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Background information

In order to correctly predict performance of modern engineering materials,

it is necessary to understand their observed behavior and develop relevant

physical/mathematical models for description of such behavior.

The good theoretical model enables, for example, efficient design ofThe good theoretical model enables, for example, efficient design of

engineering devices to take advantage of functional and/or utility features

of specific advanced material.

Many sophisticated engineering materials rely on phase transitions taking

place during their actual operation and/or during their manufacturing

processes.

One of such materials are so called Shape Memory Alloys (SMA).
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Kestin J. (1979)  A course in Thermodynamics.

Horstemeyer M., Bammann D. (2010) Historical review of internal state variable theory for inelasticity, Int. J. Plast.

Ziółkowski A. (2015) Pseudoelasticity of Shape Memory Alloys, Theory and Experimental Studies, Elsevier.  

One of such materials are so called Shape Memory Alloys (SMA).

A very convenient and efficient theoretical environment for building

macroscopic constitutive models of advanced materials, seems to be a

framework of non-equilibrium thermodynamics with internal state

parameters.



Background information

Comprehensive information on various aspects of shape memory alloys

from the perspective of continuum mechanics can be found in my book,
"Pseudoelasticity of Shape Memory Alloys Theory and Experimental Studies"
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Ziółkowski A. (2015) Pseudoelasticity of Shape Memory Alloys, Theory and Experimental Studies, Butterworth-Heinemann, 

Elsevier. Title page photo originates from chapter Tarnita D. et al. "Orthopaedic Modular Implants Based on Shape Memory 

Alloys"  in Biomedical Engineering – From Theory to Applications, www.intechopen.com.



Functional shape memory effects
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Wide variety of metallic alloys exhibit shape memory effects. Three main

groups attract special attention NiTi-based, Cu-based and Fe-based

alloys – in view of their commercial success.

They exhibit wide variety of utility properties such as:

Utility properties of shape memory alloys

They exhibit wide variety of utility properties such as:

- stiffness (compliance) - cold working

- yield stress - machinability fatigue resistance

- ultimate tensile strength  - weldability

- elongation to failure - easiness of chemical control

- fatigue resistance, - biological compatibility

- corrosion resistance, - critical stress for phase transition

- wear - cost
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- forming properties - and many more

The specific utility features of some material frequently makes as

important factor for its selection to be used in specific application as its

functional properties.



Classification of research/development activities

The complicacy of research work efforts and involvement of different

methods, techniques and equipment connected with gaining relevant

knowledge/skills resulted in division of research activities into two main

streams of pure science and applied science.

The following problems in the domain of SMA materials can be classified

as belonging to pure science:

- acquiring knowledge on specific behavior of the specific material,

- efforts to discover processes undergoing in the material and understand their

mechanisms,

- development of a theory of coherent phase transitions,

- gaining knowledge on kinetics of thermoelastic phase transformation,

- gaining knowledge on behavior of SMA materials under complex thermo-
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- gaining knowledge on behavior of SMA materials under complex thermo-

mechanical loadings,

- development of ab-initio numerical models of martensitic transformation

- discovery of criteria for forward and reverse phase transition

- and many others

Scientific Research = Seeking Truth about Nature,

Knowledge = Understanding of occurring phenomena, Post truth = Lie

Wisdom = Capability of/and using of knowledge



Classification of research/development activities

The applied science problems in the case of SMA materials can embrace:

- development of manufacturing technologies in macro-, micro- and nano-

scale. For example by alloying, powder sintering, magnetron sputtering,

- elaboration of thermo-mechanical processing routes for attaining required- elaboration of thermo-mechanical processing routes for attaining required

utility/functional properties,

- development of forming and/or joining technologies,

- elaboration of design methods and tools,

- design of engineering mechanisms and/or devices made with SMA

materials,

- elaboration of steering algorithms for control of functional behavior,

- and many others
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Classification of research/development activities

Schematic map of various thermomechanical treatments to obtain required

properties of SMA materials – application oriented research.
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Shape memory alloys applications

Engineering applications of modern materials can be relatively simple or quite

elaborate

Growing 

degree of 

complexity
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(a) NiTi fishing line (0.045-0.085 mm) after Morris Co Ltd.; (b) orthodontic wire after

Okhata (2011); (c) NiTi stent (Cordis SMART stent) exhibiting extreme crushing

resistance after Stoeckel et al. (2009); (d), (e) water temperature regulator and scheme

of operation principle za Suzuki (2011).



Advanced technologically applications of SMA materials

Shape memory alloys applications

Variable geometry chevron for noise control of a jet engine and scheme 

of operation principle, after Mabe et al. (2006). Courtesy Boeing.
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of operation principle, after Mabe et al. (2006). Courtesy Boeing.

Festo BionicOpter, inspiration 

dragonfly flight, after Fig. 18.

in Jani (2014)



Shape memory alloys applications

Prosthetic hand powered by SMA 

actuators, after Fig. 16. in Jani

Concepts of advanced technologically applications of SMA materials

actuators, after Fig. 16. in Jani

(2014)
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Micro-gripper with SMA actuator, 

after Fig. 17. in Jani (2014)



Scientific problem formulation

The key subject matter of the present work is development of

thermodynamic model of SMA materials behavior. capable for

simultaneous description of pseudoelasticity and one way memory effect.

The attention will be focused on obtaining explicit form of Gibbs functionThe attention will be focused on obtaining explicit form of Gibbs function

the most relevant for SMA materials. The methodology of micromechanics

and homogenization will be employed.

The elaboration of thermodynamic model SMA materials and proposal of

the most appropriate form of free enthalpy (Gibbs) function still constitutes

at present an open scientific problem.
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Proposal of possibly the most appropriate, explicit form of macroscopic

Gibbs function of SMA materials makes vital contribution both in pure and

applied science of SMA materials.



Result of differential scanning calorimetry (DSC) test for Ni51at-Ti SMA. 

Generic features SMA materials behavior
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(1) Chart stress ↔ volume fraction of martensite (σ, z), (2) Chart strain ↔ volume

fraction of martensite (ε, z) for CuZnAl alloy simple tension, loading-unloading

cycle. Volume fraction of martensitic phase determined from electrical resistivity

measurements. Redrawn after (Vacher and Lexcellent, 1991).

Generic features SMA materials behavior
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Conclusion:

Conclusion can be inferred that macroscopic phase transformation strain is directly

proportional to volume fraction of stress induced martensitic phase.
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Isothermal, mechanical behavior of NiTi submitted to proportional paths of

multiaxial, stress loadings at higher temperatures.

Generic features SMA materials behavior

Pseudoelastic behavior is exhibited 

at  higher temperatures
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Raniecki B., Tanaka K., Ziółkowski A (2001) Testing and modeling of NiTi SMA at complex 

stress state – selected results of Polish-Japanese research cooperation. MSRI 2, 327-334. 

P1 - torsion,

P2 - tension,

P3 - compression,

P4 - tension-torsion,

P5 - compression-torsion
NiTi Tubular specimen

0

0 0.01 0.02 0.03 0.04 0.05 0.06

y = cos(3θ)

θ−Lode angle



Generic features SMA materials behavior

Isothermal, mechanical behavior of NiTi alloy submitted to proportional

paths of multiaxial, stress loadings at lower temperatures.
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Amplitude of residual transformation 

strain strongly depends on loading 

path direction in space of stress 

tensor components.

Ziolkowski, Dietrich, Raniecki (2011) IPPT PAN, Grant KBN N 501 224537 (Unpublished report)
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Isostress behavior of NiTi submitted to one cycle of temperature loading at

different values of constant assisting stress.

Strain transformation amplitu-

Generic features SMA materials behavior
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Raw data after K. Tanaka, K. Kitamura, S. Miyazaki, Arch. Mech. 51, 1999

Elaboration Ziolkowski, Raniecki (unpublished).

Amplitude of transformation strain strongly

depends on the value of assisting stress.
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Isostress behavior of NiTi submitted to one cycle of temperature loading for

different directions of loading paths (assisting stress σσσσef=50MPa).

Generic features SMA materials behavior
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Amplitude of residual transformation

strain strongly depends on loading

path direction in space of stress

tensor components.

Ziolkowski, Dietrich, Raniecki (2011) IPPT PAN, Grant KBN N 501 224537 (Unpublished report)
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Generic features SMA materials behavior

Behavior of NiTi alloy submitted to CCW and CW loading programs composed of

two isothermal and two izostress segments. These testing programs can be

regarded as counterparts of working cycles of heat machines, heat engine (CW -

clockwise cycle) and heat pump (CCW - counterclockwise cycle).
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Thermomechanical tests for five multiaxial

paths of loadings with maximum loading
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Generic features SMA materials behavior

The NiTi alloy submitted to CW and CCW testing programs revealed the

effect of strong dependence of strain magnitude on the order of

consecutive purely thermal and purely mechanical (multiaxial) loading

segments.

When NiTi alloy goes from the state (σef=0MPa,T=325K) to the state

(σef=200MPa,T=190K), when submitted to loading segments in the order of

CW cycle, then the strain effect is nearly two times smaller, in comparison

to the strain effect when the state (σef=200,T=190) is reached by the

material in the order of loading segments of CCW cycle. This effect is

exhibited in the case of each direction of multiaxial, mechanical loading

path. For example in the case of path No 1 (torsion) process
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path. For example in the case of path No 1 (torsion) process

(σef=0,T=325)→(0,190)→(200,190) – CW half cycle, leads to equivalent

strain εeq=~2%, while process (σef=0,T=325)→ (200,325)→(200,190) –

CCW half cycle, leads to equivalent strain εeq=~4%.

Research on the impact of history of thermomechanical loadings on SMA

materials deformation effects at lower temperatures - when the material is

in martensitic state, constitutes at present open scientific problem.



The NiTi alloy preloaded mechanically at low temperatures, to obtain oriented

martensitic phase, exhibits large thermostriction effect, – below reverse p.t.

temperature. Upon temperature cycling the strain diminishes and grows in response

to increase and decrease of the sample temperature. The size of the effect strongly

depends on maximum value of mechanical pre-load applied to the NiTi material

Generic features SMA materials behavior

(amount of oriented martensite). In the case Ni50at%-Ti alloy, pre-loaded up to 500

MPa, the strain varies by about 0.6 [%] upon temperature variation amplitude of 75

degrees. Research on thermostriction effect of SMA materials constitutes at present

open scientific problem.
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stress of 20, 130, 200 and 500 MPa
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Finally the samples were heated from

temperature −65°C to 110°C with

assisting stress of 20 MPa. During

heating segment the intermediate

temperature cycle was executed (−40

→+25→ −40 →+25 C < As
2-1=54°C).



Macroscopic thermo-mechanical behavior of SMA materials in stress-

strain temperature coordinates. Not to scale. (a) one-way memory effect;

(b) pseudoelasticity with internal hysteresis loops and plastic slip

deformation.

Generic features of SMA materials behavior
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As it was found out that the physical mechanism underlying SMA effects are

phase transitions, apparatus of thermodynamics seems to be the most

appropriate/natural tool for their description.

Considerable portion of phenomena exhibited by SMA materials can be described

Thermodynamic fundamentals

using equilibrium thermodynamics.

The development of equilibrium thermodynamics was practically ended at the turn

of the 19th and 20th centuries. Probably as the crowning gem of development

works on equilibrium thermodynamics there can be recognized, the masterpiece

of Willard Gibbs “On the equilibrium of heterogeneous substances” published in

the years 1876-1878, where Gibbs introduced the concept of chemical potential.

The work was translated into German in 1892 and into French in 1899.

The development of non-equilibrium thermodynamics was started in XX century

and is continuously subject of intensive research works. Many streams of non-

A. Ziółkowski 24

and is continuously subject of intensive research works. Many streams of non-

equilibrium thermodynamics exist.

The methodology of non-equilibrium thermodynamics with internal state

parameters will be used here.

Muller I. (2007) History of Thermodynamics, Springer (excellent book on what thermodynamics and  its underlying philosophy).

Horstenmeyer M., Bammann D (2010) Historical review of internal state variable thermodynamics for inelasticity, Int. J. Plast.

Kestin J. (1979)  A course in Thermodynamics.



For description of thermodynamic processes taking place in the material there

must be introduced relevant thermodynamic parameters/variables, e.g.

temperature (T), pressure (p), volume (V).

Two classes can be distinguished among them: intensive thermodynamic

parameters, which do not change when the amount (mass/number of moles) of

Thermodynamic fundamentals

parameters, which do not change when the amount (mass/number of moles) of

the material undergoing thermodynamic process is changed, e.g. temperature T

or pressure p, and extensive thermodynamic parameters, which change linearly

proportionally with the amount (mass) of the processed material, e.g. volume V,

or entropy S.

There can be distinguished conjugate pairs of extensive and intensive parameters

(thermodynamic forces and thermodynamic fluxes) e.g. p ↔ V, T ↔ S, π ↔ z etc.
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It proved useful to introduce various thermodynamic functions for convenient

description of thermodynamic properties/state of a substance/material. The most

commonly used are: internal energy U, enthalpy H, free energy F (Helmholtz

function), or free enthalpy G (Gibbs function) defined as follows

See also: Hillert M. (2008) Phase Equilibriums, Phase Diagrams and Phase 

Transformations, Cambridge University Press

, , ; ( , )H U pV F U TS G U TS pV U U T V≡ + ≡ − ≡ − + ← =



Formalism of thermodynamics can serve probably as a model field where

preserving strict mathematical precision plays a key role, where "devil is in details".

Even minor/trivial imprecision can cost long hours of seeking error, and neglecting

perceptiveness can push/lead one into onerous and costly operations and beyond

Thermodynamic fundamentals

(on top) of that to relatively poor quality results.

There can be listed several sources of arising difficulties and motivations for

choosing as it could seem initially eccentric path/methodological approach, e.g.:

- thermodynamic function expressed in terms of a set of some variables is much

more useful/convenient than when it is expressed, in mathematically completely

equivalent manner, with different set of variables,

- partial derivatives of thermodynamic functions determined with different variables
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- partial derivatives of thermodynamic functions determined with different variables

kept constrained (constant) have completely different physical meaning,

- some of the thermodynamic variables can be experimentally measured or

constrained directly/easily, for example temperature T or volume V, while the other

actually cannot be directly experimentally measured (or when measurement is pos-

sible it is quite difficult/thus expensive), for example entropy S or internal energy U.



