation and high resolution imaging Colloidal particles interaction forces -DNA streatching

OUTLOOKS

CONCLUSIONS

Concluding Remarks

- We have designed and developed a combined AFM/OT equipment.
- We have calibrated and used the instrument in three different experiment proving its high potential in nanomechanics, molecules manipulation and biological studies.
- We have demonstrated the possibility to the possibility of extending the capabilities (force sensing, nanomanipulation and simultaneous double probing) of a commercial AFM equipment by combining it with optical tweezers.

Acknowledgements

K. Zembrzycki

S. Pawłowska

P. Nakielski

Prof. T. A. Kowalewski

Project is funded by NCN grant no. 2011/03/B/ST8/05481

[F. Pierini, K. Zembrzycki, P. Nakielski, S. Pawłowska, and T.A. Kowalewski, "Atomic force microscopy combined with optical tweezers (AFM/OT)", Measurement Science and Technology, 27 (2016) 025904]

IPPT, April 04 2016, Warsaw

CONCLUSIONS