In order to be able to evaluate the instantaneous values of thermodynamic

parameters/states of a material submitted to various thermodynamic processes

both the so called thermal equation of state and caloric equation of state must be

known explicitly. Naturally they must be determined in some program of

experimental tests. How this can be done?

Thermodynamic fundamentals

Thermal equations of state p=p(T,V)?

Caloric equation of state U=U(T,V)?

0( , ); (mea [ ( )surem )ent ]E TT V Tp σ ε α= + −→
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Formula for differentiation

of a composed function
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Thus, after experimental determination of relations p(T,V), Cv(T,V) and Cp(T,V)

finally internal energy U=U(T,V) can be determined by integration

Can internal energy function be determined more effectively?
0

(( , )) ,
U

U
dU T VU T V = ∫



I and II Law of thermodynamics (balance of energy and definition of entropy)

leads to Gibbs equation

Thermodynamic fundamentals

. .I L T

pT

U U

≡−≡

∂ ∂   
����� �����

�������������

; ,dU dQ dW dQ TdS dW pdV= + = = −

Gibbs equation reveals that when internal energy function is known in explicit form

U=U(S,V) as function of entropy and volume (thermodynamic fluxes) then

conjugated with them temperature and pressure (thermodynamic forces) can be

straightforwardly calculated by simple differentiation (T↔S, p↔V).

Internal energy function U=U(S,V) is called fundamental relation (equation of

�
( . .)

( , ) ( ) , ( , )
V SdQ II L T dW

U U
dU S V T dS p dV dU S V dS dV

S V
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Internal energy function U=U(S,V) is called fundamental relation (equation of

state). This specific form of U earned the special name because when its explicit

form is known then all thermodynamic properties of a material can be unveiled from

this single relation.

The fundamental relation can be treated as a kind of DNA of a material.

Internal energy function expressed in terms of S and V is called thermodynamic

potential and S and V are called natural (canonic) variables for U.



When thermal p(T,V) and caloric U(T,V) equations of state are known explicitly then

by integration of Gibbs equation there can be obtained relation for entropy

expressed in terms of temperature and volume S=S(T,V).

Thermodynamic fundamentals

( )
( )

(1 / )( ), / ( / ) [ / ( / )]v V
dS T dU pdV dU T C T dT p T p T dV= + = + ∂ ∂ −

S ( )/C U T≡ ∂ ∂

Next upon inverting this relation temperature can be expressed in terms of entropy

and volume →T(S,V). When relation T=T(S,V) is known then fundament equation of

state for internal energy can be obtained U(S,V)=U(T(S,V),V).

Gibbs relation also allows to determine fundamental relations for other popular

thermodynamic functions, and in this manner identify their natural variables, e.g. for

free energy F it is,

( )( , ) ( / ) /v V
dS T V C T dT p T dV→ = + ∂ ∂

0

( , ) ( , )
S

S
S T V dS T V= ∫

( )/v V
C U T≡ ∂ ∂
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free energy F it is,

Fundamental relations of other popular thermodynamic functions are:

Mixed second order derivatives do not depend on order of differentiation. This leads

to relations between first derivatives which are known as Maxwell relations, e.g.

, ( , )F U TS dF dU TdS SdT SdT pdV dF T V≡ − = − − = − − =

( , ), ( , ), ( , )H H S P F F T V G F T p= = =

( ) ( )( / ) / / / ( / ) /
T V

F T V S V p T F V T∂ −∂ ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ −∂ ∂ ∂



Profound understanding of Gibbs equation and resulting from it Maxwell relations

together with capability of using this knowledge is worth fortune in applied

sciences. Let us return again to experimental determination of caloric equation.

Thermodynamic fundamentals

W X Y W

Z Z Z X

Y Y X Y

∂ ∂ ∂ ∂       = +       ∂ ∂ ∂ ∂       ( ) ( )( , ) / /dU T V U V dV U T dT= ∂ ∂ + ∂ ∂

( )/
V

T S V T

p T p T

U U U S

V V S V

=− = = ∂ ∂

∂ ∂ ∂ ∂       ← = +       ∂ ∂ ∂ ∂       
�������� �����

( )2 2 ( , ) /( / ) ( / )

( )

( , ) vV v

v v

T V

C

C T V U TT p T C V

C T

p p T V


→ = ∂ ∂→ ∂ ∂ = ∂ ∂ 

=

=

( ) ( )/ /( , )
V T

p T p Tp T V U V→ − + ∂ ∂ = ∂ ∂

, , ,

W X Y WY Y X Y

Z U Y V X S W T

∂ ∂ ∂ ∂       

= = = = ↓

2 2 2

2
( )v

V

C U U U p p
p T T

V V T T V T V T T T

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     = = = = − + =       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

( ) ( )( , ) / /
T V

dU T V U V dV U T dT= ∂ ∂ + ∂ ∂
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2
( )V

T T V V

p T T
V V T T V T V T T T

= = = = − + =       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

( )
0

( , ); [ ]( /, )
U

v TU
dU T V dU C dT p T p V VU dT V = = + − + ∂ ∂∫

Upon use of thermodynamic equivalence relations internal energy U=U(T,V) can

be determined upon experimental measurement of p(T,V) and Cv(T) only instead

of measurement of p(T,V), Cv(T,V) and Cp(T,V). This leads to huge costs and time

savings.



In order to demonstrate how development of theoretical thermodynamic

model helps in understanding the material behavior, task for pure

science, let us discuss an illustrative example of cauotchouc rubber

behavior.

Experiment and theory - mutual coupling

In accordance with Gibbs equation

( ),

( , ) ( / ) ( / ) ,T T

TdS dU PdL dQ dU dW

P T L U L T S L

= − = −

= ∂ ∂ − ∂ ∂

Thus, it can be said that the load P

has an energetic and entropic part.

Maxwell compatibility condition
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A rubber bar in the unstretched and 

stretched configurations, 

cf. Rubber and Rubber balloons.

Muller, Strehlow (2004)( ) ( )

2 2

( , )

/ /

/ /
T L

dF SdT PdL F T L U TS

F T L F L T

S L P T

= − + ← = −

∂ ∂ ∂ = ∂ ∂ ∂ ⇒

− ∂ ∂ = ∂ ∂

Maxwell compatibility condition

requires that



Experiment and theory - mutual coupling

Therefore in rubber internal energy U

does not depend on L.

Entropic part of the tension load may be identified with the slope of tangent to

easily obtainable experimentally P(T) curve of a bar with fixed length L. The

energetic part can be identified as ordinate intercept of that tangent with Y axis.

PP Rubber
does not depend on L.

Elastic force in rubber is entropy indu-

ced, while internal energy does not play

role in rubber elasticity.

P(T)

PP

P(T)

L=L1

L=L2

L=L3
( / )TP U L= ∂ ∂ ( )/ ,

( ( / )

T

T

T S L

P U L

− ∂ ∂

= ∂ ∂ ( )/ )
L

T P T+ ∂ ∂
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role in rubber elasticity.

This fact was first noticed in 1935 by

K. Meyer and C. Ferri.

Pressure in ideal gas is also entropy induced

that is why sometimes rubber is called "ideal

gas among solids".

Left:  P-T curve for a generic material,

Right: P-T curves for rubber.

Tangent allows to separate/identify 

entropic and energetic parts of force. 

After Muller, History of thermodynamics.

0°K



Experiment and theory - mutual coupling

It would be very difficult task to unambiguously decide, which physical

phenomenon actually is responsible for elastic properties of cauotchouc

gum without well coordinated theoretical works (development of

constitutive model of cauotchouc gum behavior) and experimental works

(execution of well planned program of experimental tests) in order to obtain(execution of well planned program of experimental tests) in order to obtain

decisive evidences.

Discussed example of cauotchouc gum and explanation of its specific

behavior makes an excellent example of operation of II Law of Thermody-

namics and expressed by it law of nature, which can be worded as follows,

CONTINUOS MUTUAL BATTLE OF ENERGY versus ENTROPY
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Spontaneously system always tries to take configuration with highest value

of entropy (spontaneous process results in preservation or increase of

entropy of the system).

Entropy can decrease, but only on the cost of execution of work over the

system (non-spontaneous process).



In the mainstream macroscopic thermodynamic theories of SMA materials usually

it is conjectured that representative volume element (RVE) – macroelement of

SMA material is in general a conglomerate of two phases austenitic and

martensitic (n=2). Usually it is accepted that each phase can be treated as linear

thermoelastic material. Accordingly the fundamental equation for SMA materials

Problem formulation – Gibbs free energy function for SMA's

thermoelastic material. Accordingly the fundamental equation for SMA materials

macroelement is frequently heuristically adopted in the following form,

0 0 0

1

0

1 1 2

2

2

0

0( , , ) ( ) [ ln( / )]

/ // ( )

p

pt coh

g T z u Ts z u Ts c T T T

T T

T

ρ ρρ

= − + − + ∆ −

− − ⋅⋅ − ⋅ +φ−Mσ σ ασ σ ασ σ ασ σ α

σσσσ

σ σ εσ σ εσ σ εσ σ ε

, / , ( ) ,pt ult ultz g gρ ρ σ= ≡ ∂ ∂ = ⋅ε κ κ σ σ κε κ κ σ σ κε κ κ σ σ κε κ κ σ σ κ

A. Ziółkowski 34

2 2 1 2 12 12 2 2 2

, / , ( ) ,

, ;

pt ult ult

coh st st st st

it it

z g g

z z z Ts u T s

ρ ρ σ= ≡ ∂ ∂ = ⋅

φ = φ + φ φ = φ − φ = ∆ − ∆

ε κ κ σ σ κε κ κ σ σ κε κ κ σ σ κε κ κ σ σ κ

Are the terms appearing in the Gibbs function mutually

consistent?
See: Raniecki B., Lexcellent C. (1998) Thermodynamics of isotropic pseudoelasticity in shape memory 

alloys, Eur.J.Mech., A/Solids.



Gibbs potential for SMA materials

Problem formulation – Gibbs free energy function for SMA's

0 0

1 1 0 0( , , ) ( ) ( ) [ ln( / )]

/ /

f

p

th el pt coh

g T z u Ts z T c T T T T

g

π

ρ ρ

= − − + ∆ −

− ⋅ − − ⋅ +φ

σσσσ

σ ε σ εσ ε σ εσ ε σ εσ ε σ ε/ /gρ ρ− ⋅ − − ⋅ +φσ ε σ εσ ε σ εσ ε σ εσ ε σ ε

free energy of RVE in two-phase state at zero micro-

scopic stresses – "chemical" free energy

term connected with heat capacity

term connected with thermal expansion

0

( )

[ ln( /

/

)]p

th th

el

T

T

c T T T

ρ

ρ

∆

∆

⋅

−

⋅ =σ ε εσ ε εσ ε εσ ε ε αααα

σ σσ σσ σσ σ

Are the terms appearing in the Gibbs function mutually consistent?

( ( ) 0)=
⌣

xσσσσ

0 0

1 1

0

0

0

0

( ) (

(

)

)f

h m

f

c e

u Ts T

G

z

T u T sπ

π

≡ ∆ − ∆ = −∆

− −
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complementary elastic energy

work on phase transition strains

potential of ultimate phase transition eigenstrains

coherency energy (necessary for assuring continuity 

of displacement field in RVE)

1
2

2 2 1 2

0

( / )

( ( ))

)

(

(

)

pt

ult

el

pt

st

it

coh

g

z h

g

z z z

T T T

ρ

ρ⋅

=

φ + φ

∆ = −

⋅

≡ ⋅

φ

M

σ εσ εσ εσ ε

σσσσ

σ σσ σσ σσ σ

ε κε κε κε κ

κκκκ

0 0 0 0 0 0

1 2 1 2 12 12 2 2 2, , ( ), )st st st

itu u u s s s T s u T s∆ = − ∆ = − φ = φ − ⋅ φ = (∆ − ⋅ ∆



Problem formulation – state parameters

SMA macroelement in prevailing time remains in a state of constrained

thermodynamic equilibrium.

The following thermodynamic variables were found useful in description of

SMA materials behavior:SMA materials behavior:

external state variables:

T, σσσσ, εεεε temperature, stress or strain,

internal state variables:

zα volume fractions of phases,

{h} set of hidden parameters; describing the evolution of

microstructure geometry
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microstructure geometry

κκκκα ultimate phase strains; depending on hidden variables κκκκα(h).

It is convenient to introduce denotations for some sets of variables:

T T

h h h hY { , , }, Y { , }, Y { , , }, Y { , }T Tσ σ ε ε≡ ≡ ≡ ≡h h h hσ σ ε εσ σ ε εσ σ ε εσ σ ε ε



Problem formulation – Gibbs free energy function for SMA's

( , , ) / pt

e

e th pt

g TT zρ ≡ − ∂ ∂ = + ∆ +
=

≡ − − 
L

ε σ Μ σ α εε σ Μ σ α εε σ Μ σ α εε σ Μ σ α ε
σ εσ εσ εσ ε

ε ε ε εε ε ε εε ε ε εε ε ε ε
σσσσ

Thermal equations of state for SMA material

0 0

1 0/ ln( / ) (1 ) /( , , ) ps g T s c Tz T z sT ρ

≡ − − 

≡ −∂ ∂ = + − − ∆ + ⋅

ε ε ε εε ε ε εε ε ε εε ε ε ε

α σα σα σα σσσσσ

1 2

0 2( , , /) ( ) (1 2 ) /f st

itg zT z zπ π ρ− ≡ ∂ ∂ = − φ − − φ + ⋅κ σκ σκ σκ σσσσσ

Thermodynamic driving force of phase transition

The information, which is not contained in Gibbs function and necessary

for correct description of SMA materials behavior is for example:
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for correct description of SMA materials behavior is for example:

- evolution of volume fraction of martensite, i.e. kinetics of martensitic

phase transition z = z(σ, T),

- evolution of phase transformation eigenstrains κκκκ = κκκκ(σ, T).

ln

-1 -1 -1

, ( ) 0.5( ), (! ) no summation over index

( ) or ( ) , inverse of ( or ),

 or , , ( )

ij klmn km kn lm

T T

kl lk klmn mnkl kl lm km klmn mnpr klpr

kl lm klmn mnpr ij ij ij ji

A A A A A A I

A B A B A B tr A B

δ δ δ δ δ α

δ

↔ ↔ + →

= = = =

→ ⋅ → →

1 I

A A A A

AB A B AB

Notation



Martensitic phase transition kinetics at microscale and appearing microstructures.

Problem formulation – Micromechanical experimental motivation

1 2

Phase transition taking

place in tensioned SMA

wire by macroscopic front

3 4
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Forward and reverse phase transition watched under optical microscope magnification

propagation

Kinetics of martensitic phase transition constitutes additional information to that 

contained in Gibbs function. Revealing the law of phase transition kinetics rules 

require separate, comprehensive research efforts.



Microscopic experimental observations deliver information that upon

thermomechanical loading of SMA materials complex, multiscale microstructures

of thermoelastic martensite appear.

Multiscale organization of martensitic phase in polycrystalline CuAl alloy:

Problem formulation – Micromechanical experimental motivation

(a) macroscopic sample in martensitic state;

(b) polycrystalline structure of martensitic phase with martensitic objects - plates,

confined by grain boundaries;

(c) spear-like martensitic compound composed of two habit plane martensitic

variants (HPV) - indicated by arrow;

(d) a configuration of parallel habit

plane martensitic variants (HPV's)

with visible striations revealing

their lower-level internal structure
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their lower-level internal structure

composed of two martensitic

lattice correspondence variants

(CV's).

Photographs after Warlimont and

Delaey (1974).



When phase transformation is temperature induced at zero assisting macroscopic

stress then so called self-accommodating martensitic meso-structures exhibiting

zero macroscopic phase transformation strain are formed. Such condition exists

e.g. during DSC calorimetric tests. Wide variety of self-accommodating

morphologies of thermoelastic martensite were already identified.

Problem formulation – Micromechanical motivation originating form 

microscopic  observations

Fukuda et. al. (1992) identified in R-

phase of Ti48.2Ni1.5at%Fe alloy V-shaped

morphology composed of two HPV's and

rhombic morphology composed of four

HPV's. Photo and schematic drawing

showing of groups of HPV's arranging

itself in higher order structure so self-

accommodating martensite.

Triangular morpholo-

gy composed of three 

HPV's Rhombic morphology 

composed of four HPV's, 

Four classes of self-accommodating

morphologies in NiTi alloy were identfiied

by Nishida et al. (2012)
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composed of four HPV's, 

Nishida M. et al. (2012), Self-accommodation of B19′ martensite in Ti–Ni shape memory alloys –

Part I. Morphological and crystallographic studies of the variant selection rule, Philos. Mag.



Basic assumptions of micromechanical problem of thermoelasticity

Problem formulation – Thermodynamic and micromechanical 

settings

Schematic illustration of micromechanical

model of SMA macroelement (RVE)

composed of n-linear thermoelastic

phases with eigenstrains.

Evolution of CuAlBe microstructure

under increasing tensile stress –

austenite martensite phase transition

microstructure in polycrystalline alloy.

n(x)

t
(n)(x)=

n(x)·

M(x),

(x)

phases with eigenstrains.

RVE

RVE

F
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B 
( V)

B (V)

( )

Photos courtesy Andre Eberhardt, origi-

nally published in Chemisky et al.(2011).Ziółkowski A. (2017) On consistent micromechanical estimation

of macroscopic elastic energy, coherence energy, Z.

F



So, studied below micro structural configurations of RVE we will regard as

microstructures constituting certain "frozen" configurations, which actually appear

in macroelement during advancement of phase transformations at various levels

of external thermomechanical loadings – values of stress and temperature (σσσσ,T).

Problem formulation – Thermodynamic and micromechanical 

settings

RVE

n(x)

t
(n)

(x)=

n(x)·

M(x),

(x)

RVE

RVE

F

A. Ziółkowski 42

B 
( V)

B (V)

Photos courtesy Andre Eberhardt, origi-

nally published in Chemisky et al.(2011).

F



Micromechanical problem of one component, multiphase 

thermoelastic system

( ) ( )[ ( ) ( ) ( )]T T= − − − ⇒
⌣ ⌣⌣⌣

x L x ε x xσ Γ ασ Γ ασ Γ ασ Γ α

It is reasonable to conjecture that at microscale,

locally SMA material behaves like non-homogeneous

linear thermoelastic material with eigenstrains n(x)

t
(n)(x)=

n(x)·

M(x),
0

1

0

( ) ( )[ ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( ), ( ) ( )

T T

T T −

= − − − ⇒

= + + −

⌣⌣

⌣ ⌣ ⌣ ⌣⌣ ⌣

x L x ε x x

ε x M x x x M x = L x

σ Γ ασ Γ ασ Γ ασ Γ α

σ Γ ασ Γ ασ Γ ασ Γ α

Upon solving a number of problems of micromechan-

B 
( V)

B (V)

( )

(x)

( ), ( ), ( )
⌣ ⌣⌣

x x u xσ εσ εσ εσ ε

At any time there must be satisfied equations of

thermomechanical static equilibrium

( )( ) 0, , ( ) ( ) ( )ndiv V V= ∈ = ∈∂
⌣ ⌣

x x t x σ x n x x σ σ σ σ
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Upon solving a number of problems of micromechan-

ics with relevant boundary conditions upon averaging

resulting local fields there can be determined values

of effective elastic properties of SMA RVE.

1
( ) ( )V

V
dx

V
=< > ≡ ∫
⌣ ⌣

B B x B x

Macroscopic quantities

calculated from relevant 

microscopic fields

( ), ( ), ( )x x u xσ εσ εσ εσ ε

See also Saad M. (2005) Elasticity Theory, Applications, and Numerics, Elsevier.

( ) ( )

( ) ( )

1 1
( ) ( ( , ) ( , )) ( , ) ( , )

2

( , ) ( ) ( , ) ( , ),

n n

V
V V

n f

t t t dS t dx t
V V

t t t t V

∂
= ⊗ + ⊗ = =< >

= + ∈∂

∫ ∫
⌣ ⌣ ⌣ ⌣

⌣ ⌣

t x x x t x x x

t x n x t x x

σ σ σσ σ σσ σ σσ σ σ

σσσσ



Micromechanical problem of one component, multiphase 

thermoelastic system

( ) ( ) ( ) ( )( ) ( ) ( ), ( ) ( ) ( )ex in ex in T= + = + + ∆⌣ ⌣ ⌣⌣ ⌣ ⌣
x x x x x xσ σ σ ε ε ε ασ σ σ ε ε ε ασ σ σ ε ε ε ασ σ σ ε ε ε α

n(x)

t
(n)

(x)=

n(x)·

M(x),

The boundary value problem of linear thermoelasticity can 

be divided into two auxiliary problems

(ex) (ex) (ex)

( ) (ex) (ex)

( ) ( ) ( ) , 0 ,

( ) ( ) ( ) ; ( )n

T div V

V here const

= + ∆ ∈

= ∈∂ = =

⌣⌣ ⌣ ⌣

⌣ ⌣

ε x M x σ x σ = x

t x σ x n x x σ σ

αααα

Problem I – external loading contribution

B 
( V)

B (V)

(x)

( ), ( ), ( )
⌣ ⌣⌣

x x u xσ εσ εσ εσ ε
Problem II – phase eigenstrains field contribution
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It is assumed that external fields satisfy Hill's postulate

( ) ( ) ( ) ( )ex ex ex ex E

V V V< ⋅ > = < > ⋅ < > = ⋅⌣ ⌣⌣ ⌣σ ε σ ε σ εσ ε σ ε σ εσ ε σ ε σ εσ ε σ ε σ ε

(in) (in) (in)

( ) ( ) (in) ( ) ( )

( ) ( ) ( ) ( ), 0, ,

( ) ( ) 0, ( ) ( ) 0n in in in

V

div V

V

= + ∈

= = ∈∂ ⇒ 〈 ⋅ 〉 =

⌣ ⌣⌣ ⌣ ⌣

⌣⌣ ⌣

ε x M x σ x x σ = x

t x x n x x x

ΓΓΓΓ

σ σ εσ σ εσ σ εσ σ ε
Macroscopic quantity calculated 

from relevant microscopic fields

( ), ( ), ( )x x u xσ εσ εσ εσ ε

1
( ) ( )V

V

dx
V

=< > ≡ ∫
⌣ ⌣

B B x B x

Ziółkowski A. (2016) On consistent micromechanical estimation of macroscopic elastic energy, Z.



Effective/macroscopic state variables

and effective material properties

The averaging procedure of local stress and/or strain fields leads to the

following connections between macroscopic measures of: elastic energy,

coherence energy and transformation strain and microscopic fields

( ) ( )0.5 0.5 ; / , ( )el ex ex elg gρ ρ= < ⋅ > = ⋅ = ∂ ∂ ∂ = 〈 〉
⌣⌣ ⌣ ⌣2

M M M xσ σ σ σ σ σ σ σσ σ σ σ σ σ σ σσ σ σ σ σ σ σ σσ σ σ σ σ σ σ σ

(in) (in)1
( ) [ ( ) ( ) ( )]pt

V

V

dx
V

=< > = +∫
⌣ ⌣⌣ ⌣

x x M x xε ε Γ σε ε Γ σε ε Γ σε ε Γ σ

(in) (in) (in)1 1
( ) [ ( )] ( ) ( ) ( ) ;

2 2

coh coh coh coh

V V

u dx dx u T s
V V

ρ ≡ ⋅ − = ⋅ φ ≡ + ⋅∫ ∫
⌣ ⌣⌣ ⌣ ⌣

x x x M x xΓ σ σ σΓ σ σ σΓ σ σ σΓ σ σ σ

( ) ( )

V0.5 0.5 ; / , ( )el ex ex el

Vg gρ ρ= < ⋅ > = ⋅ = ∂ ∂ ∂ = 〈 〉
⌣⌣ ⌣ ⌣2

M M M xσ σ σ σ σ σ σ σσ σ σ σ σ σ σ σσ σ σ σ σ σ σ σσ σ σ σ σ σ σ σ
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gel macroscopic elastic complementary energy

M denotes effective/macroscopic modulus of elastic compliance

σσσσ denotes macroscopic stress

φcoh macroscopic free coherence energy (φcoh=ucoh–T·scoh)

εεεε pt is macroscopic phase transformation strain



Micromechanical problem of one component, multiphase 

thermoelastic system composed of n phases

Schematic illustration of micro-

mechanical model of SMA

macroelement composed of n

generic phases each behaving

like linear thermoelastic mate-

Motivated by microscopic observations of

morphologies of thermoelastic martensites,

further study will be restricted to micro-

structures composed of n (α=1,..,n) classes

of linear thermoelastic phases. We shall like linear thermoelastic mate-

rial with eigenstrains.

(ex) (in) (ex) (in)

(ex) (ex) (in) (in)

( ) ( ) ( ), ( )= ( ) ( )

( ) ( ), ( ) ( ) ,

T

V

α α α α α α

α α α α α α α α

= + + + ∆

= = + ∈

⌣ ⌣ ⌣⌣ ⌣ ⌣

⌣ ⌣⌣ ⌣

x x x x x x

x M x x M x Γ x

σ σ σ ε ε ε ασ σ σ ε ε ε ασ σ σ ε ε ε ασ σ σ ε ε ε α

ε σ ε σε σ ε σε σ ε σε σ ε σ

of linear thermoelastic phases. We shall

also conjecture that these phases are

homogeneous and thus obey the following

constitutive relations.

Piece wise uniform elastic properties and phase eigenstrains
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( ) , ( ) ( )f

α α α α α= = +
⌣ ⌣ ⌣

x x xΜ Μ Γ Γ ΓΜ Μ Γ Γ ΓΜ Μ Γ Γ ΓΜ Μ Γ Γ Γ

1 1

, , 1,.., ,

( ) 0, , ( ) .V

V n

V
α

α

α α

α∈ =

≡ ∈ =< >
⌣ ⌣

x

x x Γ xΓ ΓΓ ΓΓ ΓΓ Γ

n(x)

t
(n)

(x)=

n(x)·

B 
( V)

B (V)

M(x),

(x)

( ) ( ) , ( ) ( ) ,

( ) , ( )

ex ex

V V V V

V Vα αα α

= 〈 〉 = 〈 〉 = 〈 〉 = 〈 〉

= 〈 〉 = 〈 〉

⌣ ⌣⌣ ⌣

⌣⌣
x x x x

x x

σ σ σ ε ε εσ σ σ ε ε εσ σ σ ε ε εσ σ σ ε ε ε

σ σ ε εσ σ ε εσ σ ε εσ σ ε ε
V

( ) (1 / ) ( ) ,

( ) ( ) ; ( ) 0

V
V

f f

V dx
α

α

α

α α α

α α α α

=< > ≡

≡ − < > =

∫
⌣ ⌣

⌣ ⌣ ⌣

B B x B x

B x B x B B x

Piece wise uniform elastic properties and phase eigenstrains

Macroscopic total and partial (phase)  stresses and strains

no fluctuating part of 

phase eigenstrains



Micromechanical problem of one component, multiphase 

thermoelastic system composed of n phases

The domain of SMA material RVE divided into n eigenphases still

delivers a versatile and comprehensive general scheme.

It is very well suited for studying/analyzing multiscale structures

appearing as a result of formation of martensitic phase.appearing as a result of formation of martensitic phase.

Depending on the starting scale on which basic conjectures are made the

objects to be distinguished as generic phase can be single

crystallographic variants of martensitic phase (CV), habit plane variants

(HPV's) or, e.g., still higher order structures like self-accommodating

martensitic compounds, in the scale of observation where they can be

meaningfully distinguished—cf., e.g., (Nishida et al., 2012).
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meaningfully distinguished—cf., e.g., (Nishida et al., 2012).

Precise assessments of thermo-mechanical properties for various

microstructures usually will require rather involved numerical–

experimental studies to reach useful results.



Expected results of the present research work

Upon execution of the present study we expect three main results:

1. Validation of the posed heuristically explicit form of Gibbs free energy

function for SMA materials (hints for its possible modification/

augmentation).augmentation).

2. Effective (macroscopic) properties and "effective" variables

characterizing state of SMA material. Principally we are interested in

macroscopic stiffness tensor E (4th order tensor in 3 dimensional

space), phase transformation strain εεεε°ph (second order tensor in 3

dimensional space), coherency energy φ (scalar).
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3. A new efficient, homogenization method to attain mentioned above

targets.

Ziółkowski A. (2016) On consistent micromechanical estimation of macroscopic elastic energy, Z.



Linear elasticity

All that started with announcement by Robert Hooke of his

law of elastic materials behavior

ceiiinosssttuv

relating force with deformation or (stress with strain).

Robert Hooke decoded his anagram two years later (1678)

ut tensio sic vis
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or in the form that we know it today, it is

J. Rychlewski (1983) “CEIIINOSSSTTUV”. Mathematical structure of elastic bodies [in

Russian], Technical Report 217, Inst. Mech. Probl. USSR Acad. Sci., Moskva.

Isaac Asimov, Asimov's Biographical Encyclopedia of Science and Technology, The lives and Achievements of 1510 

Great Scientists from Ancient Times to the Present Chronologically Arranged, 2-nd Rev. Ed., Doubleday, Toronto, 1982.

= Lσ εσ εσ εσ ε



Spectral decomposition of elastic stiffness/compliance tensor

A motivating question arises execution of how many and

what kind of experimental tests is necessary and

effective to uniquely determine elastic properties of the

most general elastic, anisotropic material, or speaking

otherwise all components of elastic stiffness

System

otherwise all components of elastic stiffness

(compliance) tensor?

Enlightening to the above question are the results

delivered by Rychlewski in his paper from 1984, where

he proved that any symmetric fourth order tensor can be

spectrally decomposed into 6 mutually orthogonal

subspaces. Each subspace is characterized by stiffness

λ ωωωω + Loading
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(Kelvin) modulus λK – scalar, and elastic eigenstate ωωωωK -

symmetric second order tensor (K=1,..,6). Each elastic

eigenstate is characterized by 2 so called stiffness

distributors ℵα (α=1,..,12).

+ Loading

Rychlewski (1984) J. Elastic energy decompositions and limit criteria [in Russian], Uspekhi Mekh., 7, 3.

Rychlewski J. (1985) Unconventional approach to linear elasticity, Arch. Mech.



Spectral decomposition of elastic stiffness tensor

In summary set of 21 components/parameters

determining any symmetric stiffness tensor can be

divided into 3 classes

6 + 12 + 3 =21

System

6 + 12 + 3 =21

1. The first group consists of 6 Kelvin moduli λI,.., λVI

2. The second group consists of 12 stiffness distributors 

ℵ1, Z , ℵ12, generators of 6 elastic eigenstates ωωωωI,.., ω ω ω ω VI

3. The third group consists of 3 Euler angles φI, φ2, φ3

+ Loading

A. Ziółkowski 51

The 18 parameters from the first and the second group 

are invariants of elastic stiffness tensor.

+ Loading

See also Kowalczyk–Gajewska K., Ostrowska –Maciejewska J. (2009) Review on spectral 

decomposition of Hooke’s tensor for all symmetry groups of linear elastic material, Arch. Mech.

Pytanie: When 21 components of elastic stiffness tensor determined in an 

experimental testing program, with fixed reference frame, for two otherwise 

unknown specimen shows to have the same values. 

Does that mean the specimen were made of the same material?



Representation of elastic stiffness tensor

It is worth noting that the tensor of elastic properties fourth order in three

dimensional space can be, in strict mathematical sense, equivalently

treated/represented as second order tensor in six dimensional Euclidean

space

; , , , 1,...,3, , 1,...,6L L i j k l K L= ⊗ ⊗ ⊗ = ⊗ = =L e e e e a a

We feel intuitively what is the direction of a vector - first order tensor.

But how to "understand" the direction of higher order tensors?

Voigt notation Kelvin notation 

11 1; 22 2; 33 3; 2, 3, 3, 2 4; 1, 3, 3,1 5; 1, 2, 2,1 6

; , , , 1,...,3, , 1,...,6ijkl i j k l KL K LL L i j k l K L

→ → → → → →

= ⊗ ⊗ ⊗ = ⊗ = =L e e e e a a

1111 1122 1133 1123 1113 1112L L L L L L

L L L L L L

 
 

11 12 13 14 15 162 2 2

2 2 2

L L L L L L

L L L L L L

 
 
 
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2 2

, , , , , ,

KL ijkl

i j k l i j k l

L L≠∑ ∑ 2 2

, , , , , ,

KL ijkl

i j k l i j k l

L L=∑ ∑

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

ijkl

L L L L L L

L L L L L L
L

L L L L L L

L L L L L L

L L L L L L

 
 
 

= 



 






21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

KL

L L L L L L

L L L L L LL
L L L L L L

L L L L L L

L L L L L L

 
 
 
 =
 
 
 
  



Effective properties – Bounding estimates

Bounding estimates of thermoelastic properties: Voigt iso-strain (1889),

Reuss iso-stress (1929), Voigt-Reuss-Hill (VRH), VRH=½[Vo+Re]

Macroelement

effective properties
MRe=Σ fi�Mi EV=Σ fi�Ei;  Li=(Mi)

-1

EMin =ERe ≤ Eef ≤EV = EMaxMMax=MRe≥ Mef ≥MV= MMin

MRe=Σ fi�Mi EV=Σ fi�Ei;  Li=(Mi)
-1
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σσσσ = Eef εεεε

Please note that actually the same (single) material can exhibit

Reuss or Voigt properties, depending on loading orientation.



Self-equilibrated Eigenstrains Influence Moduli (SEIM) method

Considerable number of homogenization methods/schemes have been already

elaborated e.g. Mori-Tanaka or self-consistent. Excellent survey of these methods

can be found in Dvorak book (2013) or older book by Nemat-Nasser and Hori

(1993).

Here a new homogenization method is proposed based on so called self-

equilibrated eigenstrains influence moduli (SEIM).

The advantage of this method is that it is well suited for interactive use in

conjunction with experimental and/or numerical tests.

Let us return to our main boundary value problem
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Ziółkowski A. (2016) On consistent micromechanical estimation of macroscopic elastic energy Z.

Nemat, N.S., Hori, M. (1993) Micromechanics: Overall Properties of Heterogeneous Materials,  North Holland, London.

Dvorak, G.J. (2013) Micromechanics of Composite Materials. Springer, New York (2013)
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T

V

α α α α α α
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= ∈ = ∈∂
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= = + ∈

⌣ ⌣

⌣ ⌣ ⌣⌣ ⌣ ⌣

⌣ ⌣⌣ ⌣
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 σ σ σ σ

σ σ σ ε ε ε ασ σ σ ε ε ε ασ σ σ ε ε ε ασ σ σ ε ε ε α

ε σ ε σε σ ε σε σ ε σε σ ε σ



Self-equilibrated Eigenstrains Influence Moduli (SEIM) method

Solution of linear elasticity problem of mechanical equilibrium with piecewise

uniform fields of elastic properties and eigenstrains can be expressed with the aid

of self-equilibrated eigenstrains influence moduli (SEIM). The formal solution of

boundary value problems I, II can be expressed with the aid of SEIM tensor fields

in the following form

The phase volume averages of respective local fields can be expressed with self-

equilibrated eigenstrains influence moduli

(in) (in) ( ) ( )( ) , ( ) ( )
n

ex ex∗ ∗=< > = =< > = + ⋅∑⌣ ⌣
x x Mσ σ ℑ Γ σ σ σ ℑ σσ σ ℑ Γ σ σ σ ℑ σσ σ ℑ Γ σ σ σ ℑ σσ σ ℑ Γ σ σ σ ℑ σ

(in) ( )

1 1

( ) ( ) ; ( ( ) 0), ( ) ( ) ( )
n n

f ex

α αβ β α α αβ β
β β= =

= ≡ = + ⋅∑ ∑
⌣ ⌣⌣⌣ ⌣

x x x x x Mσ ℑ Γ Γ σ σ ℑ σσ ℑ Γ Γ σ σ ℑ σσ ℑ Γ Γ σ σ ℑ σσ ℑ Γ Γ σ σ ℑ σ

1
( ) ( )V

V
V

dx
α

αα

αβ αβ αβ
∗ =< > = ∫

⌣ ⌣
x xℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑ
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(in) (in) ( ) ( )

1

( ) , ( ) ( )ex ex

V Vα αα α αβ β α α αβ β
β

∗ ∗

=

=< > = =< > = + ⋅∑⌣ ⌣
x x Mσ σ ℑ Γ σ σ σ ℑ σσ σ ℑ Γ σ σ σ ℑ σσ σ ℑ Γ σ σ σ ℑ σσ σ ℑ Γ σ σ σ ℑ σ

Note: While the above formulas resemble Hooke's law, actually self-equilibrated

eigenstrains influence moduli are tensors valued functions/functionals of various

arguments e.g. phase's volume fractions zα (scalars), phase's elastic moduli Eα

(4th order tensors) but also set of variables of geometrical character describing

actual RVE microstructure {h}, but not ΓΓΓΓα.



Structure and properties

of Self-equilibrated Eigenstrains Influence Moduli

Self-equilibrated eigenstrains influence moduli ℑℑℑℑ*
αβ, in general, are

diagonally non-symmetric fourth-order tensors.

The non-symmetry of ℑℑℑℑ*
αβ finds its roots in possible non-symmetry of

microstructural patterns.

By taking into account that:

a) ℑℑℑℑ*
αβ must vanish when all ΓΓΓΓβ are compatible

b) by invoking Betti's theorem it can be shown

that ℑℑℑℑ*
αβ must fulfill the following relations (αβ =1,2,...,n),

1 1

0, ,  (! ,! ) 0
n n

z zαβ α αβ β βα αβ
β β

α β
Τ Τ

∗ ∗ ∗ ∗

= =

= = ⇒ =∑ ∑ℑ  ℑ  ℑ ℑℑ  ℑ  ℑ ℑℑ  ℑ  ℑ ℑℑ  ℑ  ℑ ℑ

(in)

1

( ( ) ( ) 0)
n

α αβ β
β =

= =∑
⌣⌣

x xσ ℑ Γσ ℑ Γσ ℑ Γσ ℑ Γ

constβ = =Γ ΓΓ ΓΓ ΓΓ ΓFor example, when
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1 1β β= =

The ℑℑℑℑ*
αβ moduli are not independent of each other.

As diagonal moduli ℑℑℑℑ*
αα must obey relations ℑℑℑℑ*

αα=(ℑℑℑℑ*
αα)T (!α), they must

be diagonally symmetric, positive semi-definite, fourth-order tensors

(ℑℑℑℑαα)ijmn=(ℑℑℑℑαα)mnij



Betti reciprocity theorem

for (linear) elastic materials with eigenstrains

Let us investigate two mechanical equilibrium states denoted with subscripts

"I" and "II" that are generated in linear elastic body, by two different sets of all-

round mechanical traction loadings applied at the surface of the body and two

known eigenstrain fields existing in the volume of body.

( ) ( ) ( ) ( )( ), ( ), , ( ), ( ),I II I IIV V∈∂ ∈
⌣ ⌣⌣ ⌣

t x t x x x x xΓ ΓΓ ΓΓ ΓΓ Γ

Sets of fields of stresses, strains and displacements constituting solution of

mechanical equilibrium problem of linear elasticity for two sets of prescribed

boundary tractions and eigenstrains fields are denoted by

( ) ( ) ( ) ( )( ), ( ), , ( ), ( ),I II I IIV V∈∂ ∈
⌣ ⌣⌣ ⌣

t x t x x x x xΓ ΓΓ ΓΓ ΓΓ Γ

( ) ( ) ( ) ( ) ( ) ( ){ ( ), ( ), ( )}, { ( ), ( ), ( )}I I I II II II⌣ ⌣ ⌣ ⌣⌣ ⌣
x x u x x x u xσ ε σ εσ ε σ εσ ε σ εσ ε σ ε

The stresses fields must satisfy mechanical equilibrium equations and

A. Ziółkowski 57Ziółkowski A. (2015) Pseudoelasticity of Shape Memory Alloys, Theory and Experimental Studies.

The stresses fields must satisfy mechanical equilibrium equations and

respective constitutive relations of linear elasticity in all points of the volume

and on the surface of body and they must fulfill boundary conditions

( ) ( )

, ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) 0, ( ) 0,

( ) ( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )

I II

ij j ij j

I I II II

I I I II II II

V

V

= = ∈

= ⋅ = ⋅ ∈ ∂

= + = +M M

⌣ ⌣

⌣ ⌣⌣ ⌣

⌣ ⌣ ⌣ ⌣⌣ ⌣⌣ ⌣

x x x

t x n x x t x n x x x

x x x x x x x x

σ σσ σσ σσ σ

σ σσ σσ σσ σ

ε σ Γ ε σ Γε σ Γ ε σ Γε σ Γ ε σ Γε σ Γ ε σ Γ



Betti reciprocity theorem

for (linear) elastic materials with eigenstrains

Taking advantage of the diagonal symmetry of elastic properties tensor it

can be obtained

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) [ ( ) ( )] ( ) [ ( ) ( )];

( ) ( )

I II II II I I

I II II I

⋅ − = ⋅ −

=M M

⌣ ⌣⌣ ⌣⌣ ⌣

⌣ ⌣⌣ ⌣ ⌣ ⌣

x x x x x x

x x

σ ε Γ σ ε Γσ ε Γ σ ε Γσ ε Γ σ ε Γσ ε Γ σ ε Γ

σ σ σ σσ σ σ σσ σ σ σσ σ σ σ

The Betti's reciprocal theorem relation with eigenstrains is obtained upon

integrating above relation over the whole volume of the body, using

Green-Gauss theorem and static admissibility of stress fields

( ) ( ) ( ) ( )( ) ( )I II II I=M M
⌣ ⌣ ⌣ ⌣

x xσ σ σ σσ σ σ σσ σ σ σσ σ σ σ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )I II I II II I II I

V V V V

ds dV ds dV
∂ ∂

⋅ − ⋅ = ⋅ − ⋅∫ ∫ ∫ ∫
⌣ ⌣⌣ ⌣⌣ ⌣⌣ ⌣


 
 
 
t u t uσ Γ σ Γσ Γ σ Γσ Γ σ Γσ Γ σ Γ
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Classical formulations of Betti theorem are easily recovered upon

substituting
( ) ( ) ( ) ( )( ) ( ) 0 / 0II I I IIand or= = = =
⌣ ⌣ ⌣ ⌣

x x t tΓ ΓΓ ΓΓ ΓΓ Γ
( ) ( ) ( ) ( )( ) ( )I II II I

V V

ds ds
∂ ∂

⋅ = ⋅∫ ∫
⌣ ⌣⌣ ⌣

 
t u t u

See also, Capecchi D. (2012) History of Virtual Work Laws, A History of Mechanics Prospective, Birkhauser.



Betti reciprocity theorem

for (linear) elastic materials with eigenstrains

Betti theorem allows to reveal important property of self-equilibrated

eigenstrains influence moduli. Let us consider pairs of micro-eigenstrains

fields (α and β are fixed):

( ) ,     ( )

III

I II
VV β βα α

 ∈ ∈ 
= = 

⌣ ⌣ xx
x x

ΓΓΓΓΓΓΓΓ
Γ ΓΓ ΓΓ ΓΓ Γ

Micro-eigenstrain fields I and II induces pair of self-equilibrated in the

investigated body (RVE) stress fields t I = 0, t II = 0:

( ) ,     ( )
0       0         

I IIV

V V

β βα α

α β

 ∈ 
= = 

∉ ∉ 

⌣ ⌣x
x x

x x

ΓΓΓΓ
Γ ΓΓ ΓΓ ΓΓ Γ

(in)

(in)

( ) ( ) ( 1 )
; 0, 0

( ) ( ) ( 1 )

I I

I II

II II

V n

V n

γ γα α γ
γ η

η ηβ β η

γ
η

= ∈ =
= =

= ∈ =

⌣⌣
…

⌣⌣
…

x x x
t t

x x x

σ ℑ Γσ ℑ Γσ ℑ Γσ ℑ Γ
σ ℑ Γσ ℑ Γσ ℑ Γσ ℑ Γ

Upon substituting the above and t I = 0, t II = 0 into Betti reciprocity
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Upon substituting the above and t I = 0, t II = 0 into Betti reciprocity

theorem and averaging of phases domains one obtains the following

properties of SEIM modules

T

T

[ ] 0I II II I I IIV V z z

z z

α α αβ β β β βα α α α αβ β βα β

α αβ β βα

∗ ∗ ∗ ∗

∗ ∗

⋅ = ⋅ ⇒ ⋅ − = ⇒

⇒ =

Γ ℑ Γ Γ ℑ Γ Γ ℑ ℑ ΓΓ ℑ Γ Γ ℑ Γ Γ ℑ ℑ ΓΓ ℑ Γ Γ ℑ Γ Γ ℑ ℑ ΓΓ ℑ Γ Γ ℑ Γ Γ ℑ ℑ Γ

ℑ ℑℑ ℑℑ ℑℑ ℑ 1
( ( ) ( ) )V

V
dx

Vα
α

αβ αβ αβ
α

∗ =< > = ∫
⌣ ⌣

x xℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑ



Structure and properties

of Self-equilibrated Eigenstrains Influence Moduli

The ℑℑℑℑ*
αβ moduli must satisfy Betti's relations zαℑℑℑℑ*

αβ = zβ(ℑℑℑℑ*
βα)T , and must

become zero (ℑℑℑℑ*
αβ=0) for zβ=0 and zα≠0 (α≠β).

In order to identically fulfill these constraints, the considerations are

restricted to a class of microstructure geometries for which the followingrestricted to a class of microstructure geometries for which the following

relations hold
( ) ( ) , (! )

T
S A zαβ αβ αβ αβ β αβ αβ βαβ∗= + = ⇒ =ℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑ ℑℑℑℑ

Thus, the SEIM moduli matrix is adopted to be the simple sum of

symmetric and anti-symmetric matrix, where

( ) ( ) ( ) ( )1 1
2 2
( ) , ( )S S A A

αβ αβ βα βα αβ αβ βα βα≡ + = ≡ − = −ℑ ℑ ℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑ ℑ ℑ
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It may readily be shown that all elements ℑℑℑℑ (S)
αβ of symmetric matrix are

diagonally symmetric fourth-order tensors (ℑℑℑℑ(S)
αβ)ijmn= (ℑℑℑℑ(S)

αβ)mnij, whereas

all elements ℑℑℑℑ (A)
αβ of antisymmetric matrix are diagonally skew-symmetric

tensors (ℑℑℑℑ(A)
αβ)ijmn= –(ℑℑℑℑ(A)

αβ)mnij

( ) ( ) ( ) ( ), ,
T

S S A A forαβ αβ αβ αβ α β
Τ

= = − ≠ℑ ℑℑ ℑℑ ℑℑ ℑ ℑ ℑℑ ℑℑ ℑℑ ℑ



The SEIM moduli matrix have the shown graphically structure
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of Self-equilibrated Eigenstrains Influence Moduli

( ) ( ) ( )

1 11 1 1... ... ... 0 ... ... ...

... ... ... ... ... ... ... ... ... ...

S S A

n n n nz z z 
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 

ℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑ 
 
 

( ) ( )

( ) ( )

( ) ( )

1

... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... 0 ...

... .... ... ... ... ... ( ) 0 ...

... ... ...

S A

S A

S S

n n n nn

z z

z z

z z

αβ β αβ β αβ

β αβ β αβ

∗
 
 = +
 

− 
  

ℑℑℑℑ ℑ ℑℑ ℑℑ ℑℑ ℑ

ℑ ℑℑ ℑℑ ℑℑ ℑ

ℑ ℑℑ ℑℑ ℑℑ ℑ ( )

1( ) ... ... ... 0A

n nz

 
 
 
 
 − ℑℑℑℑ

( ) ( ) ( ), 0 ,   (! 1,2.., )
n n n

S A Az z z nα∗ = − = = − =∑ ∑ ∑ℑ  ℑ ℑ ℑℑ  ℑ ℑ ℑℑ  ℑ ℑ ℑℑ  ℑ ℑ ℑ

There exists (2�n-1) independent relations connecting n�n moduli ℑℑℑℑ*
αβ,
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( ) ( ) ( )

1, 1, 1,

, 0 ,   (! 1,2.., )S A Az z z nαα β αβ β αβ β βα
β β α β β α β β α

α∗

= ≠ = ≠ = ≠

= − = = − =∑ ∑ ∑ℑ  ℑ ℑ ℑℑ  ℑ ℑ ℑℑ  ℑ ℑ ℑℑ  ℑ ℑ ℑ

Thus in the most general case, mathematically precise description of a

state of macroelement (RVE) consisting of n phases requires explicit

knowledge of n�n moduli ℑℑℑℑ*
αβ expressed in terms of n(n-1)/2 symmetric

tensors ℑℑℑℑ(S)
αβ and (n-2)(n-1)/2 skew-symmetric tensors ℑℑℑℑ(A)

αβ of the fourth

order.



The general connection between ℑℑℑℑ*
αβ and pair of tensors {ℑℑℑℑ (S)

αβ, ℑℑℑℑ (A)
αβ} in

compact mathematical form can be written as follows

Structure and properties

of Self-equilibrated Eigenstrains Influence Moduli

( ) ( ) ( )

1

(1 ) ( ) (1 )
n

S A Sz zαβ αβ β αβ αβ αβ γα γ αγ
γ

∗

=

= − δ + − δ − δ∑ℑ ℑ ℑ ℑℑ ℑ ℑ ℑℑ ℑ ℑ ℑℑ ℑ ℑ ℑ

The tensors ℑℑℑℑ (S)
αβ, ℑℑℑℑ (A)

αβ will be collectively referred to as the ingredients

of self-equilibrated eigenstrains influence moduli.

In general, ℑℑℑℑ (S)
αβ do depend on phase composition zα, elastic moduli of

individual phases Mα and on a number of descriptors of the

microstructure geometry {h}, but they are not influenced by ΓΓΓΓβ.

1γ =
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Note:

It is interesting to note that two phase material requires knowledge of only

one diagonally symmetric tensor ℑℑℑℑ(S)
12 to determine four moduli ℑℑℑℑ*

αβ .

The three phase (n=3) material requires knowledge of three diagonally

symmetric tensor ℑℑℑℑ(S)
12, ℑℑℑℑ(S)

13, ℑℑℑℑ(S)
23 and one diagonally skew-symmetric

tensor ℑℑℑℑ(A)
12 to determine nine moduli ℑℑℑℑ*

αβ .



It will be prove convenient to introduce the following family of scalar

valued functions fαβ (X, Y), (α≠β) of two tensorial arguments, second-

order symmetric tensors X,Y, is defined as follows

Two families of useful functions based on SEIM moduli

( , ) 0.5 [( ) ( ) ( )],(S) (A) (A)fαβ αβ αβ αβ≡ − ⋅ − − ⋅ − ⋅

= =

X Y X Y X Y X Y Y Xℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑ

It will also be useful to introduce an array of second-order tensor valued

functions ℜℜℜℜα(χχχχγ) of n second-order symmetric tensors χχχχγ will (α,γ=1,2,K,n)

                     ( , ) ( , ), ( , ) 0.f f fαβ βα αβ= =X Y Y X X X

1 1, 1

( ) , ( ) [ ( ) ], ( 0)
n n n

(S) (A)z zα γ αβ β α γ β αβ β α αβ β α α
β β β α α

∗

= = ≠ =

≡ = − + =∑ ∑ ∑χ ℑ χ χ ℑ χ χ ℑ χχ ℑ χ χ ℑ χ χ ℑ χχ ℑ χ χ ℑ χ χ ℑ χχ ℑ χ χ ℑ χ χ ℑ χℜ ℜ ℜℜ ℜ ℜℜ ℜ ℜℜ ℜ ℜ

In general case, both ℜℜℜℜα and fαβ besides dependence on phase composi-
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In general case, both ℜℜℜℜα and fαβ besides dependence on phase composi-

tion zγ (γ=1,2,Z,n) will depend parametrically on variables {h}

characterizing the microstructure of SMA macroelement.

The following properties were used to obtain convenient mathematically

form of functions ℜℜℜℜα

, 1, , 1, , 1,

) 0,  0.5 ) 0
n n n

(S) (A) (A)z z z z z zα β αβ β α α β αβ β α β αβ β α
α β α β α β α β α β α β= ≠ = ≠ = ≠

( − = = ( − =∑ ∑ ∑ℑ χ χ ℑ χ ℑ χ χℑ χ χ ℑ χ ℑ χ χℑ χ χ ℑ χ ℑ χ χℑ χ χ ℑ χ ℑ χ χ



When the set of tensors {ℑℑℑℑ (S)
αβ, ℑℑℑℑ (A)

αβ} (α,β = 1,…,n) is known, has been

determined by execution of some procedure theoretical, numerical or

experimental, then the effective properties and/or state variables of RVE

can be determined with the aid of the following formulas,

Macroscopic state variables and properties

given in terms of SEIM moduli

The effective elastic compliance M, macroscopic (effective) elastic strain εεεε,

macroscopic phase transition strain εεεε pt can be expressed as follows,

(ex) (in)

(ex) (ex) (in) (in)

( ), ( ), ( )

, , (! )

α α γ α α γ α α γ γ

α α α α α α α α α α α α

= + = = + +

= = + = + ∆ +

M Γ M Γ

M M M

σ σ σ σ σ σ σσ σ σ σ σ σ σσ σ σ σ σ σ σσ σ σ σ σ σ σ

ε σ ε σ Γ ε σ α Τ Γε σ ε σ Γ ε σ α Τ Γε σ ε σ Γ ε σ α Τ Γε σ ε σ Γ ε σ α Τ Γ

ℜ ℜ ℜℜ ℜ ℜℜ ℜ ℜℜ ℜ ℜ

, 1, 1

; ( ) , ,
n n

Re Re Re Re Tz z zα β αβ α α αβ α β
α β β α α= ≠ =

= − ≡ → = ∆ ≡ −∑ ∑M M M M M M M M M M
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, 1, 1

0.5[ ( )] , (! ,! ),(S) (A) (A) T

α β β α α

αβ αβ αβ αβ α αβ β β αβ α βα αβ αβα β

= ≠ =

= ∆ ∆ − − = =

∑ ∑

M M M M M M M M M Mℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑ

(ex)

1 1 1

( ) , ( ),
n n n

Re ptz z zα α α γ α α α γ α α
α α α= = =

= + = = + =∑ ∑ ∑M M M M Mε σ σ σ ε Γ Γ Γ Γε σ σ σ ε Γ Γ Γ Γε σ σ σ ε Γ Γ Γ Γε σ σ σ ε Γ Γ Γ Γℜ ℜℜ ℜℜ ℜℜ ℜ

MRe denotes Reuss upper bound of effective elastic compliance, σσσσ deno-

tes macroscopic stress, σσσσα denote macroscopic phase stresses.



The macroscopic complementary elastic energy gel of the solid phase

conglomerate can be expressed in the form

Macroscopic state variables and properties

given in terms of SEIM moduli

(0)

1 , 1,

0.5 ,
n n

el el elg z g z z gα α α β αβ
α α β α β= = ≠

= −∑ ∑
1 , 1,

(0) 0.5 ,  ( , )el elg g

α α β α β

α α αβ αβ αβ α βρ ρ
= = ≠

≡ ⋅ ≡ ⋅ =M M M Mσ σ σ σ σ σσ σ σ σ σ σσ σ σ σ σ σσ σ σ σ σ σf

The macroscopic coherence internal energy ucoh can be expressed in the

form

(in)

, 1 1

0.5 0 ( 0.5 ( ) 0)
n n

coh coh

n
coh coh coh

u z u zα α αβ β α α α
α β α

ρ ρ

ρ ρ ρ

∗

= =

(0) (0)

= − ⋅ ≥ = − ⋅ ≥

= =

∑ ∑

∑

Γ ℑ  Γ σ ΓΓ ℑ  Γ σ ΓΓ ℑ  Γ σ ΓΓ ℑ  Γ σ Γ

Γ ΓΓ ΓΓ ΓΓ Γ
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( ( ) ( )f

α α α= +
⌣ ⌣

x xΓ Γ ΓΓ Γ ΓΓ Γ ΓΓ Γ Γ
0

, , ( ) ; 1,.., )VV n
αα α α α

=

∈ =< > =
⌣

x Γ xΓΓΓΓ

, 1,

0.5 , ( , )
n

coh coh cohu z z u uα β αβ αβ αβ α β
α β α β

ρ ρ ρ(0) (0)

= ≠

= =∑ Γ ΓΓ ΓΓ ΓΓ Γf

The above formulas are valid for piecewise uniform phase transformation

eigenstrains ΓΓΓΓα



The studies presented here are focused coherence internal energy ucoh .

They do not and cannot deliver information on coherence entropy scoh.

Experimental data exists (not to be discussed here) that influence of

coherence entropy cannot be neglected in modeling SMA materials

Heuristic conjecture on coherence entropy

coherence entropy cannot be neglected in modeling SMA materials

behavior.

A reasonable heuristic conjecture is to accept a general explicit

expression for coherence entropy in the form analogous to expression for

coherence internal energy, i.e.

1 , 1,

0.5
n n

coh coh cohs z s z z sα α α β αβ
α α β α β

ρ ρ ρ
= = ≠

= +∑ ∑
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In the sequel, we shall adopt conjecture that coherence entropy can be

expressed with still more simple formula (sαβ
coh = 0)

By definition the free coherence energy is equal to

1

n
coh cohs z sα α

α

ρ ρ
=

= ∑
coh coh cohu T sρ ρ ρφ ≡ −



Special cases

of SEIM method consistent estimations

of SMA materials thermostatic properties 

and state variables
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Case of anisotropic elastic components (phases)

forming anisotropic two-phase aggregate (n=2) 

In the case of two phase materials (n=2) all the SEIM tensors ℑℑℑℑ*
αβ can be

expressed with single symmetric tensor ℑℑℑℑ(S)
12 as in such case ℑℑℑℑ(A)

12 must be

equal to zero ( ) ( )

11 12 12 22 21 12, (1 )S Sz z∗ ∗ ∗ ∗= − = − = − = − −ℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑℑ ℑ ℑ ℑ ℑ ℑ

The internal and external phase stresses reduce to

( )

1 2 12 1 2 1 2

( )

1 2 1 2 12 1

(1 ) ( ) ( ), (1 )

(1 ) (1 ) ( ) ( )

Re S Re

pt S

z z z z

z z z z

= − − − − = − +

= − + − − −
2

M M M M M M M M M

M M

ℑℑℑℑ

ε Γ Γ ℑ Γ − Γε Γ Γ ℑ Γ − Γε Γ Γ ℑ Γ − Γε Γ Γ ℑ Γ − Γ

The internal and external phase stresses reduce to

(ex) ( ) (ex) ( )

1 12 2 1 2 12 2 1

(in) ( ) (in) ( )

1 12 2 1 2 12 2 1

[ ( )] , [ (1 ) ( )] ,

( ), (1 ) ( )

S S

S S

z z

z z

= + = − −

= = − −

I IM M M Mσ ℑ − σ σ ℑ − σσ ℑ − σ σ ℑ − σσ ℑ − σ σ ℑ − σσ ℑ − σ σ ℑ − σ

σ ℑ Γ − Γ σ ℑ Γ − Γσ ℑ Γ − Γ σ ℑ Γ − Γσ ℑ Γ − Γ σ ℑ Γ − Γσ ℑ Γ − Γ σ ℑ Γ − Γ

The effective elastic compliances and macroscopic phase strain become

The nonzero coefficients of elastic complementary energy and coherence internal
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( )1 1
12 21 1 2 12 1 22 2

( ) ( )1
12 21 1 12 1 12 12 122

  ( ) ( ) / , ( )

( ) ( ) / , ( )

el el S el

coh coh S coh S

g g g

u u u

ρ ρ

ρ ρ(0) (0)

= = ⋅ − − = ⋅

= = ⋅ = ∆ ⋅ ∆
2 2

M M M M Mσ ℑ σ σ σσ ℑ σ σ σσ ℑ σ σ σσ ℑ σ σ σ

Γ − Γ ℑ Γ − Γ Γ ℑ ΓΓ − Γ ℑ Γ − Γ Γ ℑ ΓΓ − Γ ℑ Γ − Γ Γ ℑ ΓΓ − Γ ℑ Γ − Γ Γ ℑ Γ

The nonzero coefficients of elastic complementary energy and coherence internal

energy take the form

Note: The formulas devoted to two-phase SMA material were earlier presented

by (Bernardini, 2001); (R= –z1z2ℑℑℑℑ(S)
12).

Bernardini D. (2001) On the macroscopic free energy functions for shape memory alloys, J.M.Phys.Solids.



Case of anisotropic elastic components (phases)

forming anisotropic two-phase aggregate (n=2)

The formula linking effective elastic moduli M with ingredient of SEIM moduli ℑℑℑℑ(S)
12

delivers very interesting CLUE for the SEIM method practical engineering

exploitation in a semi-experimental procedure. A viable option might be

experimental determination of components of effective elastic compliance, what

can subsequently serve for estimation of the other material properties. Simplecan subsequently serve for estimation of the other material properties. Simple

transformations lead to the relation

( ) 1 1

1 2 12 1 2 1 2 2 1( ) ( )( ) ,S Rez z − −= − − − ≠M M M M M M M Mℑℑℑℑ
( )

12 2 1(   when )S = =L M Mℑℑℑℑ
In order to facilitate establishing link between the present developments and

classical analytical and/or computational mechanics-oriented studies of

heterogeneous media presented e.g. in (Hill, 1963), (Dvorak&Benveniste,
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heterogeneous media presented e.g. in (Hill, 1963), (Dvorak&Benveniste,

1992), (Nemat-Nasser&Hori, 1993) or recently (Dvorak, 2013) it is worth to

specify explicitly relations between SEIM moduli ℑℑℑℑ*
αβ and classical, in

general case, diagonally non-symmetric, dimensionless, fourth-order tensors

BBBBα (σσσσα=BBBBασσσσ) called stress concentration tensors, cf. e.g. (Hill, 1963). They are

( ) ( )

1 1,

, [ ]
n n

S Azα αβ β α β αβ βα αβ β
β β β α

∗

= = ≠

= = ∆ +∑ ∑I + I +M M Mℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑℑ ℑ ℑB BB BB BB B



Reuss-type consistent bounding relationships

The Reuss estimate of RVE effective properties and state parameters for

anisotropic aggregate consisting of n anisotropic phases requires setting

all the SEIM moduli to zero value (ℑℑℑℑ*
αβ=0). This implies

* Re Re Re Re0 0, 0, 0, 0elg= ⇒ = = = = ⇒Mℑℑℑℑ ℜℜℜℜ f* Re Re Re Re

Re (ex) (in) (in)

1,..,

Re1
2 1

0 0, 0, 0, 0

( ), , 0, ,

, 0 ,

el

Re

n

nel coh coh coh pt

g

z

g u T s z

αβ α αβ αβ αβ

α α α α α α αα

α αα

=

=

= ⇒ = = = = ⇒

= ≡ = = = =

= ⋅ = , φ = − ⋅ =

∑
∑

M

M M M M

M

ℑℑℑℑ

σ σ σ σ ε Γσ σ σ σ ε Γσ σ σ σ ε Γσ σ σ σ ε Γ

σ σ ε Γσ σ ε Γσ σ ε Γσ σ ε Γ

ℜℜℜℜ f

The MRe make an upper bound of compliance moduli M.

The Reuss estimate of Gibbs free energy takes the form
n
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(Re) 0 0 Re

0

1

[ ( )] [ ln( / )] 0.5
n

coh pt

pg z u T s s c T T T T Tα α α α
α

ρ ρ
=

= − + + ∆ − ∆ ⋅ − ⋅ ⋅∑ − σ α σ Μ σ − σ ε− σ α σ Μ σ − σ ε− σ α σ Μ σ − σ ε− σ α σ Μ σ − σ ε

The Reuss values of properties/state variables would actually result from the

rigorous solutions of UT – uniform traction, boundary-value problems for a

class of special microstrain fields Mασσσσ and ΓΓΓΓα (x∈∈∈∈Vα, α=1,…,n), compatible at

all interfaces and for special microstructural geometries, the ones leading to

uniform stresses all over domain of RVE.



Voigt-type consistent bounding relationships

The following mathematical relation exists between Reuss moduli MRe

(upper bound of effective compliance M) and Voigt moduli LV (upper

bound of effective stiffness L (L= M-1)).

1 1

, 0.5 ,
n

Re V V V Vz zα β αβ αβ αβ αβ

− −

− = ≡ − ∆ ∆∑M L M M M L L
αβ α β∆ ≡ −

∆ ≡ −

M M M

L L L

The tensors Mαβ
V can also be expressed in the following form

(S (A (A( , ) 0.5( ), (! , )V α β= ∆ ∆ −) ) )
M M L M L M M L M + M L M

, 1,

1 1

1 1
1
4

, 0.5 ,

{ ( ) , ( ) } { }

{ ( )( ) ( ) }

V V T Re Re T V V

V V V V T

z zα β αβ αβ αβ αβ
α β β α

αβ αβ αβ αβ

αβ αβ αβ αβ αβ αβ

= ≠

− −

− −

− = ≡ − ∆ ∆

= = ⇒ ∆ ∆ = ∆ ∆

⇒ = − ∆ ∆ + ∆ ∆ =

∑M L M M M L L

L L M M L L M M L L

M L L M M L L M

αβ α β∆ ≡ −L L L
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where

(S (A (A( , ) 0.5( ), (! , )V

αβ α α αβ αβ αβ α αβ β β αβ α α β= ∆ ∆ −) ) )
M M L M L M M L M + M L M

1 (S) (S)

1 , 1;

1
(S) A) ( ) ( ) ( )1 1

2 2

( ), ,

, ( ), ( ); ,

n n
V

T T
V S S A A

z z zα α α α α α αα β αβ
α α β α β

αβ α β αβ αβ βα αβ αβ βα αβ αβ αβ αβ

−

= = ≠

−

≡ = = +

≡ ≡ ≡ − = = −

∑ ∑

( ( )

L L L M L L L

L L L L L L + L L L  L L L L L



Voigt-type consistent bounding relationships

It can be shown that the effective moduli of the anisotropic aggregate

RVE will take the values of Voigt estimate M=(LV)-1 provided that the

ingredients of stress concentration moduli take the form
1 1

(S) (S) (A) (A)1
2 ( ), 0V V V V

αβ αβ α β β α αβ αβ

− −
= = = =L L L L + L L L Lℑ ℑℑ ℑℑ ℑℑ ℑ

or equivalently

when zβ →1 then ℑℑℑℑV (S)
αβ →Lα → = –LαΓΓΓΓα provided ΓΓΓΓβ =0

Voigt-type estimation of families of functions fαβ and ℜℜℜℜα consistent with

the Betti reciprocity theorem take the following form

2 ( ), 0αβ αβ α β β α αβ αβ= = = =L L L L + L L L Lℑ ℑℑ ℑℑ ℑℑ ℑ

( in )

1zβ
α =

σσσσ

1 1
( ) 1 1 ( )0.5 [( ) ( ) ] (! , ), 0V S V V V A

αβ αβ αβ αβ αβ αβα β
− −

− −= − ∆ ∆ + ∆ ∆ =M L L L L Mℑ ℑℑ ℑℑ ℑℑ ℑ
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the Betti reciprocity theorem take the following form

�

(S) (A)

0

1,
0

1

( )

0

1

S

( , ) [ ], ( , ) [ ( ) ]

( , ) 0.5

( , )

( ) ( )

n
V P V

n
P V

z z z

z

f

z

α γ γ α α α γ γ β αβ β α αβ β
β β α

γ γ β

αβ α

β β
β

β

= ≠
=

−

=

= − ⇐ =

⋅ −

− +

−

≡

=

∑

∑

X Y X Y L

L

L L

X

L L

Y

Γ ε Γ Γ Γ Γ ΓΓ ε Γ Γ Γ Γ ΓΓ ε Γ Γ Γ Γ ΓΓ ε Γ Γ Γ Γ Γ

ε Γ Γε Γ Γε Γ Γε Γ Γ

ℜ ℜℜ ℜℜ ℜℜ ℜ



Voigt-type consistent bounding relationships

The Voigt estimate of anisotropic aggregate RVE effective properties and

values of state parameters can be expressed as follows

1 1
(ex) (ex) (ex)

1

, , ,V V

n

α α α α

− −

−

=

= = =

= [ − = = ∑

M L L Lσ ε ε σσ ε ε σσ ε ε σσ ε ε σ

σ Γ ε Γ ε εσ Γ ε Γ ε εσ Γ ε Γ ε εσ Γ ε Γ ε ε ΓΓΓΓεεεε

The Voigt estimate moduli LV make an upper bound of stiffness moduli L.

It displays uniform distribution of strain

The Voigt-type estimation of Gibbs free energy takes the form

(in) (in)

0

1

1

0( , ) ],P pt P
n

Vzzα γ γ α α α β β β
β

−

=

== [ − = = ∑L L Lσ Γ ε Γ ε εσ Γ ε Γ ε εσ Γ ε Γ ε εσ Γ ε Γ ε ε ΓΓΓΓεεεε

1

0( )V P

α Τ−= + + ∆Lε σ ε αε σ ε αε σ ε αε σ ε α
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1
( ) 0

0 0 0

1 1
( , )

( , ) 0

0 0 0

0

( ) 0.5 0.5 ( ) ( ),

( ) [ ln( / )] /

el

coh

n n
V V P P P

g z

u z

coh

p

g z g z

g u T s s c T T T T T

γ

γ γ

α α α α α α
α α

ρ
ρ

α α α α

ρ ρ

ρ

−

= =

= ≥

= − ⋅ − ⋅ + − ⋅ −

= − + + ∆ − ∆ ⋅

∑ ∑�����
���������������

L L

σσσσ
ΓΓΓΓ

σ σ σ ε Γ ε Γ εσ σ σ ε Γ ε Γ εσ σ σ ε Γ ε Γ εσ σ σ ε Γ ε Γ ε

− σ α− σ α− σ α− σ α



It will prove convenient to introduce the concept of partial ultimate phase

eigenstrains κκκκα as follows

then macroscopic phase transition strain can be expressed as

Voigt-type consistent bounding relationships

1 1

0( , ) ( ) ( , )V V Pz zα γ γ α α α γ γ

− −

= + −L L I L Lκ Γ Γ ε Γκ Γ Γ ε Γκ Γ Γ ε Γκ Γ Γ ε Γ

then macroscopic phase transition strain can be expressed as

The Voigt values of properties, state variables would actually result from

the rigorous solutions of UT boundary-value problems for a class of

specific microstrain fields Mασσσσ and ΓΓΓΓα (x∈∈∈∈Vα,α=1,…,n), and special

micro-structural geometries leading to uniform strains all over RVE.

01

npt Pzα αα=
= =∑ε κ εε κ εε κ εε κ ε
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In obtaining the relations between Reuss and Voigt moduli there were

used the following identities

1 1

2

1 , 1,

( ) ( ) , 2 ,

, , 1
n n

z z z

α β α β α β α β β α αβ αβ

αβ α β αβ α β α α β
α α β α β

− −

= = ≠

− = − − + = − ∆ ∆

∆ ≡ − ∆ ≡ − = −∑ ∑

IL L L M M M M L M L M L

M M M L L L



Experiment-oriented, parametric (Aαβ) class of SEIM estimation

Introducing parametric objects in modeling description to conveniently and

efficiently take into account influence of inhomogeneous elastic properties,

inhomogeneous or incompatible eigenstrains, and/or evolution of

microstructure, e.g. resulting from active phase transitions, on effective

thermoelastic properties of RVE still poses an open scientific problem.thermoelastic properties of RVE still poses an open scientific problem.

The specific form of formulas expressing Voigt estimations of effective

parameters deliver interesting CLUE for introducing parametric objects

into SEIM moduli homogenization method.
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Experiment-oriented, parametric (Aαβ) class of SEIM estimation

Let us accept conjecture that for non-isotropic phases generating non-

isotropic aggregate RVE the ingredients of eigenstrains influence moduli

ℑℑℑℑ*
αβ have the following form (α≠β) (α!),

− −

Tensors Aαβ make an array of n(n–1)/2 independent positive semi-definite,

diagonally symmetric fourth-order tensors. The tensors may, in general,

depend on phase composition and parameters characterizing the current

1 1
( ) ( )1 10.5 [ ], 0,

, 0 (! ); , ,

V A S V A V A V A A

V A V T

αβ αβ αβ αβ

αβ

αβ αβ αβ αβ αβ αβ αβ αβ

αβ αβ αα αβ βα αβ αβα

− −
+ + + +− −

+

= − ∆ ∆ + ∆ ∆ =

≡ + = = =

L L M M L L

L L A A A A A A

ℑ ℑℑ ℑℑ ℑℑ ℑ
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The conjecture is purely pragmatic, and it is made not to intro-

duce unnecessary complications without relevant knowledge supporting

some other more adequate conjecture. Validation of correctness of this

assumption for specific material microstructures requires experimental

studies.

depend on phase composition and parameters characterizing the current

geometry of RVE microstructure.

( )
0

V A Aαβ

αβ
+ =ℑℑℑℑ



The homogenization based on ingredients posses the feature that all

effective properties become Voigt-type or Reuss-type estimations when

Aαβ=0 and Aαβ→∞, respectively. Provided that some of Mα are different.

Relations for make a very convenient theoretical tool for obtaining

Experiment-oriented, parametric (Aαβ) class of SEIM estimation

V Aαβ

αβ
+ℑℑℑℑ

V A+ℑℑℑℑRelations for make a very convenient theoretical tool for obtaining

precise assessments of thermomechanical properties/state variables for

various microstructures. However, in general this will require rather involved

numerical–experimental studies, e.g. finite element method (FEM) based,

to reach useful results.

The very comprehensive scheme taking advantage of the matrix of tensors

A , very well suited for fundamental research will be now left for future

V Aαβ

αβ
+ℑℑℑℑ
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Aαβ, very well suited for fundamental research will be now left for future

studies.



SEIM method with one parametric tensor A

for anisotropic RVE containing n anisotropic phases

In the sequel further simplifications will be adopted of the three kinds:

a) the matrix of tensors Aαβ will be reduced to one tensor A,

b) attention will be focused on isotropic aggregate of n isotropic phases

c) number of distinguished phases will be limited to two (n=2).

Ad a) Let us assume that it is possible to relevantly describe material

properties with single tensor A, i.e. it can be accepted that

The attraction of such an approach relies on the fact that upon this

conjecture all the effective properties may be consistently expressed in

terms of elastic compliance moduli (M).

V A V A Vαβ

αβ
+ += ≡ +L L L A
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terms of elastic compliance moduli (M).

It can be shown upon simple transformations that

The above connection may be regarded as the algebraic equation enabling

to find unknown components of tensor (LV+A)-1 in terms of Mα, Lα and M.

1 1
Re Re Re0.5[( ) ( )], ,V V A V A V V A V T

− −
+ + +− = − + − ≡ +M L I L L L I L L A A = AΜ Μ ΜΜ Μ ΜΜ Μ ΜΜ Μ Μ



The nonzero ingredients of eigenstrains influence moduli can be

expressed in terms of Mα, Lα oraz (LV+A)-1, i.e. M treated as known as

follows

SEIM method with one parametric tensor A

for anisotropic RVE containing n anisotropic phases

1 1
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f

Obtaining estimations of the values of thermostatic properties, state varia-

bles, remaining in consistency with the Betti reciprocity theorem, requires
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These formulas have the same explicit form as the formulas for Voigt-type

estimates but in place of LV there must be substituted LV+A .

bles, remaining in consistency with the Betti reciprocity theorem, requires

substitution of into relations forV A

αβ
+ℑℑℑℑ ( ) (in) (ex) ( ), , , , , , , , .ex in pt el cohg u gα α α α Mσ σ ε ε εσ σ ε ε εσ σ ε ε εσ σ ε ε ε



Two scalar parameters (A(µ), A(k)) SEIM method estimation for 

isotropic RVE of n isotropic phases (Aαβ=A, n)

Considerable simplifications are possible when it can be conjectured that

modeled material macroelement (RVE) consisting of n isotropic phases

always arranges into isotropic resulting aggregate. The Rychlewski theor-

em on spectral decomposition of 4th order, tensor of elastic stiffness states

that in the case of isotropic elastic materials L (M) tensor can be unambi-that in the case of isotropic elastic materials L (M) tensor can be unambi-

guously decomposed into spherical and distortional parts, as follows

1
3

1
2 2
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Walpole (1981) seems to be the first to use this type of decomposition.
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Walpole (1981) seems to be the first to use this type of decomposition.

Bernardini (2001) also employed this decomposition. Then reduces to
V Aαβ

αβ
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3(1 2 ) 2(1 )

n n
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z zα α
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kα and µα denote the average value of the bulk and shear moduli
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Two scalar parameters (A(µ), A(k)) SEIM method estimation for 

isotropic RVE of n isotropic phases (Aαβ=A, n)

Effective compliance tensor M takes the form
( ) ( )
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1 1 1
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The estimates of effective properties k , µ satisfy familiar inequalities
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Two scalar parameters (A(µ), A(k)) SEIM method estimation for 

isotropic RVE of n isotropic phases (Aαβ=A, n)

Estimates of macroscopic phase transition strains and phase averages of

self-equilibrated internal stresses are
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Central result

The SEIM method estimation of Gibbs free energy g(V+A) of isotropic agre-

gate SMA macroelement composed of n isotropic phases takes the form
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The above relations explicitly reveal connections between microproperties

microstructure of SMA macroelement and the objects/terms present in macroscopic

Gibbs function for isotropic SMA macroelement composed of isotropic phases.
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Central result

Summary of SEIM method two parameter (A(µ), A(k)) estimation of effective 

properties (isotropic aggregate RVE composed of n isotropic phases).

Estimation A (k) A (µ) M φ coh=u coh–T·s coh
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upper bound (n=2)
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Note: Conjectures made to obtain estimates of Hashin–Shtrikman lead to mutual

coupling of distortional and spherical deformation modes. This kind of coupling

does not take place in the case of proposed here SEIM method of estimation.
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Variation of effective bulk modulus of two phase RVE with volume fraction of 

second phase z2 for several values of parameter A(k) according to SEIM method:

A(k)=(0.5,2,10,,40,400), k2/ k1 =(4, 200) HS–=2k1, HS+=2k2.
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The parameter A(k) is taken here to be constant. However, more realistic conjecture 

is that in general A(k) is some kind of function depending on evolution of RVE 

microstructure, thus at minimum depending on volume fraction z2. The explicit form 

of such dependence can/must be found experimentally.



Two scalar parameters (A(µ), A(k)) SEIM method estimation for 

isotropic RVE of n isotropic phases (Aαβ=A, n)

Experiment-oriented SEIM method of estimation, for isotropic RVE

composed of n isotropic phases, with one parametric tensor A.

Simple transformations allow to obtain formulas for values of parameters

A(µ), A(k) expressed in terms of values of effective elastic moduli k V, µVA(µ), A(k) expressed in terms of values of effective elastic moduli k V, µV

Re Re

( ) Re ( ) Re

1 1
,

[ ] [ ]V V V VA A µ

µ

µ

µ
µ µ µ

− −
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+ − + −k
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k k k k

Thus, upon use of the above formulas it is possible to determine estimates

of effective coherency energy and/or phase transition strains, for the
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of effective coherency energy and/or phase transition strains, for the

isotropic RVE composed of n isotropic phases, when there will be

measured/ there are known values effective elastic moduli.



Estimations for isotropic RVE consisting of n isotropic phases with 

no elastic heterogeneity (Mα=M)

When all phases have the same values of elastic moduli (µV=µRe=µα=µ,

kV=kRe=k α=k, gel
αβ=0), i.e. SMA material RVE is elastically homogeneous

then ℑℑℑℑαβ=L, and estimates of respective quantities are as follows,
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In this case the coherency energy coefficients may depend on zα only

through possible dependence of A(k) and A(µ) on phase composition.



Sensitivity analysis of isotropic RVE composed of two isotropic

phases regarding nonhomogeneity of elastic properties

Let us return to commonly used at present assumption that SMA RVE is in

general composed of austenitic and martensitic phase, i.e. (n=2).

The two-phase mixture is characterized by zero phase eigenstrains in

austenite (ΓΓΓΓ1=0), and deviatoric only phase eigenstrains in martensite

(devΓΓΓΓ =ΓΓΓΓ, trΓΓΓΓ =0) – a typical modeling assumption for polycrystalline SMA(devΓΓΓΓ2=ΓΓΓΓ, trΓΓΓΓ2=0) – a typical modeling assumption for polycrystalline SMA

materials. Thus, all volumetric effects are zero for studied here case

Let us introduce convenient normalized estimations defined as follows
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The symbol µG denotes the geometric mean of shear moduli, εεεε pt
eq is the
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The symbol µG denotes the geometric mean of shear moduli, εεεε pt
eq is the

equivalent macroscopic phase strain, and Γeq is the equivalent eigenstrain

of martensitic phase.
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Sensitivity analysis of isotropic RVE composed of two isotropic

phases regarding non-homogeneity of elastic properties

The dependence of normalized (dimensionless)

internal coherency energy y on the martensite

volume fraction z2 for several values of

parameters µ12 (0.5,1,2,4) and A(µ)/µG (0,10). →
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The highest peak among the Voigt-type

estimates maxima of the coherency energy

arises when there is no microscopic

heterogeneity of elastic properties, i.e. µ1 = µ2
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Let us introduce dimensionless, sensitivity measures of elastic properties

heterogeneity ∆ y and ∆ e as follows,

These measures enable evaluation what influence has SMA material elastic

2
1max max max 2 13( / ) 1, / Gy y y e y µ µ µ∆ ≡ − ∆ ≡ −

Sensitivity analysis of isotropic RVE composed of two isotropic

phases regarding non-homogeneity of elastic properties
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These measures enable evaluation what influence has SMA material elastic

properties nonhomogeneity on estimates of internal coherency energy and phase

transition strains.
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Figure (a) Variation of the relative error ∆y in estimation of the coherency energy,

with the value of ratio A(µ)/µG, (b) Variation of the relative error ∆e in estimation of

the equivalent macroscopic phase strain ε pt
eq, with the value of ratio A(µ)/µG.



What are the realistic values of ratio A(µ)/µG, e,g, for NITi alloy?

In order to evaluate the values it will be used the key presumption underlying the

RL family models of SMA materials treated as two-phase stating that phase

transitions (p.t.) are initiated in SMA materials, when they reach unstable

Sensitivity analysis of isotropic RVE composed of two isotropic

phases regarding nonhomogeneity of elastic properties

transitions (p.t.) are initiated in SMA materials, when they reach unstable

thermodynamically phase equilibria.

This supposition means that criteria for forward and reverse phase transitions are

derivable directly from Gibbs function. For example in the case of RL models

criteria for active phase transition initiation require that thermodynamic driving

force of p.t. takes the zero value. These conditions, for pure phases, take the

following mathematical form

1 2( , , 0) ( ) / 0AM f st AMT zπ σ π γ σ ρ− = = − φ −φ + ⋅ = 
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φ ≅ φ = +

σAM
ten denotes the critical uniaxial stress at which the pseudoelastic flow starts

for pure austenite, σMA
ten denotes the critical uniaxial stress at which the pure

martensite starts to decompose reverse pseudoelastic flow starts, γten is

pseudoelastic flow amplitude at uniaxial tension.
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σAM
ten denotes the critical uniaxial stress at which the pseudoelastic flow starts for

pure austenite, σMA
ten denotes the critical uniaxial stress at which the pure

martensite starts to decompose reverse pseudoelastic flow starts, γten is

pseudoelastic flow amplitude at uniaxial tension.

The term 2ρ φit determines area of hysteresis loop in stress–strain coordinates.



The experimental data for polycrystalline Ni51at%-Ti alloy obtained in isothermal

experiments performed in the temperature range of pseudoelasticity suggest that,

cf. (Raniecki et al., 2001) show

3

1 2 20 10 [MPa], 0.06, ( ) 200 [MPa]G AM MA

ten ten ten

µ

µ µ µ γ σ σ

ρ µ µ γ ρ

= = ≈ × = − ≈

⇒ φ ≈ ⇒ = φ − ≈
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max 1 2 12

6 [MPa] / ( ) / 1 17

1.25 [MPa] 0.19 J / g 11[J / mol] ( )

coh G G coh
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coh coh coh

A

z z

µρ µ µ γ ρ

ρ ρ ρ (0)

⇒ φ ≈ ⇒ = φ − ≈

⇒ φ ≈ = = φ = φ

The estimate of maximum value of NiTi alloy coherency energy per mol to be φcoh
max

≈ 11 [J/mol] (NiTi data µNiTi=56g/mol, ρNiTi=6500 kg/m3) gives premises to evaluate

that the forces assuring continuity of displacements field can neither be qualified as

the typical chemical forces (e.g. of covalent bonds), nor as the typical forces of

physical interaction (e.g. of melting, dissolution, adsorption).
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physical interaction (e.g. of melting, dissolution, adsorption).

The sensible latent heat of phase transition for NiTi alloys, connected with forces of

phases microstructural reorganization remains in the range of ∆u=10-30 [J/g], i.e. it

is about two orders larger (~102) than coherency energy φcoh
max.

Note: Experimental data indicate that for NiTi alloys, it is reasonable to accept that coherency

entropy s12≅0. Thus φcoh ≡ ucoh+s12�T = ucoh, cf. e.g. chapter 5 in Ziolkowski (2015)

Pseudoelasticity of Shape memory Alloys.



The sensitivity analysis shows that neglecting non-homogeneity of elastic

properties of SMA material phases, even when it is relatively high (e.g.

modules of austenite are several times larger/smaller than modules of

martensite), does not lead to considerable errors in evaluation the values

Central result

martensite), does not lead to considerable errors in evaluation the values

of coherency energy and/or macroscopic phase transition strains.

For example when µ1/µ2≈4 and A(µ)/µG ≈ 17 the error in evaluation of

coherency energy and/or effective phase transition strains is lesser than

2.0%, cf. charts on slide 90.
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Let us release the early constraints and admit nonzero fluctuating parts of

microeigenstrain fields, i.e. let us assume that local phase transformation

fields have the following form

( ) ( ), ; ( ) 0, ( ) 0, ( 1,.., )f f f

VV n
αα α α α α α α= + ∈ ≠ < > = =

⌣ ⌣ ⌣ ⌣
x x x x xΓ Γ Γ Γ ΓΓ Γ Γ Γ ΓΓ Γ Γ Γ ΓΓ Γ Γ Γ Γ

Stored coherency energy

and fluctuating part of microeigenstrain field ( ) 0f

α ≠
⌣

xΓΓΓΓ

α

Since the distribution of elastic compliances is still presumed to be piecewise

constant all general expressions derived earlier concerning averaged quantities of

external fields and macroscopic complementary elastic energy remain valid. The

expressions concerning internal fields including the macroscopic phase

transformation strains must be modified.

In order to evaluate influence of phase fluctuations of eigenstrains on estimation of

coherence energy internal fields problem is additively divided into the fields
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coherence energy internal fields problem is additively divided into the fields

generated by phase averages and phase fluctuations of eigenstrains field.

The symbolic solution of auxiliary problems can be denoted as follows

The above fields are supposed to fulfill the following constitutive relations

( ) (a-in) (f-in) (in) (a-in) (f-in)( ) ( ) ( ), ( ) ( ) ( ), ,in Vα α α α α α α= + = + ∈
⌣ ⌣ ⌣ ⌣ ⌣ ⌣

x x x x x x xε ε ε σ σ σε ε ε σ σ σε ε ε σ σ σε ε ε σ σ σ

(a-in) (a-in) (f-in) (f-in)( ) ( ) , ( ) ( ) ( ), (! )f

α α α α α α α α α= + = +
⌣⌣ ⌣⌣ ⌣

x M x x M x xε σ Γ ε σ Γε σ Γ ε σ Γε σ Γ ε σ Γε σ Γ ε σ Γ



The constitutive relations between phase averages of the local fields in

each volume Vα are

(a-in) (a in) (f-in) (f in) (a in) (f in)

1 1

, , 0, 0
n n

z zα α α α α α α α α α α
α α

− − − −

= =

= + = = =∑ ∑M Mε σ Γ ε σ σ σε σ Γ ε σ σ σε σ Γ ε σ σ σε σ Γ ε σ σ σ

Stored coherency energy

and fluctuating part of microeigenstrain field ( ) 0f

α ≠
⌣

xΓΓΓΓ
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− −=< > =< > =< > =< >
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x x x xε ε ε ε σ σ σ σε ε ε ε σ σ σ σε ε ε ε σ σ σ σε ε ε ε σ σ σ σ

The macroscopic transformation strains are influenced by when

some phases have different elastic compliances

(in)

1

1
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α =
=
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The macrscopic transformation strains εεεε pt can be alternatively decompo-

sed as follows

(a-in) (f-in)

1 1 1

2

,  ( ) ( ), (! )
n

pt z zα α α α α α α α α
α

α
=

= + ≡ + − + −∑ M M Lε Γ κ κ Γ ε ε Γε Γ κ κ Γ ε ε Γε Γ κ κ Γ ε ε Γε Γ κ κ Γ ε ε Γ

1,β β α= ≠

Tensors κκκκα (α=2,...n) are called macroscopic ultimate phase transition strains



The general form for the internal energy of coherency, including influence

of transformation strains fluctuations, takes the following form

( ) ( ) ( ) 0,coh a coh a f coh f cohu u u u−= + + ≥ ( , )cohuαβ αβ α βρ (0) = Γ ΓΓ ΓΓ ΓΓ Γf
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The above convenient form of expressions entering internal coherency

energy was obtained upon use of the following relation resulting from

reciprocal (Betti) theorem.

(f in) (a-in)

1 1

( ) ( )
n n

f

Vz z
αα α α α

α α

−

= =

⋅ = < >∑ ∑
⌣ ⌣

x xΓ σ Γ σΓ σ Γ σΓ σ Γ σΓ σ Γ σ



Upon taking into account phase fluctuations of transformation eigenstrains field

macroscopic internal coherence energy takes the following general form

(0)

2 , 1,

0.5 ; ( )
n n

coh coh coh coh coh f cohu z u z z u u u uα α α β αβ αβ αβ αβ
α α β α β

ρ ρ ρ ρ ρ ( )

= = ≠

= + ≡ +∑ ∑

Stored coherency energy

and fluctuating part of microeigenstrain field ( ) 0f

α ≠
⌣

xΓΓΓΓ

the same structure has coherence energy posed heuristically for two phase (n=2)

RVE in family of RL models of SMA materials φcoh=φ2
st z2+φit z1z2

2 , 1,α α β α β= = ≠
∑ ∑

After completion of austenitic transformation into the single martensitic compound

(z =1), the term φ(f)coh usually does not disappear, it represents the energy stored in

( )coh coh cohu T sρ ρφ = − ⋅
terms induced by phase fluctuations of eigenstrains
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(z2=1), the term φ(f)coh usually does not disappear, it represents the energy stored in

RVE due to the presence of residual self-equilibrated stresses.

In general case

The nonzero contribution of the term φ(f)coh , induced by transformation eigenstrains

fluctuations, to the coherency energy allows for explanation of some effects

present in macroscopic behavior of NiTi alloys observed experimentally.

( )

1| 0,  ( =2,.., )f coh

z n
α

α=φ ≠



In 2007 Popov and Lagoudas reported about discovered by them experimentally

new effect in behavior of NiTi SMA materials. For material not submitted to

mechanical loading the austenite start temperature determined in standard DSC

test As
0 considerably differed, by about ~25°C, from such austenite start

temperature As
2-1 determined for NiTi material submitted before DSC test to

Stored coherency energy

and fluctuating part of microeigenstrain field ( ) 0f

α ≠
⌣

xΓΓΓΓ

temperature As determined for NiTi material submitted before DSC test to

considerable mechanical loading when it was in martensitic state.

Popov and Lagoudas indicated (incorrectly) that this effect appears due to plastic

deformation of martensitic phase.
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Popov P., Lagoudas D.C. (2007) A 3-D constitutive model for shape memory alloys incorporating

pseudoelasticity and detwinning of self-accommodated martensite, Int. J. Plastaticity



In order to control (exclude) the influence of plastic deformations on the

characteristic temperatures. The NiTi specimen was submitted to thermomechani-

cal treatment consisting in tensioning it one time to 500MPa at room temperature

T=22°C>As
0.
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a) Nominal stress – uniaxial strain chart of Ni50at%-Ti wire specimen: loaded up to

break (red), and the one loaded to 500 MPa and unloaded - TMT500x1 (blue) at

room temperature 22°C; b) Comparison of DSC thermographs for specimen after

delivery and after TMT500x1 treatment.
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After loading-unloading the NiTi specimen in martensitic state to 450MPa

(completely reorienting the martensitic phase) the austenite start temperature

increased by As
2-1-As

0=25°C. It can be shown in modeling terms that this effect

can be explained by different values of coherence internal energy ucoh and

coherence entropy scoh of thermally induced (self-accommodating) and
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a) Isothermal stress-strain curves of polycrystalline Ni50at%-Ti wire samples in

martensitic state submitted to tension at temperature -56°C and 10°C < As
0=26°C,

b) DSC thermograph of specimen initially in fully oriented martensite state (z2=1)
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Central result

The present study allows for drawing conclusion that for n phases SMA

macroelement (RVE), it is reasonable to adopt the Gibbs potential which

is consistent with the following general form

0 0

0(Y , ) ( ) [ ln( / )] /
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Central result

The phase transformation strains can be expressed as follows

(a-in) (f-in)

1 1 1

2

,  ( ) ( ), (! ), ( 1,...n)
n

pt z zα α α α α α α α α
α

α α
=

= + ≡ + − + − =∑ M M Lε Γ κ κ Γ ε ε Γε Γ κ κ Γ ε ε Γε Γ κ κ Γ ε ε Γε Γ κ κ Γ ε ε Γ

Tensors κκκκ are called ultimate phase transformation strains.

1 1 1 1

2

( ) 0, 0, 0
n

coh TV zα α
α =

= ∈ ⇒ ≡ φ = ⇒ = ∑
⌣

x xΓ Γ ε κΓ Γ ε κΓ Γ ε κΓ Γ ε κ

The functions gα
ult (Yh

σ) (α=2,...n) represent work of constant fixed

Tensors κκκκα are called ultimate phase transformation strains.

In the literature devoted to SMA materials austenitic phase is frequently

regarded as a matrix phase (α=1) with zero phase eignestrains
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The functions gα (Yh ) (α=2,...n) represent work of constant fixed

macroscopic stress exerted upon the ultimate transformation strains κκκκα.

When their explicit form is known, for example from some experimental

procedure, then they can be used as potentials for determination of

ultimate transformation strains

h(Y ) ( ) /ult ultg gσ
α α α αρ ρ≡ ⋅ ⇒ = ∂ ∂σ κ κ σσ κ κ σσ κ κ σσ κ κ σ



Conclusions and concluding remarks

The SEIM method allowed to derive explicit form of macroscopic Gibbs

function (potential) for SMA materials treated as of n-phases conglomerate

from experimentally supported assumptions on their behavior in microscale

of observation.

Basing on the revealed explicit form of Gibbs potential for SMA materials:

- it was shown that neglecting SMA material phases elastic properties non-

homogeneity, even when it is relatively high (of the order of several times),

does not lead to considerable errors in evaluation the value of coherency

energy and/or macroscopic phase strain.

- it was identified that some coherency energy is stored in SMA material
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even after full completion of martensitic transformation. It was revealed

that the physical source of this stored energy is fluctuating part of

incompatible phase transformation strains.

- it was shown that the stored coherency energy is responsible for

considerable change in characteristic temperatures of reverse martensitic

transformation As
0→ As

21; (As
21 – As

0 ≈ 25°C for NiTi).



Conclusions and concluding remarks

A number of difficult, open scientific problems still exists within the domain of

modeling prediction of SMA materials behavior and/or their characterization.

Upon identification of realistic form of Gibbs potential for SMA materials

treated as n-phases conglomerate, the desirable next steps can consist in:treated as n-phases conglomerate, the desirable next steps can consist in:

- elaboration of unified model of SMA materials behavior capable for

description of pseudoelastcity and one way memory effect. It is already

known that this will necessarily require introduction of more then two-phases

RVE model.

- elaboration of criteria of forward/reverse phase transition resulting from

adopted specific form of Gibbs function and conjecture on thermodynamic

instability of phases as the driving force for transformation,

- identification and derivation of explicit formulae for thermodynamic driving
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- identification and derivation of explicit formulae for thermodynamic driving

forces of individual phases transformations

- elaboration of rules of phase transformation kinetics

- development of rules of evolution of ultimate eigenstrains tensors (κκκκα )

All the above targets require elaboration and execution of a broad

experimental program.



Elements of experimental tests program

for development of SMA materials model

Schematic representation of desirable programs of SMA materials

thermomechanical loadings in multiaxial stress states.
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Conclusions and concluding remarks

The SEIM method, originally developed for the purposes of SMA materials

modeling and characterization seems to have much broader application

domain.

The SEIM method seems to be a convenient tool for evaluation of theThe SEIM method seems to be a convenient tool for evaluation of the

influence of microstructure on macroscopic properties of many other

modern materials e.g. sintered powders.

It looks to be well fitted for use in evaluation of he advancement/state of

pathological processes in bones (porous and anisotropic structures).

It can be rather straightforwardly adapted to evaluate the advancement of

damage processes, for example in wood or reinforced composites.

It offers handy tool for semi-experimental evaluation of the influence of
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It offers handy tool for semi-experimental evaluation of the influence of

different elements of manufacturing processes on overall resilience of the

end product materials. For example how combined effect of foaming and

extrusion influences the properties of Extruded Polystyrene Foams (XPS).

It seems that the SEIM method has the chance to gain independent

existence as a method of parametric characterization of advanced

composite materials.



Conclusions and concluding remarks

A number of difficult, open scientific problems still exists within the stream

of tensor functions induced by their use i description of behavior and

properties of advanced materials.

For example it is useful and required:For example it is useful and required:
- to elaborate quantitative measure of the degree of anisotropy of a material

Rychlewski has made first step in this direction

- to elaborate quantitative measure of anisotropic material effort and limit criteria

for such effort.

Straightforward extension of Huber Mises criterion is not possible because in the

case of anisotropic media, decomposition of the total elastic energy, stored in the

material under loading, into the parts connected with the change of volume and
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material under loading, into the parts connected with the change of volume and

the change of shape is impossible as indicated by Rychlewski, who proposed the

notion of “energy-orthogonal” states of stress to overcome arising difficulties.



Notes
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